
Theory Extraction in

Relational Data Analysis

Gunther Schmidt1

Institute for Software Technology, Department of Computing Science
Federal Armed Forces University Munich

e-Mail: Schmidt@Informatik.UniBw-Muenchen.DE

1 Introduction

From numerical mathematics we know that a linear equation Ax = b may be
solved more efficiently if a reduction of A as A =

(
B O
C D

)
is known beforehand.

For the task
(

B O
C D

)
·
(

y
z

)
=

(
c
d

)
, one will solve By = c first and then Dz =

d−Cy. Having an a priori knowledge of this kind is also an advantage in many
other application fields. We here deal with a diversity of techniques to decompose
relations according to some criteria and embed these techniques in a common
framework. The results of decompositions obtained may be used in decision
making, but also as a support for teaching, as they often give visual help.

Our starting point will always be a concretely given relation, i.e., a Boolean
matrix. In most cases, we will look for a partition of the set of rows and the set
of columns, respectively, that arises from some algebraic condition. From these
partitions, a rearranged matrix making these partitions easily visible shall be
computed as well as the permutation matrix necessary to achieve this.

The current article presents results of the report [Sch02] obtainable via
http://ist.unibw-muenchen.de/People/schmidt/DecompoHomePage.html

which gives a detailed account of the topic. The report is not just a research
report but also a Haskell program in literate style. In contrast, the present article
only gives hints as to these programs. Therefore, some details are omitted.

This article is organized as follows. Chapter 2 presents the idea of extracting
theories as proposed in this paper. Then Ch. 3 will mention some prerequisites.
The hints concerning the relational language used are given in Ch. 4, followed
by Ch. 5 with models and interpretations in Haskell. With Ch. 6 the first de-
composition based on the strongly connected component ontology is elaborated
in some detail to further clarify the idea. Theoretical basics of the more sophisti-
cated Galois decompositions are explained in Ch. 7 before these are made ready
for programming in Ch. 8.
1 Cooperation and communication around this research was partly sponsored by the

European COST Action 274: TARSKI (Theory and Application of Relational Struc-
tures as Knowledge Instruments), which is gratefully acknowledged.

2 The Idea of Theory Extraction

If some concrete relations are given as boolean matrices, one may talk about these
in terms of a logical language and theory. We provide names for the relations and
names for row and column entries which will be interpreted so that the name
of the relation gets assigned the matrix as its interpretation, etc. This already
gives us a sparse language and a sparse theory without any specific theorems to
hold.

When a relational decomposition is reached, the language will have to contain
also the necessary predicates and theorems expressing the algebraic idea behind
the decomposition. Which predicates and theorems we need will depend on the
decomposition we are aiming at and which we will call the given ontology. One
ontology we have in mind is the game ontology. It considers the given homoge-
neous relation as the graph of a two-player game as described in [SS89,SS93], e.g.
One wishes to solve the game, i.e., to qualify the positions as to being a position
of win, of draw, or of loss for the player about to move. Other ontologies that
have been handled include irreducibility, difunctionality, matching, etc.

The following diagram shows the idea. We start with the given model of the
sparse theory (which is the relation originally given) and some ontology-enhanced
theory. What we are constructing is in a sense the pushout.

Sparse theory

↓
Ontology-enhanced theory

|=

|=

Given model

↓
Result model

After decomposition, the given model may be viewed with the mechanism our
ontology has provided. Then the theory will also contain certain formulae de-
scribing what holds between the new ontology-dependent items.

Consider the following trivial example. We start with the left relation B and
aim at the game ontology decomposition. Then we will obtain two uniquely
determined sets a, b satisfying the relational theorems a = B ; b and B ; a = b.
In the game ontology they may be interpreted as loss := a, win := b, and draw
:= b∩ a, below arranged as partition into win, draw, loss. They will furthermore
allow us to obtain a permutation so as to rearrange the matrix B to the right-
hand side form, which makes the algebraic laws easily visible.

1 2 3 4 5 6 7

1

2

3

4

5

6

7




0 1 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
1 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 1 0 1 0 0




1

2

3

4

5

6

7




1
0
0
0
1
0
0







0
0
1
0
0
1
1







0
1
0
1
0
0
0




2 4 3 6 7 1 5

2

4

3

6

7

1

5




0 0 0 0 0 0 0
0 0 0 0 0 1 0

0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 0 1 0 0 0 1

1 0 0 1 0 0 0
0 1 0 0 0 1 0




Original game matrix, partition and rearranged matrix

3 Preliminaries

A major aspect in this work is, thus, to be able to handle permutations, to
derive them for special purposes, to treat them as relations when appropriate,
and to make them fully available in the Haskell program. Permutations may be
considered as a function, decomposed into cycles, or as a permutation matrix.
Everybody who has worked in functional programming will admit that transition
from one form to the other is a simple programming task. As everything is worked
out in the report [Sch02], we need not explain it here in detail. The additional
general reference is [SS89,SS93], which will not be mentioned every time.

The permutations shall mostly be determined from partitions of a set so as to
convert it to a list of elements with elements of an equivalence class side aside.
Again, one will concede that this is a solvable task for a functional program-
mer; so we avoid mentioning this in detail here. One should, however, observe
that sometimes rows and columns are permuted simultaneously and sometimes
independently. These two situations need rather different treatment.

As space is limited, we cannot collect all the well-known and often recalled ma-
terial in order to make this article self-contained. We restrict to mentioning that
relations here are conceived as subsets R ⊆ X × Y of the Cartesian product of
some sets X, Y between which they are defined to hold. Operations are compo-
sition ; , transposition T, identities , union ∪, intersection ∩, complementation
, null relations , universal relations , and containment ⊆ of relations.

When expressing the basic relational operators in Haskell, the programming
language chosen, we will handle relations as rectangular boolean matrices. Often
we represent their entries True by 1 and False by 0 when showing matrices
in the text. The following basic relational operators |||, &&&, ***, <== for
union, intersection, composition and containment of relations are all formulated
in Haskell.

4 Relational Language

To formulate the theorems of an ontology-enhanced theory, we will need the
language generated by the denotations of these operations, and we will not al-
ways immediately execute them. So we distinguish, e.g., between the denotation
:***: as a Haskell infix constructor, and its interpretation, the operation ***.
Therefore, a relational language is presented allowing us to talk about elements,
vectors (or sets), and (binary) relations. We are going to work in a typed or
heterogeneous setting, which means that we start from a category.

data CatObject = Obj String | ...

So we will be able to give names to the category objects using the constructor
Obj and a chosen string. The category will later stay the same when an extended
theory is extracted guided by some ontology.

Then we need denotations for individual variables, constants, functions, and
predicates. In our setting, we always bind these together with their typing, and
we restrict to unary predicate constants which we call vectors and binary pred-
icate constants, which we call relations. A relational constant is nothing more
than a name, the string. Its type are the CatObjects between which the relation
is supposed to hold. They are, however, not concretely given as we stay — so
far — on the syntactical side.

data ElemConst = Elem String CatObject

data VectConst = Vect String CatObject

data RelaConst = Rela String CatObject CatObject

On all this, we now build first-order predicate logic, introducing individual vari-
ables, terms, and formulae.

data ElemVari = VarE String CatObject

data VectVari = VarV String CatObject

data RelaVari = VarR String CatObject CatObject

Vectors are here supposed to be column vectors. From the beginning, we dis-
tinguish element terms, vector terms, and relation terms. Null, universal, and
identity relation constants may uniformly be denoted throughout as indicated.

data ElemTerm = EC ElemConst | EV ElemVari | ...

data VectTerm = VC VectConst | VV VectVari | RelaTerm :****: VectTerm |

VectTerm :||||: VectTerm | VectTerm :&&&&: VectTerm |

NegVect VectTerm | NullV CatObject | UnivV CatObject |

VFctAppl RelaFct RelaTerm | ...

data RelaTerm = RC RelaConst | RV RelaVari | RelaTerm :***: RelaTerm |

NegaRela RelaTerm | Transp RelaTerm | Ident CatObject |

NullR CatObject CatObject | UnivR CatObject CatObject |

RelaTerm :|||: RelaTerm | RelaTerm :&&&: RelaTerm | ...

data ElemFct = EFCT ElemVari ElemTerm

data VectFct = VFCT VectVari VectTerm

data RelaFct = RFCT RelaVari RelaTerm

The 0-ary operations for , , require giving domains or codomains, respec-
tively. Typical checks such as relaTermIsWellFormed, typeOfVectTerm are pro-
vided for well-formedness, type control, etc.

In order to further facilitate maintenance of ubiquitous typing three forms of
formulae are distinguished. In case x ∈ v, this is represented by the vector
formula VE v x. In a similar way, REE r x y means (x, y) ∈ r.

data ElemForm = Equation ElemTerm ElemTerm | ...

data VectForm = VectTerm :<===: VectTerm | VE VectTerm ElemTerm | ...

data RelaForm = RelaTerm :<==: RelaTerm |

REE RelaTerm ElemTerm ElemTerm | ...

data Formula = EF ElemForm | VF VectForm | RF RelaForm |

Negated Formula | Implies Formula Formula |

Disjunct Formula Formula | Conjunct Formula Formula | ...

Again, typing and well-formedness are defined as usual. The types of all kinds of
formulae are intended to be Bool. Free variables are defined as usual, and then
a theory (fragment) may be formulated as a data structure in Haskell.

data Theory = TH String -- name of the theory

[CatObject] -- carrier set denotations

[ElemConst] -- element denotations

[VectConst] -- subset denotations

[RelaConst] -- relation denotations

[VectFct] -- vector functions

[RelaFct] -- relation functions

[Formula] -- formulae demanded to hold

Of course, some testing is provided with checkTheoryWellDefined. The following
is an example with just a denotation for a base set and a denotation for a relation
intended to be defined on it, but only empty denotation lists [] provided for
elements, subsets, functions, and formulae.

verySparseTheory = TH "Example" [o] [] [] [Rela "B" o o] [] [] []

where o = Obj "BaseSet"

5 Models and Interpretations

While we have so far only been concerned with syntax, we will now offer the
opportunity to interpret the language, and the theories we have defined, in a
model. Therefore, we show how an interpretation may be given. In our approach,
theory and model are both represented in Haskell, so the distinction between the
two will sometimes be difficult.

Via an interpretation, the objects get assigned sets in this model, however,
we just mention the cardinalities of the sets. So — in a rather trivial sense —
numbers can be viewed as names of the rows and columns. Also, vector and
relation denotations are assigned concrete versions by the model.

data InterpreteObjs = Carrier CatObject Int

data InterpreteCons = InterCon ElemConst Int

data InterpreteVect = InterVec VectConst [Bool]

data InterpreteRela = InterRel RelaConst [[Bool]]

data InterpreteVFct = InterVFc VectFct ([Bool] -> [Bool])

data InterpreteRFct = InterRFc RelaFct ([[Bool]] -> [[Bool]])

Only in rare cases as, e.g., when studying rooted graphs with the root distin-
guished, will we have element constants. We provide an automatic interpreta-
tion for null relations, universal relations, and identity relations. Putting this
together, a model is defined as follows:

data Model = MO String -- name of the model

[InterpreteObjs] -- cardinalities of carrier sets

[InterpreteCons] -- numbers of corresponding elements

[InterpreteVect] -- subset-interpreting boolean vectors

[InterpreteRela] -- relation-interpreting matrices

[InterpreteVFct] -- interpreted vector functions

[InterpreteRFct] -- interpreted relation functions

We provide some generic mechanisms on the model side in order to check whether
the sets in question are assigned to objects consistently by the interpretations.
Lots of technicalities are necessary to ensure that this works as it is supposed
to.

Before an interpretation is possible, we need valuations of the individual vari-
ables, i.e., an environment as a list of variable/value pairs.

type InterpreteElemVari = (ElemVari, Int)

type InterpreteVectVari = (VectVari, [Bool])

type InterpreteRelaVari = (RelaVari, [[Bool]])

type ElemValuations = [InterpreteElemVari]

type VectValuations = [InterpreteVectVari]

type RelaValuations = [InterpreteRelaVari]

type Environment = (ElemValuations,VectValuations,RelaValuations)

Using a rather primitive lookup function, we may then write

valuation env v = ...

to get the value of v in the environment env. Now terms and formulae may be
interpreted according to the following examples.

interpreteVectTerm :: Model -> Environment -> VectTerm -> [Bool]

interpreteVectTerm m env vt =

let MO _ os _ vs _ _ _ = m

(evs,vvs,rvs) = env

in case vt of

VFctAppl vf vt2 -> let ivf = interpreteVectFct m env vf

ivt = interpreteVectTerm m env vt2

in ivf ivt

...

interpreteVectFct :: Model -> Environment -> VectFct -> [Bool] -> [Bool]

interpreteVectFct m env vf bv =

let VFCT vv vt = vf

(evs,vvs,rvs) = env

viWITHbm = (evs,(vv,bv) : vvs,rvs)

in interpreteVectTerm m viWITHbm vt

interpreteRelaTerm :: Model -> Environment -> RelaTerm -> [[Bool]]

interpreteRelaTerm m env rt =

let MO _ _ _ _ rs = m

in case rt of

RC rc -> (\(InterRel _ b) -> b) $ head $

dropWhile (\(InterRel e _) -> rc /= e) rs

rt1 :***: rt2 -> let int1 = interpreteRelaTerm m env rt1

int2 = interpreteRelaTerm m env rt2

in int1 *** int2

...

interpreteRelaForm :: Model -> Environment -> RelaForm -> Bool

interpreteRelaForm m env rf =

case rf of

rt1 :<==: rt2 -> let int1 = interpreteRelaTerm m env rt1

int2 = interpreteRelaTerm m env rt2

in int1 <== int2

...

Once a model for a theory is given — which is at the same time finite as well as
sufficiently small —, it will be possible to check the model property against the
theory with checkIsModelForTheory mo th.

6 Strongly Connected Component Ontology

These concepts of language, theory, model, and theory extraction shall now
be exemplified in a field for which the theoretical background is well-known.
Starting from a homogeneous relation, we plan to permute rows and columns
simultaneously.

Let some relation R be given and look for its reflexive transitive closure R∗

and for the equivalence R∗∩R∗T generated by this closure, the equivalence classes
of which give the strongly connected components. Permuting rows and columns
of R simultaneously so as to have them grouped according to these equivalence
classes gives much insight into the structure of R.

First, a sparse theory is formulated, and the schema for an ontology-enhanced
theory. In the sparse theory upon start, we simply know that a node set is given
together with a relation R on it and no formulae are supposed to hold. So we
provide denotations for a single category object sO and a relation constant r
on it.

strongConnCompSparseTheory :: CatObject -> RelaConst -> Theory

strongConnCompSparseTheory sO r =

TH "StrongConnCompSparseTheory" [sO] [] [] [r] [] [] []

Later, we will start with a model depending on a boolean matrix gR, the given
relation, as a parameter.

strongConnCompGivenModel :: CatObject -> RelaConst -> [[Bool]] -> Model

strongConnCompGivenModel sO r gR =

MO "StrongConnCompGivenModel" [Carrier sO (rows gR)]

[] [] [InterRel r gR] [] []

No provisions have been made to denote single elements of the node set. As the
number of connected components is not known beforehand, we provide the name
for the list of partitioning connected components as non-empty subsets of entries
as pl. The list of vector denotations of the ontology is then used in the formulae
that describe what has been achieved when decomposition is executed once the
model is known.

strongConnCompOntolEnhancedTheorySchema ::

CatObject -> RelaConst -> [VectConst] -> Theory

strongConnCompOntolEnhancedTheorySchema sO r pl =

let rt = RC r

d = domRC r

vts = map VC pl

nullVect = NullV d

subsetNonEmpty s = Negated (VF (s :<===: nullVect))

partitionSetsNonEmpty = map subsetNonEmpty vts

subsDisjoint (s1,s2) = VF (s1 :&&&&: s2 :<===: nullVect)

allUnordPairsOfPartSets s =

let fff res [] = res

fff res (h:t) = fff (res ++ (map (\x -> (h,x)) t)) t

in fff [] s

partSetsDisjoint = map subsDisjoint (allUnordPairsOfPartSets vts)

syntSetUnion = foldr (:||||:) nullVect vts

partitionSetsExhaust = VF (syntSetUnion :====: (UnivV d))

rEquivalenceClosure = Rela "rEquCl" sO sO

equivalenceTimesSetEqualsSet s =

VF (RC rEquivalenceClosure :****: s :====: s)

in TH "StrongConnCompOntolEnhancedTheory" [sO] [] pl

[r,rEquivalenceClosure] [] []

(partitionSetsNonEmpty ++ partSetsDisjoint ++

[partitionSetsExhaust] ++ map equivalenceTimesSetEqualsSet vts)

The piece of code schematically generates the formulae satisfied by strongly
connected components, namely that they be nonempty, disjoint, and exhaust
the set. In addition, they are closed with respect to the equivalence formed
of the reflexive-transitive closure intersected with its transpose. We have not
included the properties the equivalence closure enjoys, as these are standard.

This schema of a theory cannot be checked for well-formedness with checkTheory-

WellDefined, as it is composed of lists of sets and formulae with lengths not
yet determined. After applying the decomposition algorithm, there will be the
result model where subset constants are filled in corresponding to the sets of the
partition as long as there exist further strongly connected components.

strongConnCompResultModel ::

Theory -> Model -> ([VectConst] -> Theory) -> (Theory,Model)

strongConnCompResultModel sparseTheory givenModel enhancedTheorySchema =

let TH _ [co] _ _ [rc] _ _ _ = sparseTheory

MO _ iC _ _ iR _ _ = givenModel

eThS = enhancedTheorySchema

r = interpreteRelaConst givenModel ([],[],[]) rc

reflTransClos = reflTranClosure r

eq = transpMat reflTransClos &&& reflTransClos

rowTypesH = sort $ nub reflTransClos

rowTypesH1 [] = []

rowTypesH1 (hh:tt) = hh : (rowTypesH1

(map (\ pp -> zipWith (&&) (map not hh) pp) tt))

rowTypes = reverse $ rowTypesH1 rowTypesH

partitionSetsNamed =

zipWith (\a b -> Vect ("partSet" ++ show a) co) [1..] rowTypes

th@(TH _ _ _ _ [_,rEqCl] _ _ _) = eThS partitionSetsNamed

partitionSetsInterpreted =

zipWith (\a b -> InterVec a b) partitionSetsNamed rowTypes

resModel = MO "StrongConnCompResultModel" iC []

partitionSetsInterpreted (iR ++ [InterRel rEqCl eq]) [] []

in (th,resModel)

Here, the three parameters of the pushout are taken and the reflexive-transitive
closure is formed, as well as the equivalence defined by it. Then the rows of
the closure are considered. First, duplicates are eliminated, then the rows are
sorted in order to have the matrix later with small elements first followed by
greater ones. As now the number of strongly connected components is known,
they may be named as partSeti, followed by building the enhanced theory. To
these names are then attached the resulting partition sets and delivered in the
result model. Once gR is concretely given as the matrix on the left, a sophisticated
TEX-generating matrix printing algorithm will produce the subdivided matrix
on the right showing the connected components.

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13




1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0




2 7 8 1 3 6 12 13 4 5 9 10 11

2

7

8

1

3

6

12

13

4

5

9

10

11




0 0 1 0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0




An original relation and the rearranged relation

One will observe that all this is based on the following

Proposition. Any given finite homogeneous relation R can by simultaneously
permuting rows and columns be transformed into a matrix of the following form:
It has upper triangular pattern with square diagonal blocks




∗ ∗ ∗
∗ ∗

∗




where ∗ = unless the generated preorder R∗ allows entries =/ . The reflexive-
transitive closure of every diagonal block is the universal relation .

7 Galois Decompositions

We now present some more involved possibilities to decompose a relation. They
are closely related, as all of them may be formulated using a Galois correspon-
dence. Afterwards a schema for the decompositions will be given that enables us
to handle them more or less simultaneously.

In all of these cases, we will need two antitone mappings between powersets,
which we call σ : P(V) → P(W) and π : P(W) → P(V). These mappings are
usually determined by a relational construct based on some relation B : V ↔ W .
Nested iterations will then start with the empty subset of V on the left and the
full subset of W on the right — or vice versa. While there is a lot of theory
necessary for the infinite case, the finite case is rather simple. Consider the
starting configuration with its trivial containments ⊆ π() and σ() ⊆
which are perpetuated by the antitone mappings to ⊆ π() ⊆ π(σ()) ⊆ . . .
and . . . ⊆ σ(π()) ⊆ σ() ⊆ . In the finite case, these two sequences will
eventually become stationary. The effect of the iteration is that the least fixed
point a of v 	→ π(σ(v)) on the side started with the empty set is related to the
greatest fixed point b of w 	→ σ(π(w)) on the side started from the full set. The
final situation obtained will be characterized by a = π(b) and σ(a) = b.

7.1 Termination

The set of all points of a graph, from which only paths of finite length emerge,

J(R) := inf{x | x = R; x }

is called the initial part J(R) of the relation R underlying the graph. We are
going to determine the initial part of that relation. A relation is progressively
finite if J(R) = . A slightly different property is being progressively bounded,
suph≥0 Bh ; = . A difference between the two exists only for non-finite rela-
tions; it may, thus, be neglected here.

Looking at the definition of the initial part, the two antitone functionals v 	→
σ(v) := v and w 	→ π(w) := R;w seem to play a major role. One will later easily
identify them in Constituents.

The algorithm applied to the relation R will result in a pair (a, b) of vectors. The
relational formulae valid for the final pair (a, b) of the iteration are a = π(b) =
R; b and b = σ(a) = a. (In this case, it is uninteresting to start with the empty
set and the full set exchanged from left to right.)

Here, b is the initial part belonging to R: There are no paths of infinite length
from the vertices of b, which, however, do exist starting from vertices of a. This
is based on the following

Proposition. Any finite homogeneous relation may by simultaneously permut-
ing rows and columns be transformed into a matrix satisfying the following basic
structure with square diagonal entries:(

progressively bounded
∗ total

)

This subdivision into groups “initial part/infinite path exists” is uniquely deter-
mined, and indeed

a =
()

=
(

progressively bounded
∗ total

)
;

()
, b =

()
=

()

The termination-oriented decomposition may prove useful in the following case:
Assume a preference relation being given, where it is not clear from the beginning
that this preference is circuit-free. There is a tendency of ranking equal all those
who belong to a circuit. The initial part collects all items from which one will not
run into a circuit at all, so that they are properly ranked by the given relation.
The others should be treated with the strongly connected component ontology
and then be ranked groupwise.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11




0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 1 1 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 1 0
1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0




1 2 10 3 4 5 6 7 8 9 11

1

2

10

3

4

5

6

7

8

9

11




0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 1 1 0 0 0 1 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0
1 1 0 0 1 0 0 0 0 0 0




A relation, original and rearranged according to its initial part

7.2 Matching and Assignment

A second Galois decomposition is known to exist in connection with matchings
and assignments. Here we will for the first time consider heterogeneous relations.

Let two matrices Q, λ : V ↔ W be given, where λ ⊆ Q is univalent and
injective, i.e. a matching — possibly not yet of maximum cardinality, for instance

Q =

1 2 3 4 5

1

2

3

4

5

6

7




1 0 0 1 0
0 0 0 0 0
1 0 0 1 0
0 0 0 1 0
0 1 1 1 1
1 0 0 1 0
0 0 1 0 1




⊇ λ =

1 2 3 4 5

1

2

3

4

5

6

7




1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0




Sympathy and matching

We consider Q to be a relation of sympathy between a set of boys and a set of
girls and λ the set of current dating assignments, assumed only to be established
if sympathy holds. We now try to maximize the number of dating assignments.

Definition. i) Given a possibly heterogeneous relation Q, the relation λ will be
called a Q-matching if it is univalent, injective, and contained in Q, i.e., if

λ ⊆ Q λ; λT ⊆ , λT ; λ ⊆ .
ii) We say that a point set x can be saturated if there exists a matching λ with

λ; = x.

The current matching λ may have its origin from a procedure like the following
that assigns matchings as long as no backtracking is necessary. The second pa-
rameter of the encapsulated function serves for accounting purposes so that no
matching row will afterwards contain more than one assignment.

trivialMatchAbove q lambda =

let colsOccupied = map or (transpMat lambda)

trivialMatchRow [] [] = []

trivialMatchRow (True:t) (False:_) =

True :(replicate (length t) False)

trivialMatchRow (_ :t) (_ :tf) = False:(trivialMatchRow t tf)

trivialMatchAboveH [] _ = []

trivialMatchAboveH ((hq, hl) : t) f =

let actRow = case or hl of

True -> hl

False -> trivialMatchRow hq f

fNEW = zipWith (||) actRow f

in actRow : (trivialMatchAboveH t fNEW)

in trivialMatchAboveH (zip q lambda) colsOccupied

Given this setting, it is again wise to design two antitone mappings. The first
shall relate a set of boys to those girls not sympathetic to anyone of them,

v 	→ σ(v) = QT ; v. The second shall present the set of boys not assigned to some
set of girls, w 	→ π(w) = λ; w.

The iteration will end with two vectors (a, b) satisfying a = π(b) and σ(a) = b
as before. Here, this means a = λ; b and b = QT ; a. In addition a = Q; b. This
follows from the chain a = λ ; b ⊆ Q ; b ⊆ a, which implies equality at every
intermediate state. Only the resulting equalities for a, b have been used together
with monotony and the Schröder rule.

One may discuss whether we had been right in deciding for starting the iteration
procedure with on the left side and on the right. Assume we had decided the
other way round. This would obviously mean the same as starting as before, but
with Q, λ transposed. Instead of a = λ; b, b = QT ; a, and a = Q; b we would then
obtain the three conditions with Q replaced by QT, λ by λT, and a, b exchanged.
While the two equations with Q just exchange each other, the first is transferred
to b = λT ; a. This means that the resulting decomposition of the matrices does
not depend on the choice — if this fourth equation is also satisfied.

It is thus not uninteresting to concentrate on condition b = λT ; a. After having
applied trivialMatch to some sympathy relation and applying the iteration, it
may not yet be satisfied. So let us assume b = λT ; a not to hold, which means

that b = QT ; a
⊇
=/ λT ; a.

We make use of the formula λ; S = λ; ∩ λ; S, which holds since λ is univalent.
The iteration ends with b = QT ; a and a = λ; b. This easily expands to

b = QT ; a = QT ; λ; b = QT ; λ; QT ; a = QT ; λ; QT ; λ; QT ; a . . .
from which the last but one becomes

b = QT ; a = QT ; λ; b = QT ; λ; ∩ λ; QT ; a = QT ; (λ; ∪ λ; QT ; a)
= QT ; (λ; ∪ λ; QT ; (λ; ∪ λ; QT ; a))

indicating how to prove that
b = (QT ∪ QT ; λ; QT ∪ QT ; λ; QT ; λ; QT ∪ . . .); λ;

If λT;a ⊆
=/ b, we may thus find a point in λT ; a∩ (QT ∪QT;λ;QT ∪QT;λ;QT;λ;QT ∪ . . .);

λ; which leads to the famous alternating chain algorithm. While trivialMatch

didn’t do any backtracking, the alternating chain algorithm does. It therefore
delivers cardinality maximum matchings and not just matchings that cannot be
increased by finding an enclosing one.

We now visualize the results of this matching iteration by concentrating on the
subdivision of the matrices Q, λ initially considered by the resulting vectors
a = {2, 6, 4, 1, 3} and b = {5, 3, 2}. One easily proves that b = λT ; a is already
satisfied. Some additional care must be taken concerning empty rows or columns
in Q. To obtain the subdivided relations neatly, these are placed at the beginning
of the rows, respectively at the end of the columns. In addition, rows and columns
may be permuted so as to let λ appear as a diagonal.

1 4 5 3 2

2

6

4

1

3

5

7




0 0 0 0 0

1 1 0 0 0
0 1 0 0 0

1 1 0 0 0
1 1 0 0 0

0 1 1 1 1
0 0 1 1 0




1 4 5 3 2

2

6

4

1

3

5

7




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 0 0 0 0
0 1 0 0 0

0 0 1 0 0
0 0 0 1 0




Sympathy and matching rearranged

Proposition. Any given heterogeneous relation Q admits a cardinality maxi-
mum matching λ ⊆ Q. Both relations may then in addition be simultaneously
transformed into matrices of the following form by independently permuting
rows and columns: Principally, they have a 4 by 4 pattern with possibly empty
zones and not necessarily square diagonal blocks.


 total

HallT + square

* Hall + square surj







perm.

perm.




– The first zone of rows and the last zone of columns of both matrices are zero
rows resp. columns.

– The upper right 3 by 3 zones are again empty.
– The zones λ3,1 and λ4,2 are identity matrices.
– Zone Q2,1 is a total relation.
– Zone Q4,3 is a surjective relation.

The cardinality maximum matching λ is not uniquely determined, only by car-
dinality. The decomposition is, thus, uniquely determined up to the so-called
term-rank, defined below, which here shows up as the total length of the diago-
nal in λ.

We also provide the definition of term-rank and Hall-condition.

Definition. i) Given a relation Q, the term rank is defined as the minimum
number of lines (i.e., rows or columns) necessary to cover all entries 1 in Q, i.e.

min{|s| + |t| | Q; t ⊆ s}.

ii) Given a relation Q and a set x, we say that x satisfies the Hall condition

⇐⇒ |z| ≤ |QT ; z| for every subset z ⊆ x.

8 Galois Decomposition Ontologies

Appropriate ontologies for these Galois decompositions shall now be developed.
They may serve to solve a diversity of application problems, such as matching,
line-covering, assignment, games, etc.

This shall be done simultaneously, i.e., in a schema that may be instantiated
later to cope with these variants. So we give the task in a schematic form also
and introduce the following constituents as a parameter.

type Constituents = (String,[CatObject],[RelaConst],[VectFct])

gameConstituents :: Constituents

gameConstituents =

let singleObject = OC (CstO "NodeSet")

b = Rela "B" singleObject singleObject

vv = VarV "v" singleObject

f = VFCT vv (NegVect (RC b :****: (VV vv)))

in ("Game",[singleObject],[b],[f,f])

terminationConstituents :: Constituents

terminationConstituents =

let singleObject = OC (CstO "NodeSet")

b = Rela "B" singleObject singleObject

vv1 = VarV "v1" singleObject

vv2 = VarV "v2" singleObject

f1 = VFCT vv1 (NegVect (VV vv1))

f2 = VFCT vv2 (RC b :****: (NegVect (VV vv2)))

in ("Termination",[singleObject],[b],[f1,f2])

matchAssignConstituents :: Constituents

matchAssignConstituents =

let firstObject = OC (CstO "NodeSet1")

secndObject = OC (CstO "NodeSet2")

q = Rela "B" firstObject secndObject

lambda = Rela "Lambda" firstObject secndObject

vv1 = VarV "v1" firstObject

vv2 = VarV "v2" secndObject

f1 = VFCT vv1 (NegVect (RC q :****: (VV vv1)))

f2 = VFCT vv2 (NegVect (RC lambda :****: (VV vv2)))

in ("MatchAssign",[firstObject,secndObject],[q,lambda],[f1,f2])

As can be seen, we have provided for denotations for category objects, relation
constants, and antitone functions relating vectors on the domain side to vectors
on the codomain side and vice versa. From this, we get the sparse theory in a
schematic way. We may afterwards instantiate with the respective constituents.

sparseTheorySchema :: Constituents -> Theory

sparseTheorySchema cs =

let (s,os,rs,vfs) = cs

in TH ("SparseTheory" ++ s) os [] [] rs [] [] []

sparseGameTheory = sparseTheorySchema gameConstituents

sparseTerminationTheory = sparseTheorySchema terminationConstituents

sparseMatchAssignTheory = sparseTheorySchema matchAssignConstituents

Also the given models may be presented schematically, providing the respective
constituents first and then the list of given matrices.

givenModelSchema :: Constituents -> [[[Bool]]] -> Model

givenModelSchema cs gRs =

let TH s os _ _ rs _ _ _ = sparseTheorySchema cs

irs = zipWith (\ rc bm -> InterRel rc bm) rs gRs

osM = map (\(a,b) -> Carrier a b) $ nub $ concat $

map (\(InterRel rc bm) -> [(domRC rc,rows bm),

(codRC rc,cols bm)]) irs

in MO ("GivenModel" ++ s) osM [] [] irs [] []

givenModelGame gRs = givenModelSchema gameConstituents gRs

givenModeTermination gRs = givenModelSchema terminationConstituents gRs

givenModeMatchAssign gRs = givenModelSchema matchAssignConstituents gRs

With, e.g.,
givenModelGame = givenModelSchema gameConstituents listOfMat

this may be instantiated. We can immediately check
checkIsModelForTheory givenModelGame sparseGameTheory,

for instance.

As there will always be a result which simply subdivides the domain as well as
the range set into two subsets, it is a feasible task to find the schema of a Galois
ontology-enhanced theory.

galoisOntolEnhancedTheorySchema :: Constituents -> Theory

galoisOntolEnhancedTheorySchema cs =

let (_,_,_,vfs) = cs

TH s os es vs rs _ _ fs = sparseTheorySchema cs

rsTerm = map RC rs

[lr,rl] = vfs

(d,c) = typeOfFV lr

leftFixAboveNull = Vect "LeftFixAboveNull" d

rightFixBelowUniv = Vect "RightFixBelowUniv" c

leftFixAboveNullT = VC leftFixAboveNull

rightFixBelowUnivT = VC rightFixBelowUniv

sigmaLeftNullEqualsRightUniv =

VF $ VFctAppl lr leftFixAboveNullT :====: rightFixBelowUnivT

leftNullEqualsPiRightUniv =

VF $ VFctAppl rl rightFixBelowUnivT :====: leftFixAboveNullT

in TH ("GaloisEnhancedTheoryTo" ++ s) os es

[leftFixAboveNull,rightFixBelowUniv]

rs vfs [] (fs ++

[leftNullEqualsPiRightUniv,sigmaLeftNullEqualsRightUniv])

There is not much computation in this piece of code. Two vector denotations
are provided for and made to vector constants terms. Then the formula is built
that says that appplying the left-right function to the left vector will result in
the right vector. Finally the formula is generated that the right-left function
applied to the right vector will result in the left vector. As before, instantiation
is possible, e.g.,

gameOntologyEnhancedTheory =
galoisOntolEnhancedTheorySchema gameConstituents

Then we develop the result model in a schematic form. The antitone functions
have to be inserted as appropriate. We formulate the basic iteration for the
antitone functions along the well-known until-construct of Haskell with lr for
σ and rl for π.

untilGalois lr rl (v, w)

= let lrv = lr v

rlw = rl w

in if (w == lrv) && (v == rlw) then (v, w)

else untilGalois lr rl (rlw, lrv)

This untilGalois is the main algorithmic part in generating the result model in
a schematic form. All the rest is designed to administrative purposes of getting
the left-right and right-left functions appropriately out of the enhanced theory,
interpreting them, and applying them, e.g.

galoisResultModelSchema :: Constituents -> [[[Bool]]] -> (Theory,Model)

galoisResultModelSchema cs gRs =

let th@(TH s os _ [leftFixAboveNull,rightFixBelowUniv]

rs vfs _ [lNP,sLN]) = galoisOntolEnhancedTheorySchema cs

mo@(MO _ osM _ _ irs _ _) = givenModelSchema cs gRs

[lR,rL] = vfs

(d,c) = typeOfFV lR

argVectConstLeft = VarV "argL" d

argVectConstRight = VarV "argR" c

dSize = getObjectCarrierSize osM d

cSize = getObjectCarrierSize osM c

lr v = interpreteVectTerm mo ([],[(argVectConstLeft ,v)],[])

(VFctAppl lR (VV argVectConstLeft))

rl w = interpreteVectTerm mo ([],[(argVectConstRight,w)],[])

(VFctAppl rL (VV argVectConstRight))

(leNuPi,siLeNu) = untilGalois lr rl (replicate dSize False,

replicate cSize True)

vectInterpretations = [InterVec leftFixAboveNull leNuPi,

InterVec rightFixBelowUniv siLeNu]

resModel = MO ("GaloisResultPushoutOf" ++ s)

osM [] vectInterpretations irs [(InterVFc lR lr),

(InterVFc rL rl)] []

in (th,resModel)

Instantiation is possible to
resGameModel =

galoisResultModelSchema gameConstituents listOfMat
resTermionationModel =

galoisResultModelSchema terminationConstituents listOfMat
resMatchAssignModel =

galoisResultModelSchema matchAssignConstituents listOfMat
and one may check

isResultModelGame =
checkIsModelForTheory mod the where (the,mod) = resGameModel

9 Conclusion and Outlook

We have provided several ontologies in which to embed newly presented rela-
tions for handling them in a pre-formatted way. With the methods presented
it is possible to analyze a given relation with regard to different concepts and
to visualize the results. This paper is in some regard related to work such as
[Kit93,DL01,BR96]. Ordering decompositions have been studied using a similar
technique in [Win03].

We hope that this will lead to future research. We have scanned a diversity
of topics for their algebraic properties. On several occasions, we have replaced
counting arguments by algebraic ones. Our hope is that these algebraic proper-
ties will be of value in handling fuzzy relations in this way, which do not lend
themselves readily to counting methods.

In the course of this research, a wide-spectrum relational reference language
[Sch03] far beyond the hints given here has been and is still being developed. It
is conceived as part of the research of Work Area 2 Mechanization of the Euro-
pean COST Action TARSKI (Theory and Applications of Relational Structures
as Knowledge Instruments) which attempts jointly to find ways to mechanize re-
lational reasoning. Colleagues are expressly invited to take part in this endeavor
and to further contribute to the design of the language.

Acknowledgments
Discussions with Michael Ebert, Eric Offermann, and Michael Winter provided
considerable help.

References

[BR96] R. B. Bapat and T. E. S. Raghavan. Nonnegative Matrices and Applications,
volume 64 of Encyclopaedia of Mathematics and its Applications. Cambridge
University Press, 1996.

[DL01] Sašo Džeroski and Nada Lavrač, editors. Relational Data Mining. Springer-
Verlag, 2001.

[Kit93] Leonid Kitainik. Fuzzy Decision Procedures With Binary Relations — Towards
a Unified Theory, volume 13 of Theory and Decision Library, Series D: Sys-
tem Theory, Knowledge Engineering and Problem Solving. Kluwer Academic
Publishers, 1993.

[Sch02] Gunther Schmidt. Decomposing Relations — Data Analysis Techniques
for Boolean Matrices. Technical Report 2002-09, Fakultät für Infor-
matik, Universität der Bundeswehr München, 2002. http://ist.unibw-
muenchen.de/People/schmidt/DecompoHomePage.html, 79 pages.

[Sch03] Gunther Schmidt. Relational Language. Technical Report 2003-05, Fakultät
für Informatik, Universität der Bundeswehr München, 2003. 101 pages.

[SS89] Gunther Schmidt and Thomas Ströhlein. Relationen und Graphen. Mathema-
tik für Informatiker. Springer-Verlag, 1989. ISBN 3-540-50304-8, ISBN 0-387-
50304-8.

[SS93] Gunther Schmidt and Thomas Ströhlein. Relations and Graphs — Discrete
Mathematics for Computer Scientists. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1993. ISBN 3-540-56254-0, ISBN 0-387-
56254-0.

[Win03] Michael Winter. Decomposing Relations Into Orderings. In Participants Proc.
of the International Workshop RelMiCS ’7 Relational Methods in Computer
Science and 2nd International Workshop on Applications of Kleene Algebra,
in combination with a workshop of the COST Action 274: TARSKI, pages
190–196, 2003.

