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1. Introduction

In a Boolean algebra (X, A, v, ~) the symmetric difference of a, b € X is defined
by the expression a v Bvavb. In this paper we consider a related censtruct in rela-
3 ATB

tional algebra, viz. the symmetric quotient A B A of two relations A and B.

As the subsequent sections will be formulated in terms of abstract relational algebra, we

present the main features of this calculus in Chapter 2.

In Chapter 3 we motivate the definition of the symmetric quotient and exhibit its main
properties. In particular, we look for properties in connection with special relations,

e.g. equivalence relations or mappings.

In Chapter 4 applications of the symmetric quotient are studied. First, we discuss the
univalent and the properly ambiguous part of a relation. The univalent part can easily
be defined in terms of symmetric quotients. Section 4.2 is devoted to ordering rela-
tions. For a given ordering relation on a set M and a subset N of M we consider
special sets and elements, e.g. the set of majorants of N, using relational algebraic
means. We show that these notions can also be described by symmetric quotients mak-

ing formal manipulations easier.

Relations between a set M and its powerset P(M) are investigated in Section 4.3.
Using the symmetric quotient we give a monomorphic characterization of the powerset
P(M). Then we introduce the usual inclusion ordering on P(M) and prove that P(M)
together with this ordering relation is a complete lattice. Some properties of the is—
element—of” relation between M and P(M) can also be described by.symmetric quo-
tients. Eventually, symmetric quotients are used to establish an isomorphism between
the subsets of M and the elements of P(M). All proofs are given by relational alge-

braic means.

It seems worth mentioning that the technique explained in Section 4.3 can easily be
extended to function domain constructions. Therefore, applications in theoretical com-

puter science are also possible, see [7].



B el AR
2, P P

This section deals with the fundamental concepts of an abstract relational algebra. We
also define relations fulfilling certain properties. In the homogeneous case we investi-
gate ordering relations, in the heterogeneous case we look for ”quasifunctional” proper-
ties such as uniqueness, totality and so on. Finally, we introduce the concept of

homomorphism and isomorphism.

2.1. Relational Algebra

For a comprehensive explanation of the basic concepts of a relational algebra we refer to

[3, 4], where more details are presented.

The essence of a relational algebra R is easily communicated by saying that it is a
category (Obj(R), Mor(R)):

—  The objects of R are sets.

- For X, Y ¢ ObjR) the morphisms Mor(X, Y) constitute a set, as well. In
addition these sets are complete atomistic Boolean algebras (Mor(X, Y), A, v, 7,
C)i

- There is a correspondence between Mor(X, Y) and Mor(Y, X), given by trans-
position R - RT, and between Mor(X, Y), Mor(Y, Z), and Mor(X, Z), esta-
- blished by composition (R,S) - RS. Furthermore, we postulate the Dedekind rule
RSAQ C (R AQST)(S A RTQ)
and the Tarski rule
R # Oxy = LwxRLyz =Lwz.

Here Oxy and Lyy denote the null element and the universal element in the
Boolean algebra Mor(X, Y), respectively. Since the sets X and Y are usually
understood, we denote Oxy, Lxy and the identity Ixx by O, L and I, for sim-
plicity.

We call an element R € Mor(X, Y) a (heterogeneous) relation. In the case X =Y,
R is called homogeneous.

All the well-known rules for composition of relations hold in a relational algebra. They

may be deduced from the axioms.

We note:
®RDHT = R RcS =» RTcST
RTST = (SR)T RT - RT
RcS = QRCQS RcS = RQCSQ
R(S A Q) C RS A RQ R(Sv Q)= RS vRQ
(R AS)T= RT AST (R v S)=RTvST.

In addition we have the so-called Schréder rule

RSCQ < RTQCS < QSTcR.

These two equivalences are equivalent to the Dedekind rule.

9.9, Special Hi Rel

A relation R is called unique, if RTR C I or, equivalently, if RTC R. If one of
the three equivalent conditions I ¢ RRT, L =RL and R c RT is fulfilled, R will
be called total. Thus, mappings (or functions), i.e. total and unique relations, are
characterized by RT = R.

If R is unique, then R(S A Q) = RS A RQ and RS c RS; if R is total, then
RS C RS. Therefore, for a function R we have RS = RS for every relation S.

A relation R is injective, if RT is unique; R is called surjective, if RT is total.
Note that these properties are defined for arbitrary relations, not only, as usually, for

functions.

If a surjective relation R is contained within an injective relation S, then R and

S are equal. This can easily be proved using the Dedekind rule:
S=LAS=LRASC(ASRT(R ALS)c SRTRCSSTRCR

If R is a homogeneous relation, then R? is defined. This leads to the notion of an
ordering relation. A reflexive (i.e. I C R) and transitive (i.e. R? C R) relation is
called a (reflexive) quasi-ordering relation. If in addition R is antisymmetric (i.e. R
A RT C1I), then R is called a (reflexive) ardering relation.

By R AT we denote the irreflexive part of a reflexive ordering relation R, which is

also transitive and antisymmetric.

§
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Equivalence relations are also interesting homogeneous relations. A relation R is an

equivalence relation, if it is reflexive, transitive and symmetric (i.e. R C RE).

2.4. Sets and Points

A relation r with r = rL is called row constant and always denoted by lower case
letters. If we consider a (concrete) relation r as a Boolean matrix r ¢ BX*Y, this
condition means: Whatever set Z and universal relation L ¢ BY*Z we choose, an ele-
ment x € X is either in relation rL to none of the elements z ¢ Z or to all ele-

ments z € Z.

Relations of this kind may be considered as subsets of X, predicates on X, or vec-
tors. An injective vector r = rL # O therefore corresponds to an element of X and

is called a point.

2.5. Homomorphisms

Let A and B be (heterogeneous) relations. A pair (¥, ®) of relations is called a
homomorphism from A to B if W and & are functions (in the sense of Section
2.2) and “A C WB®T holds. An equivalent version of this postulate, which is used in
Section 4.3, is A® C WB. This in turn is equivalent to WTA® Cc B and to
VTA C BOT.

If in addition (VT, ®T) is a homomorphism from B to A, then (¥, ®) is called an
isomorphism. Therefore, an isomorphism between two relations A and B is charac-
terized by two bijective functions ¥ and ¢, fulfilling A = UYB®T or equivalently
A® = UB. Clearly, the composition (¥;¥,, ®®;) of two homomorphisms (isomorphisms)
(W, ®;) and (¥, ®,) also is a homomorphism (isomorphism).

If A and B are homogeneous relations, we briefly call ® a homomorphism (isomor-

phism) if (®, ®) is a homomorphism (isomorphism) from A to B.

3. Symmetric Quotients

In this section we introduce the notion of the symmetric quotient of two relations and

exhibit its basic properties.

3.1. Motivating the Definition

Assume M to be a set and y S P(M) to be a subset of its powerset. If we define

the set x ¢ P(M) to be the union of the members of y, then we may describe this j

property of x by the expression
(1) /\(zex(=) Vzew).
zeM wey
Analogously, we define x to be the intersection of all members of y by
2 /\(zex4=> /\zew).
‘ zeM wey
As another example, we consider an ordering relation S on a set M. If y is a sub-

set of M, then the element x ¢ M is the greatest element of y, if and only if
3 Nesx o Vzsw
zeM wey
holds. Analogously, we can describe the least element of y.

We give a third example: If M is a set, then the equality of two subsets x and y
of M is given by the expression
“4) /\(zexﬁzey).
z€M
Now let us compare the expressions given in (1) through (4). Obviously all of them
may be described by the scheme
® N @A@x = Bey
zeM
where A ¢ BMX and B e BMXY are (concrete) relations, the variable x ranges over

X and the variable y over Y.

For example, in (4) the relation A and the relation B both are defined as the "is—
element-of "—relation ¢ between the set M and the powerset P(M). The other

examples are a little bit more complicated, because B is a product of relations.

For convenience, we now convert (5) into a more algebraic form. Using the definition

of composition, transposition, and negation of concrete relations, cf. [1, 2, 5], we get

® V ATx2) ABzy) ~ V E(x2) v By -
ze€M ze€M
As x and y range over X and Y respectively, this expression defines a new

4]



relation in BX**Y depending on A and B. This new relation associates an element
x € X with an element y € Y, if and only if the two sets M, := {z e M : A(z,x)}
and M, := {z ¢ M : B(z,y)} coincide.

We now forget the notation with components and present (6) in terms of abstract rela-

tional algebra. This leads to the following

3.1.1 Definition. Let A and B be relations. If the following products exist, we
call syq(A, B) := ATB A ATB the symmetric quotient of A and B.

We denote syq(A, A) by noy(A) resembling the french notion of a noyau that can
already be found in [2].

3.2. Basic Properties

As we have defined the symmetric quotient in terms of abstract relational algebra, the

proofs are also given in this fashion.

Some particular useful properties are summarized in a first statement. The proofs are

obvious.”

(7 syq(&, B) = syq(A, B) and  syq(B, A) - syq(A, B)T

Note that in general syq(A, B) is not symmetric in the sense of Section 2.3.

If R and S are two relations, then RS C RS by Schréder’s rule is equivalent to
RTRS c S and to RS'R c S*. This shows that the symmetric quotient is expanded

by arbitrary left factors, i.e.
(8) syq(A, B) C syq(CA, CB) for every C.

As a partial justification of the wording ”symmetric quotient”, we prove the
3.2.1 Theorem. If A and B are relations, then we have

Asyq(A, B) = B A Lsyq(A, B) C B.
In particular, the equality Asyq(A, B) = B holds, if syq(A, B) is surjective.
Proof: By Schréder’s rule we get AATB C B from ATB C ATB. This shows the
inclusion ”C”. Using (7), Asyq(A, B) C B leads to A syq(A, B) C B. Finally,

B A Lsya(A, B) - B A (Rsyq(A, B) v Asyq(A, B)

C (B a B) v Asyq(A, B)

= Asyq(A, B)

shows the opposite inclusion. Surjectivity L = Lsyq(A, B) immediately implies the

second assertion. a

If A and B are chosen to be equal in this theorem, we get for all A -

(9)  Asyq(A, A) = Anoy(A) - A,
since by Schréder’s rule AI C A is equivalent to ATA c T, sothat IC syq(A, A).
Theorem 3.2.1 shows that the symmetric quotient is a solution of the inequality
AR C B. But syq(A, B) is not an arbitrary solution. In fact, it is the greatest rela-
tion solving AR C B as well as RBT c AT. This property leads to a descriptive
characterization of the symmetric quotient without the use of negation.
Defining the set M, of relations by

Map ={R | ARCB and RBTC AT},

we obtain syq(A, B) € M,y by Theorem 3.2.1. Now let R be an arbitrary element
of M,p. Then Schréder’s rule yields R C syq(A, B) as

ARCB « ATBCR & RCATB and
RBTCAT <> A'BCR < RCA'B.
Therefore, syq(A, B) is the greatest element of Mup.

Fractions or quotients can be reduced. Symmetric quotients have a similar property:

3.2.2 Theorem If A, B, and C are relations, then
syq(A, B)syq(B, C) = syq(A, C) ~ syq(A, B)L C syq(A, c.
syq(A, B)syq(B, C) = syq(A, C)  Lsyq(B, C) C syq(A, C) .
In particular,
syq(A, A)syq(A, B) = syq(A, B) and syq(A, B)syq(B, A) C syq(A, A) .
Proof: From (7) and Theorem 3.2.1 we obtain
5ya(&, C)syq(B, C)T = sya(A, C)syq(C, B)
- ATT syq(C, B) v A7C syq(C, B)
c ATB v ATB = syq(A, B) .
Now Schréder’s rule shows the inclusion ”C”.

We use this result, (7) and the Dedekind rule to prove ”27. Without loss of generality

we only consider the first equation.



syq(A, C) A syq(A, B)L
C (syq(A, B) a Lsyq(A, C))(L A syq(A, B)Tsyq(A, C))
C syq(A, B)syq(B, A)syq(A, C)
C syq(A, B)syq(B, C) .
As a special case one obtains the inclusion syq(A, A)syq(A, B) C syq(A, B) which

actually is an equation due to syq(A, A) D I. a

Next we look for properties of symmetric quotients in connection with special relations.

First, we consider symmetric quotients and equivalence relations.

Clearly, syq(A, A) = noy(A) always is an equivalence relation. Reflexivity is trivial,

(7) shows symmetry, and (7) in connection with Theorem 3.2.2 implies transitivity.

Now we characterize equivalence relations in terms of symmetric quotients. We get, cfi.

[2], the
3.2.3 Theorem. A relaton A is an equivalence relation if and only if A =
sya(A, A);

Proof: ”=” If A is an equivalence relation, then 1 C A yields syq(A, A) C

Asyq(A, A) C A. The reverse inclusion follows from transitivity and symmetry since

ACATA & ATACA < AACA and ACATA = A =ATCATA.
77" is trivial since syq(A, A) is an equivalence relation. o
As a second special kind of relations we consider relations which we characterized in
Section 2.2.

The first interesting formula is
(10) A surjective and unique = syq(A, A) = L

For the proof we use that L = ATL = ATA v ATA since A is surjective. Therefore,
syq(A, A) C ATA C I as A is unique. Reflexivity of the symmetric quotient finally
implies equality.

The next theorem shows properties of syq(A, B), if A and B are injective relations.

3.9.4 Theorem If A and B are injective relations, then the symmetric quotient ful-
fills:

i) ATB C syq(A, B)

ii) A syq(A, B)= AL A B
iii) B C syq(AT, syq(A, B))

Proof: i) Since O = AT(B A B) = ATB A ATB by distributivity, we 'ger ATB Cc ATB
and ATB C ATB analogously.

ii) The inclusion ”C” is trivial; ”2” may be deduced from i) by Dedekind’s rule as

follows:
AL ABC (A ABL)L A ATB) C AATB C A syq(A, B)

iii) From i) we obtain Asyq(A, B) C B, from (7) and Theorem 3.2.1 we get

B C A syq(A, B) » A syq(A, B) = syq(AT, syq(A, B)) . o

If R is an injective and surjective relation, then SR = SR holds for every relation S

(cf. 2.2). From this equation the following property is easily derived.

syq(A, B)R = syq(A, BR)

(11) R injective and surjective =
for all relations A and B.

Finally, we look for properties of symmetric quotients concerning the universal relation
L

Since syq(L, L) = L, we obtain by Theorem 3.2.2 syq(L, A) = syq(L, L)syg(L, A) =
Lsyq(L, A). Now we use (7) in order to show that syq(A, L) is a vector:

sya(A, L) L = syq(L, A)T LT = syq(L, A)T = syq(A, L).
The last theorem of this section gives a condition on two relations A and B for
syq(A, B) to be a universal relation.
3.2.5 Theorem If A and B are relations, then

syq(A, B)=L ¢ A and B are vectors and AL = BL. 4
Proof: ” =" By Schréder’s rule we conclude

LCsyqA,B) = ATBCO ¢ ALCB

LCsyqA, B) = ATBCO ¢ LBTCAT s BLCA.

Therefore, AL € B c BL and BL G A‘c AL. ‘As LL =1L (due to the Tarski
rule), this yields AL = BL. The vector-properties A = AL and B = BL are now

obvious.
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»e«” We have ALL = BL, sothat (ALY BLCO and LC (A L)'™BL. Similarly,
we get L C (B L)TK L. This gives

syq(A, B) = syq(AL, BL) = (AL)™BL A (B L)TA—LT SFL o

As a special case of Theorem 3.2.5 we obtain a characterization of vectors. A relation

A is a vector if and only if syq(A, A) = L.

11
4. Applications

We will now investigate some applications of symmetric quotients. First, we consider
the univalent part of a relation. Then, we look for connections between ordering rela-
tions and symmetric quotients. In the third part of this chapter, we use the symmetric

quotient in order to give a monomorphic characterization of the powerset of a set.

4.1. The Univalent Part of a Relation

Using matrix terminology, the univalent part of a relation A extracts that part which
behaves like a partial function. Therefore, we only associate x to y if and only if
N@Aax 2z o z=y).
z
If we compare this expression with (5) in Section 3.1, we get the following

4.1.1 Definition. If A is a relation, then up(A) := syq(AT, I) = A A Al is called
the univalent part of A.

Clearly, up(O) = O, up(I) =1 and up(L) = LT=0 if 1#L, ie. if we are con-
cerned with relations on a set with more than one element.
up(A) is unique indeed, since

up(A)Tup(A) = syq(AT, D)Tsyq(AT, T) = syq(I, AT)syq(AT, T) C syq(L, T) = 1

by (7) and Theorem 3.2.2. Furthermore, taking the univalent part of a relation is an

idempotent operation, i.e.
(12)  up(up(A)) = up(A).

This equation is proved by up(up(A)) = up(A)T A Gp(A)1 = up(A), since up(A) is
unique and thus up(A)I D up(A).

The next theorem shows that up is a monotonic descending functional as long as the
domain of the relation is not extended.

4.1.2 Theorem Let A and B be relations, then A C B and AL = BL imply
up(B) C up(A).

Proof: First we have up(B) C BT c AT. Therefore, up(B) A AT C O, and we may
proceed b

up(B) = up(B) A BL = up(B) » AL = (up(B) n Al) v (up(B) n Al CAvO=A.0O
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We call the relative complement A A up(A) of the univalent part of A the properly
ambiguous part pap(A) of A. It can be described by pap(A) = A A AT. Therefore,

every relation can be decomposed into
A = up(A) v pap(A) where up(A) A pap(A) = O .
Further properties of up and pap can be found in [5].
The following theorem gives some sort of an orthogonality between up(A) and
pap(A).
4.1.3 Theorem If A is an arbitrary relation, then
pap(A)Tup(A) = O and  ATup(A) = up(A)Tup(A).

Proof: We have

(A A Gp(A))Tup(A) C ATup(A) ~ Up(A) up(A)
C ATsyq(AT, I) AT by Schréder's rule
cIAaT=0 by Theorem 3.2.1 .
This shows the first equation. The second one is proved by

ATup(A) = (up(A) v pap(A))Tup(A) = up(A)Tup(A) . o

An obvious relationship between up and functions is given without proof:

(13) A is a function <> up(A)L = L.

4.2. Symmetric Quotients and Ordering Relations

Let £ be a reflexive ordering relation on a set M. If x isa subset of M, then vy
¢ M is a majorant of x if
(14) Nzex = z<y.

z€EM
From (14) we derive a purely relational characterization of the set of majorants. For a

reflexive ordering relation E and a vector r we call E™r the vector of the majorants

of r with respect to E. This relational approach has already been introduced in [2].

Now let R be an arbitrary relation. Then in matrix terminology the columns of R
are vectors. Therefore, the columns of ETR correspond to the majorants of these vec-

tors.

Analogously, one can treat the minorants. This leads to a generalization of the

corresponding definitions in [2].

13

4.9.1 Definition Let E and R be relations. If E is a reflexive ordering relation,
then we define mag(R) := E™R to be the set of majorants of R w.r.t. E and
mig(R) := ER to be the set of minorants of R w.r.t. E.

If one has majorants and minorants, it is easy to define greatest and least elements,

least upper and greatest lower bounds. We note:

gre(R) := R A mag(R) greatest element
leg(R) := R A mig(R) least element

(13) lubg(R) := leg(mag(R)) least upper bound
glbg(R) := grg(mig(R)) greatest lower bound

The name “greatest element” is justified by proving the injectivity of greg(R) (using
Schréder’s rule and the antisymmetry of E):
gre(R) grg(R)T ¢ RRTEAE'RRT ¢ EAET C I

Therefore, grg(r) is a point if r =rL is a vector and if grg(r) exists (gre(r) # 0O).
Analogously, leg(R)leg(R)T C I holds. Of course, lubg(R) and glbg(R) are also
injective. This property will be used in the proof of 4.3.4.i.

In the following we will demonstrate that the notions introduced in Definition 4.2.1 and
(15) are closely related to symmetric quotients. For a reflexive ordering relation E we

will need the equations (cf. [2])

(16) E'-E'E and ETER = ER for an arbitrary relation R,
which follow directly from reflexivity and transitivity with the help of Schréder’s rule.
4.2.2 Theorem Let E and R be relations, where E is a reflexive ordering relation.
Then we have:

gre(R) = syq(E, ER) and lubg(E) = syq(E, E)

Proof: From (16) we obtain mag(R) = F™R - ETER = mag(ER). Using this equation
we now prove

17)  gre(R) = gre(ER).
»c” grg(R) = IR A mag(R) C ER A mag(ER) = greg(ER) since E is reflexive.
»>” As E is antisymmetric, we have E C ET v 1. This implies ER C E'R v R

and the equivalent inclusion ER A mag(R) C R. So we obtain grg(ER) = ER A
mag(ER) C R. Finally, from grg(ER) C mag(E R) = mag(R) we get (17).
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Using the second equation of (16) leads to
grs(R), = gre(ER) = ER A ETER = E'ER 4 E'ER = syq(E, ER).

This is the first equation. Let us now prove the second equation. Again we use (16)

and obtain

lubg(E) = ETE A E BTE - E'E » EET - E'E & E'E = syq(E, E)
as EET = E = ETE. These equations can be proved by transitivity of E and

Schréder’s rule. a

One should remark that such equations can also be proved for the least element and the

greatest lower bound.

4.3. Powersets

* We want to characterize the powerset P(M) of a set. M by the ”is—element—of” rela-
tion € S MxP(M). Of course, two elements of the powerset should be considered equal
if they consist of the same elements. We express this property by the algebraic version
of (4) in 3.1. With the second postulate we demand that for every subset N & M

there exists.an element in P(M).
4.3.1 Definition Let € be a relation. We call ¢ a direct power if and only if
i) syq(e, €)C1I
ii) L = Lsyq(e, R) for‘every relation R.
Equivalently, we could have defined a direct power by:
syq(e, R) is bijective for every relation R.

Property ii) of Definition 4.3.1 is surjectivity of syq(e, R), and syq(e, R)syq(e, R)T
C syq(e, €) C 1 implies injectivity. Conversely, from the injectivity of syq(e, R) and
from syq(e, €) D I we derive syq(e, €) C syq(e, €)syq(e, €)T € I by choosing R

= €.

In a given relational algebra a direct power may not exist. But if it does exist, it
uniquely determines (up to isomorphism) the powerset P(M) of a set M. We prove
this property by purely relational algebraic means.

4.3.2 Theorem The characterization of a direct power in 4.3.1 is monomorphic.

Proof: Assume that two direct powers ¢ and €’ exist. Then & := syq(e, €’) is
injective and unique by 3.2.2 and 4.3.1.1. Surjectivity and totality follow directly from
4.3.1.ii. Finally 3.2.1 and surjectivity imply €¢® = ¢’ Therefore, (I, ®) is an iso-
morphism between ¢ and €’. o

Two interesting relations in connection with powersets are the ordering relation Q on

P(M) and the embedding function t : M - P(M), mapping elements to their

corresponding singleton sets. We define them by

0:=eTe, vo=syq(l, €)
and prove some of their properties in the following
4.3.3 Theorem.
i) Q is an ordering relation.
ii) 1 is an injective function.
111 T =1k
iv) 10=¢=€0

Proof: i) Applying Schréder’s rule on €I C € we get eTe cT and thus 1 C Q.
Again we use Schrdder’s rule and derive transitivity by

Tectle e TeeTCeT = The TeceTs e PcO.

Antisymmetry is established by 4.3.1.i.

ii)  is total because of 4.3.1.ii. Uniqueness is implied by 3.2.2 and 4.3.1.i.
Injectivity is obtained by 1 = up(e™)T (cf. 4.1.1).

iii) follows from 3.2.1.

iv) From ii) and iii) we obtain 1Q = L eT€ = €. Reflexivity of (0 implies ¢ C
€0, and with Schréder’s rule we get eTecl &= eQCe. o

The isomorphism (I, ®) from 4.3.2 is also an isomorphism between 1 and 7 :=
syq(l, €’) as 1 ® =’ can easily be proved. In addition, the bijective relation ® (or
more exactly the pair (®, ®)) is an isomorphism between Q and Q’ :=€'Te’. This

follows immediately from the proof of Theorem 4.3.2.

]
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Now we recall two of our introductory examples in 3.1 and use symmetric quotients to
describe union and intersection. Moreover, we prove with algebraic means that P(M)
together with the ordering relation Q is a complete lattice, i.e. lubQ(R) is surjective

for arbitrary relations R. The last two equations of 4.3.4 express another connection

between - symmetric quotients and least upper bounds: If the subset N € M s

represented by the vector v, then the symmetric quotient of the direct power ¢ and
v is the least upper bound of all the singleton sets corresponding to elements of N.
This symmetric quotient is also the least upper bound of those elements of the powerset

P(M) that correspond to subsets of N.
4.3.4 Theorem Let ¢ be a direct power and R a relation so that € R exists.
i) syq(e, € R) = luba(R)
i) syq(e, TR) = glbn(R)
iii) syq(e, R) = lubn(1*R)
iv) syq(e, R) = lubnﬁ).
Proof: i) By Schréder’s rule from €7¢R C € ¢ R we obtain €TTeR C €R. There-

fore,
e

syq(e, €R) = FTTeR A cTeRCTeR A ¢TE T ¢ R = luba(R).
As syq(e, €R) s surjective and lub((R) is injective, equality holds (cf. 2.2). In
particular, lubQ(R) is surjective for arbitrary relations R.
ii) is proved similarly.
iii) Using i) and 4.3.3.1ii we get lubn(t TR) = syq(e, € tTR) = syq(e, R).
iv) We have TR C €™ by 1eTCl and Schréder’s rule.  Using Schréder’s rule
again we obtain

TR -cTe e RC €R =€ e TR = QT TR c0'e™R .
Therefore, maq(e’R) = maq(1"R) and lub(eTR) = lubn(1TR) = syq(e, R) by iii).

a

An immediate consequence of Theorem 43.4is

lubqy(R) = syq(e, €R) = lubq(t TeR) = lub(eT¢R) -
Already in the preceding theorem it became apparent, how subsets of M (vectors)

correspond to elements of P(M) (points). We describe this correspondence with two

functionals T and o which map vectors to points and points to vectors, respectively.
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If v is a vector and e an element, we define

lv] := syq(e, v) ofe] == ce .

Obviously, t[v]l and ofe] are also vectors. t[v] is surjective because of 4.8 .14
Theorem 3.2.2 and 4.3.1.i imply injectivity. Therefore, t[v] is a point. In the fol-
lowing theorem we prove that 1 and o establish some kind of an isomorphism

between subsets of M and elements of P(M).
4.3.5 Theorem Let v,, v, be vectors and e, e, be points. Then
i) oltvill =w
ii) tlole]] = e
iii) e CQe, = ole] C aleyl
iv) vy Cvy = Tlv]cC Qrlv,]
Proof: i) follows directly from Theorem 3.2.1.
ii) tlole,]] = syq(e, €e,) = syq(e, €)e, = e, because of (11) in 3.2 and 4.3.1.1.
iii) From 4.3.3.iv we obtain ofe;] = €€, C €Qe; = ¢ ey = ole,].
iv) We use 4.3.4.iii and get
tlvil tlval™ = syq(e, vi)sya(e, va)T = lub(: Tvi) lub(i Tva)
€ min(maq(t Tv,))maq(1 Tv,)T C min(maq(t Tv,))man(: Tv)T € Q
With Schréder’s rule and bijectivity of t[v,] we obtain vyl = Qr1lv,) € TV 1. =]

In this last section we were concerned with the application of symmetric quotients to
powerset construction. Having introduced direct products, we could extend this tech-
nique to define the sets of partial, total and monotonic functions monomorphically (cf.
[6], see also [7]) Applications to function domain constructionS for the semantics of

recursive program schemes are also possible.

Acknowledgement: We gratefully acknowledge valuable discussions with T. Strohlein.

We thank H. Ehler for carefully reading a draft version of the manuscript.



18

References:

(1]

[2]

(3]

(4]

[5]

‘(6]

(7]

Chin L.H., Tarski A.: Distributive and modular laws in the arithmetic of relation
algebras. Univ. California Publ. Math. 1, 341-384 (1951)

Riguet J.: Relations binaires, fermetures, correspondances de Galois. Bull. Soc.
Math. France 76, 114-155 (1948)

Schmidt G.: Programs as partial graphs I: Flow equivalence and correctness.
Theoret. Comput. Sci. 15, 1-25 (1981)

Schmidt G., Strohlein T.: Relation algebras — concept of points and representabil-
ity. Discrete Mathematics 54, 83-92 (1985)

Schmidt G., Strohlein T.: Diskrete Mathematik — Relationen, Graphen und Pro-
gramme. Internal Report, Techn. Univ. Miinchen (1985)

Zierer H.: Relationale Semantik. Techn. Univ. Miinchen, Institut fir Informatik,
Diplomarbeit (1983)

Zierer H., Schmidt G., Berghammer R.: An Interactive Graphical Manipulation
System for Higher Objects Based on Relational Algebra. In: Tinhofer G., Schmidrt
G. (Hrsg.): 12th International Workshop on Graphtheoretical Concepts in Com-
puter Science. 17.-19. Juni 1986, Bernried/Starnberger See. Lecture Notes in
Computer Science 250, Springer (1986), to appear




