
Implication Structures

— Draft —

Gunther Schmidt

Institute for Software Technology, Department of Computing Science
Federal Armed Forces University Munich, 85577 Neubiberg

e-Mail: Schmidt@Informatik.UniBw-Muenchen.DE

Abstract

This is a case study using the proposed relational multilevel reference language
in order to deal with the interesting logical concept of implication structures,
developed already in [SS74,SS76]. In the course of these investigations, the
timetable problem is introduced on a componentfree relational level by re-
working the papers mentioned before, thus providing an important example
of an implication structure.

An implication structure is given when a choice of a subset has to be made
from a set of items where an item chosen may imply/forbid some others to be
chosen. Also not choosing an item may enforce another one to be chosen. The
problem is related to satisfiability. It is, thus, NP-complete, and will normally
not admit an efficient algorithm. When studying the implication structure
mentioned from the relation-algebraic side, this may result in theoretically
sound heuristical approaches.

1 Introduction

We use the proposed relational multilevel reference language [Sch03]
to rework [SS74,SS76]. The papers of 1974 had originally been moti-
vated by timetable construction. Timetables in turn constitute mod-
els of the more general logical concept of an implication structure.

Considering timetable construction today, one may say that it is NP-
complete. There are sub-aspects that may be handled efficiently us-
ing assignment procedures. Others are related to satisfiability. While
3-satisfiability is NP-complete, only a 2-hour-timetable corresponds
to a 2-satisfiability problem and may be solved efficiently.

Cooperation and communication around this research was partly sponsored by the Eu-

ropean COST Action 274: TARSKI (Theory and Applications of Relational Structures

as Knowledge Instruments), which is gratefully acknowledged.

2

In constructing timetables, a lot of implications occur. If a teacher t
is assigned to a timeslot h with class c, he should not be assigned for
another class c′ at the same time. If a professor is about to teach a
double lesson, assignment of this lesson to 9h implies that the second
part of it be assigned to 10h. If in constructing a timetable, some
lecture hall is filled up to a last timeslot, and there is just one of the
lectures left planned to take place there, this must now be assigned
to the remaining slot, etc.

Finally, sometimes some sort of a complementary enforcing may take
place. Not assigning a lesson to some timeslot may enforce that the
only other lesson available for that slot must be assigned as otherwise
it cannot be accomodated. In total, we find three relations on the
assignment possibilities which we call E enforcing, F forbidding, and
C counter enforcing.

2 Implication Structures

We assume an implication situation without referring to timetables
in this section. Then we have a set of items that may imply (enforce),
forbid, or counterimply one another. The task is to select a subset
such that all the given postulates are satisfied.

In order to model this, let a base set N be given. What we are looking
for are subsets s ⊆ N satisfying whatever has been demanded as
implication concerning two elements i, k ∈ N :

si → sk, si → ¬sk, ¬si → sk

Subsets s are here conceived as boolean vectors s ∈ IBN . Therefore, si

is shorthand for i ∈ s. Enforcing, forbidding, and counter-enforcing
are conceived to be given as relations E, F, C ⊆ N × N .

An arbitrary subset may either satisfy the implicational requirements
or may not. We are usually not interested in all solutions, much in the
same way as one timetable satisfying formulated requirements will
suffice. For theoretical investigation, we consider the set S ⊆ P(N)
of all subsets fulfilling the given postulates, the possible solutions for
the postulated set of implications. They satisfy, thus,
∀s ∈ S : si → sk if (i, k) ∈ E (∗)

3

∀s ∈ S : si → ¬sk if (i, k) ∈ F (†)
∀s ∈ S : ¬si → sk if (i, k) ∈ C (‡)

We assume for the moment three relations E, F, C to be arbitrarily
given. Our aim is to conceive the relations as some implication struc-
ture and to look for the underlying set of solutions. To this end, we
define

(E, F, C) �→ σ(E, F, C) := {v | E ; v ⊆ v, F ; v ⊆ v, C ; v ⊆ v}

as the transition to the set of solutions of the triple E, F, C.

We may, however, also start with any set S of subsets of N and ask
whether it is a solution of some triple of implication relations. Then
we define as transition to the triple of implication relations of S

S �→ π(S) := (inf s∈S{s; sT}, inf s∈S{s; sT}, inf s∈S{s; sT})

2.1 Theorem. The two functionals σ, π form a Galois connection
between subsets S ⊆ P(N) and relation triples E, F, C on N .

Proof: We exhibit that




E ⊆ π(S)1 and
F ⊆ π(S)2 and
C ⊆ π(S)3


 ⇐⇒ S ⊆ σ(E, F, C)

We start from E ⊆ π(S)1 = inf s∈S s; sT which implies that we have

E ⊆ s; sT for all s ∈ S. Negating results in s ; sT ⊆ E for all s.
Using Schröder’s rule, we get E ; s ⊆ s for all s and, thus, the first
condition in forming σ(E, F, C). The other two cases are handled in
the same way.

Now, we work in the reverse direction, assuming
S ⊆ σ(E, F, C) = {v | E ; v ⊆ v, F ; v ⊆ v, C ; v ⊆ v}.

This means that we have E ; s ⊆ s, F ; s ⊆ s, C ; s ⊆ s for every
s ∈ S. The negations and the Schröder steps taken before, had been
equivalences, and may, thus, be reversed. This means that for all
s ∈ S we have E ⊆ s; sT, F ⊆ s; sT, C ⊆ s; sT. In this way, we see
that E, F, C stay below the infima.

4

It is then straightforward to prove all the results that follow sim-
ply by Galois folklore. In particular we study ϕ(S) := σ(π(S)) and
ρ(E, F, C) := π(σ(E, F, C)).

– ϕ and ρ are expanding, i.e.,
E ⊆ π1(σ(E, F, C)), F ⊆ π2(σ(E, F, C)), C ⊆ π3(σ(E, F, C)),
and in addition S ⊆ σ(π(S)) for all E, F, C and S

– ϕ and ρ are idempotent, i.e., (E, F, C) = ρ(ρ(E, F, C)), and in
addition S = ϕ(ϕ(S)) for all E, F, C and S.

– ρ, ϕ are monotonic and, thus, closure operations.
– There exist fixedpoints for ρ, ϕ.
– The fixedpoint sets with regard to ρ, ϕ are mapped antitonely

onto one another.

2.2 Theorem. All the fixedpoints of the Galois connection satisfy
i) F = F T, C = CT

ii) ⊆ E = E2

iii) E ; F = F, C ; E = C
iv) F ; C ⊆ E

Proof: We immediately see that the second as well as the third
component of π(S) are symmetric by definition. ⊆ E as obviously

⊆ s; sT for all s.
Transitivity of E follows as s; sT ; s; sT ⊆ s; sT and since transitiv-

ity is ∩-hereditary. Similarly, for F and C in (iii) and for (iv).

The enforcing relation E is, thus, a preorder. While these proper-
ties concerned non-negated implications relations, there are others
including also negated ones.

2.3 Corollary. The fixedpoints of the Galois connection satisfy in
addition
i) E ; C = C, F ; E = F
ii) C ; C ⊆ E, E ; C ⊆ F
iii) F ; F ⊆ E, F ; E ⊆ C

Now we consider closure forming

5

S �→ ϕ(S) and (E, F, C) �→ ρ(E, F, C)
from a computational point of view. While it seems possible to
handle three n × n-matrices E, F, C for rather big numbers n in a
relation-algebraic way with Relview, it will soon become extremely
difficult to determine vectors of length n satisfying certain given im-
plications. While we do not see enough mathematical structure on
the S-side, the formulae just proved on the (E, F, C)-side may be
helpful.

Therefore, we try to determine for given elementary implication ma-
trices (E, F, C) their implication closure ρ(E, F, C). In case there
exist very long chains of implications, it may well be the case that
the closure ρ(E, F, C) makes it easier to determine a solution S by
applying the following concepts.

The structure of the definition of implication relations leads us to
call i ∈ N

a tight element with respect to S if CS(i, i) = 1 ,
a pseudo element if FS(i, i) = 1 ,
otherwise it is called a flexible element.

The names are derived from the instantiations of (†, ‡) for k := i:
∀s ∈ S : si → ¬si if (i, i) ∈ FS, meaning ∀s ∈ S : ¬si

∀s ∈ S : ¬si → si if (i, i) ∈ CS, meaning ∀s ∈ S : si

So, for every 1 in the diagonal of C, the corresponding element must
and for every 1 in the diagonal of F , it must not belong to any
solution S. These facts together with all their implications according
to E, F, C may be helpful in looking for solutions S.

Implication matrices are only interesting modulo the equivalence
E ∩ ET derived from the preorder E. It is an easy consequence that
by simultaneous permutation of rows and columns every triple of im-
plication matrices may be arranged in the following standard form:

E =


 E0


 , F =


 F0


 , C =


 C0




Tight elements are here positioned in the first group of rows, fol-
lowed by flexible ones, and pseudo elements. E0, F0, C0 satisfy some
additional rules.

6

There is one further idea. E is a preorder according to Thm. 2.2. One
may ask which influence it has for the necessarily heuristic algorithm
when one chooses minimal/maximal elements to be handled first. Se-
lecting minimal elements with regard to E first, makes fundamental
decisions early in a backtracking algorithm. It may, however, also be
wise, to assign maximal elements first. Then some freedom is still
left to assign the others — and to fit to criteria not yet formalized.

Considering Thm. 2.2, one will easily suggest to apply round-robin-
wise the following steps until a stable situation is reached:

– determine the reflexive-transive closure of E
– determine the symmetric closure of F and C
– expand F to E ; F and C to C ; E
– add F ; C to E

3 Implication Structures in Haskell

The following is written using the relational language proposed in
[Sch03].

implicationTheory =

let baseSet = OC $ CstO "BaseSet"

subsetSet = OC $ CstO "SubsetSet"

eMat = Rela "Given E" baseSet baseSet

fMat = Rela "Given F" baseSet baseSet

cMat = Rela "Given C" baseSet baseSet

vectorSet = Rela "Vectors as relation columns" baseSet subsetSet

matr = vectSetToEFC (RC vectorSet)

form1 = RF $ fst3 matr :>==: (RC eMat)

form2 = RF $ snd3 matr :>==: (RC fMat)

form3 = RF $ thd3 matr :>==: (RC cMat)

form4 = RF $ matrixToVectorSet (RC eMat) (RC fMat) (RC cMat)

:===: (RC vectorSet)

in TH "Implication Theory"

[baseSet,subsetSet] -- objects

[] [] -- element and vector constants

[eMat,fMat,cMat,vectorSet] -- relation constants

[] [] [] [form1,form2,form3,form4]

For small examples one may calculate as follows:

vectSetToEFC vs =

let src = domRT vs

tgt = codRT vs

7

ev = VarE "x" tgt

v = RC vectorSet :****: (PointVect $ EV ev)

fctlElemToRelaE = RFCT (EVar ev) (v :||--: (NegaV v))

eeeRelaSET = RT fctlElemToRelaE (ET tgt)

fctlElemToRelaF = RFCT (EVar ev) (v :||--: v)

fffRelaSET = RT fctlElemToRelaF (ET tgt)

fctlElemToRelaC = RFCT (EVar ev) ((NegaV v) :||--: (NegaV v))

cccRelaSET = RT fctlElemToRelaC (ET tgt)

e = NegaR $ SupRela eeeRelaSET

f = NegaR $ SupRela fffRelaSET

c = NegaR $ SupRela cccRelaSET

in (e,f,c)

matrixToVectorSet e f c =

let epsi = Epsi (dom e)

epsiNeg = NegaR epsi

unit = UnivR UnitOb (dom e)

unitVect = UnivV UnitOb

filterMatr =

(unit :***: (e :***: epsiNeg :&&&: epsi)) :|||:

(unit :***: (f :***: epsi :&&&: epsi)) :|||:

(unit :***: (c :***: epsiNeg :&&&: epsiNeg))

filterVect = Convs (NegaR filterMatr) :****: unitVect

subsets = InjTerm filterVect :***: (Convs epsi)

in Convs subsets

4 Theory of Timetables

We define a timetable problem using the relational language directly.
There are given participants, which may be persons, school classes,
lecture rooms, technical facilities, etc.

teachers = OC $ CstO "Teaching personal"

classes = OC $ CstO "School classes"

facilities = OC $ CstO "Facilities"

faciClass = DirSum facilities classes

participants = DirSum teachers faciClass

Using the direct sum construct, we will be able to interpret with
small matrices via the injections we introduce here.

iotaFC = Iota facilities classes

kappaFC = Kappa facilities classes

iotaTFC = Iota teachers faciClass

kappaTFC = Kappa teachers faciClass

8

teachers

classesfacilities

faciClass

participants

It must be prescribed who has to join for a lesson, e.g. We call such
a get-together a meet and list which set of participants has to meet.
There exists a set of hours or time slots at which participants may
be available and to which meets shall be assigned.

meets = OC $ CstO "Meets to be assigned"

hours = OC $ CstO "Possible hours"

meetTeacher = Rela "Who teaches this lesson" meets teachers

meetClass = Rela "Which classes attend this lesson" meets classes

meetFacilities = Rela "Which beamer for this lesson" meets facilities

The relation between meets and participants may again be construc-
ted with injections.

meetParticipants =

RC meetTeacher :***: iotaTFC :|||:

(RC meetFacilities :***: iotaFC :***: kappaTFC) :|||:

(RC meetClass :***: kappaFC :***: kappaTFC)

Now it is discussed who is available at which hour. First a rela-
tion constant is provided that may be interpreted in a model. When
working with it, we will also have the relational term consisting of
that constant. From the separate availabilities we build the combined
ones.

availTeachConst = Rela "Free hours of teachers" teachers hours

availTeach = RC availTeachConst

availClassConst = Rela "Free hours of classes" classes hours

availClass = RC availClassConst

availFaciConst = Rela "Free hours of facilities" facilities hours

availFaci = RC availFaciConst

availFaciClass = Convs iotaFC :***: availFaci :|||:

(Convs kappaFC :***: availClass)

availPart = Convs iotaTFC :***: availTeach :|||:

(Convs kappaTFC :***: availFaciClass)

From school life it is known that some lessons should not be assigned
to certain hours regardless of whether the participants are available
— no math course at noon, no sports on Monday morning, e.g.
Therefore, also meets themselves may be given an availability.

9

availMeetConst = Rela "free hours of meet" meets hours

availMeet = RC availMeetConst

commonAvailOfMeet = availMeet :&&&:

(NegaR $ meetParticipants :***: (NegaR availPart))

To solve a timetable problem means to assign meets to hours in a
certain way. To this end, we introduce these possible associations as
a direct product together with the two projections, their converses
and formulate the criteria to be followed.

meetHour = DirPro meets hours

piMH = Pi meets hours

rhoMH = Rho meets hours

piMHT = Convs piMH

rhoMHT = Convs rhoMH

We allow to consider assignment of meets to hours also from another
point of view by converting from relation to a vector on the direct
product of meets and hours.

assignAsVector as = RelaToVect as

assignAsRelation v = ProdVectToRela v

The criteria are a conjunction of three properties. A meet is only
assigned if all of its participants are available; every meet is assigned
precisely once, and no participant is assigned twice in an hour.

isAdmissibleAssignment as = Conjunct

(Conjunct (RF $ as :<==: commonAvailOfMeet)

(RF $ Convs as :***: as :<==: (Ident hours)))

(RF $ meetParticipants :***: (Convs meetParticipants)

:&&&: (as :***: (Convs as)) :<==: (Ident meets))

isSolution as = Conjunct

(isAdmissibleAssignment as)

(RF $ as :***: (UnivR hours UnitOb) :===: (UnivR meets UnitOb))

In the process of solving a concrete timetable problem, one will as-
sign meets to hours, i.e., fill the relation as. In order that this NP-
complete problem be solved, one will have to apply heuristics. These
heuristics will mainly consist in some sort of accounting. That is,
one will try to immediately update availabilities which are reduced
when an assignment has been made. One will also immediately ap-
ply the highly efficient mincut analysis. This means that for every

10

participant all the meets he is involved in will be assigned testwise
regardless of other participants. It will efficiently detect, e.g., that
the fat assignment must not be used, as then not all of {a, b, c, d}
can be accomodated.

a 1

b 2

c 3

d 4

The result may also be that a full assignment is no longer possible.
Then backtracking is necessary. The result may finally be that from
mincut analysis alone, it follows that some meet is already tight with
regard to the possibilities to assign it. This meet will then be taken
to be formally assigned.

The question is, whether some sort of algebraic manipulation can
help in a similar way. To this end we prepare formalization of elemen-
tary implications. Relation phi relates a combination (meet, hour)
to another one with a different hour, while phi0MH relates it with
another meet-hour combination at the same time.

phi = piMH :***: (Ident meets) :***: piMHT :&&&:

(rhoMH :***: (NegaR $ Ident hours) :***: rhoMHT)

phi0MH = piMH :***: (NegaR $ Ident meets) :***: piMHT :&&&:

(rhoMH :***: (Ident hours) :***: rhoMHT)

The following is a predicate on (meet, hour)-combinations saying
nothing more than that participant p is not involved in the second
meet.

capitalA p =

let point = PointVect p

mask = Convs $ (NegaV $ meetParticipants :****: point)

:||--: UnivV meets

in piMH :***: mask :***: piMHT

This is now used to formalize basics of forbidding in otrder to start
an iteration to obtain an (E, F, C)-closure.

phi0 p = phi0MH :&&&: (piMH :***: meetParticipants :***:

(PointDiag p) :***: (Convs meetParticipants) :***: piMHT)

capitalPhi0 = let phi0Map = RT (RFCT (EVar $ VarE "x" participants)

11

(phi0 $ EV (VarE "x" participants)))

(ET participants)

in phi :|||: (SupRela phi0Map)

phiP p = phi0 p :|||: (phi :&&&: (capitalA p))

Building on these relations, the timetable theory may now be formu-
lated with p running over all participants. It can be proved that an
implication structure as been established. Several practical examples
show that the implication structure may deliver results even when
mincut analysis does no longer produce any. The effort should, how-
ever, only be made when the construction comes close to the end,
when just a few availabilities are left. Then in particular will the
technique produce non-trivial results.

5 Outlook

We have used the multilevel relational reference language to write
two concepts down, implication theory and timetable theory. It was
then immediately operational, i.e., could be run for moderately sized
examples. During this endeavour additional improvements became
necessary, not least the possibility to run through the elements of a
category object. One should be able to formulate it, but cannot do it
prior to some interpretation chosen. So some generic form has been
introduced.

References

[Sch03] Gunther Schmidt. Relational Language. Technical Report 2003-05, Fakultät
für Informatik, Universität der Bundeswehr München, 2003. 101 pages,
http://ist.unibw-muenchen.de/Inst2/People/schmidt/RelLangHomePage.html

[SS74] Gunther Schmidt and Thomas Ströhlein. A boolean matrix iteration in
timetable construction. Technical Report 7406, Abteilung Mathematik der
Technischen Universität München, 1974.

[SS76] Gunther Schmidt and Thomas Ströhlein. A boolean matrix iteration in
timetable construction. Linear Algebra and Its Applications, 15:27–51, 1976.

