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Abstract

We define the concept of partiality to cope with partial availability of
arguments and results of program steps. To this end, relation algebras
are investigated for which, in addition to the identity , a specific type
of an ordering E ⊇ is given in order to model increasing degrees of
availability. It turns out that functions regulating non-strict transfer
of partialities in processes are lattice-continuous with respect to such
orderings.

One may also consider partialities with regard to their “atomic” con-
stituents. We exhibit how relations between the atomic constituents
before and after a process step are represented by such continuous
partiality transfer functions. Our result is that they are images of a
multiplicative embedding into a larger relation algebra.

1 Introduction

Parallel processes confront us with both, strict and non-strict situations. As long
as no cooperation between processes is supposed to take place, one may consider
them separately and need not ask for progress of the other processes. If, however,
a composite result is to be delivered, it is important in which way it is built.

When dealing with possibly partial availability of information on elements of a
set, it is a well-known technique to put an additional bottom element ⊥ below
all the others to obtain a flat ordering. More difficult situations are studied
with cpo’s and there exists a highly developed theory of orderings on semantic
domains. A treatment of possibly partial availability of information may also be
seen in descriptions of eager/data-driven evaluation as opposed to lazy/demand-
driven evaluation.
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We feel that partiality is not yet handled satisfactorily, and that a unified theo-
retical basis is still missing. In the approach presented here, we try to lay a basis
of algebraic rules around partiality.

From the beginning we assume given with every element the Boolean lattice
describing the degrees to which this element may be partially available. Avail-
ability of an element is thus no longer conceived as an atomic qualification
available/non-available or •,⊥ symbolically. It may now be qualified in greater
detail. Consider, e.g., the pair of objects (x, y) and assume x and y to be in some
sense atomic or non-composite. First, none of the components may be available,
denoted as (⊥,⊥). Availability on the pair (x, y) could, however, increase to
(⊥, •) indicating that the second component is already available but the first
is not, or (•, •) indicating that it is fully available. There is a natural way of
dealing with such a situation, namely speaking of the partiality or the degree of
being partially available and introducing an ordering � to express an increase in
partiality, such that for instance (⊥,⊥) � (•,⊥) � (•, •).

Studied this way, every element is endowed its own partiality lattice. These
partiality lattices may indeed vary over the elements of a domain: Consider the
direct sum X + (X ×X) of a set X and the set of pairs formed over X. Assume
the items of X to be atomic. Then items of X have the partiality lattice IP and
the pairs have IP2, where IP = {⊥, •}.

An investigation on relations in the presence of an ordering on the domain and
on the range side will therefore be given. It takes into account the possibly
increasing degree of availability concerning the argument on the domain side
and hence on the results of a relation on the range side. Increased information
on an argument should result in at least as much information on the result as
before.

2 Preliminaries

The reader is assumed to be familiar with relation algebra. We start with order-
ings as well as isotone and continuous mappings.

2.1 Ordering and Continuity

An element E of a relation algebra satisfying ⊆ E (reflexivity), E2 ⊆ E
(transitivity) and E ∩ ET ⊆ (antisymmetry) is called an ordering relation.
The adequate structure-preserving transition is the isotone mapping. Given two
ordering relations E and E′ we call a mapping ϕ isotone if E ; ϕ ⊆ ϕ; E′.

An ordering relation gives rise to looking for the existence of upper resp. lower
bounds (majorants resp. minorants), and least upper resp. greatest lower bounds.
The following definitions may be found in greater detail in [SS85,SS89,SS93].
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2.1.1 Definition. Given an ordering relation E, the upper and lower bounds
of a relation X for which E ; X exists can be formed. These as well as the least
upper and greatest lower bounds may be defined as

ubdE(X) := E
T
; X lbdE(X) := E ; X

lubE(X) := ubdE(X) ∩ lbdE(ubdE(X)) := E
T
; X ∩ E ; E

T
; X

glbE(X) := lbdE(X) ∩ ubdE(lbdE(X)) := E ; X ∩ E
T
; E ; X

These functionals are always defined; the results may, however, be null relations.
It is an easy task to prove that lub , glb are always injective, resembling that such
bounds are uniquely defined if they exist, see [SS85] and Ch. 3 of [SS89,SS93]. As
an example we compute the least upper bound of the relation E itself, employing
the well-known facts E

T
; E = ET and E ; ET = E as well as antisymmetry of E:

lubE(E) = E
T
; E ∩ E ; E

T
; E = ET ∩ E ; ET = ET ∩ E = .

The adequate structure-preserving mappings for lattice orderings are continuous
mappings, as defined below. They are sometimes also called additive.

2.1.2 Definition. A mapping f from an ordering E to an ordering E′ is called
(upwards) continuous wrt. E, E′ if for every relation X with existing product
E ; X we have that application of f commutes with forming the lub,

fT ;lubE(X) = lubE′(fT ; X).

2.2 Lattices

Be aware, that this is a modified definition of continuity. Being continuous here
requires, that least elements be mapped onto least elements. In a cpo, continuity
is defined by the same formula, but restricted to directed sets X. A directed set
is by definition nonempty.

Our aim is now to find out how some element E of a relation algebra may be
qualified to constitute the ordering relation of a complete lattice.

2.2.1 Definition. The element E of a relation algebra is said to be a complete
lattice ordering relation, if it is an ordering relation such that for all relations
X with existing product E ; X the construct lubE(X) is surjective.

By mathematical folklore, with all lub ’s “existing” also all the glb ’s will “exist”.
After transfer into our relational setting, this means that with all lub ’s surjective
also all the glb ’s will be surjective; see [SS89,SS93] 3.3.11.
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3 Boolean Lattice Orderings

Studies in connection with Goguen categories [Win02a,Win02c,Win02b,Win03]
have shown that strictness cannot be formulated inside a given relation algebra.
Our approach is, therefore, to embed the algebra somehow in a larger relation
algebra. Transactions that strictly require certain availabilities will then be han-
dled in the larger algebra.

The switching between the embedded algebra and the embedding one needs
algebraic properties of Boolean lattice orderings formulated in componentfree
form as these properties are afterwards used in a sensitive algebraic mechanism.

3.1 Selfsimilarity of Boolean Lattices

We start by looking at pairs of elements with a common upper bound as given
by the relation E;ET. Correspondingly, ET;E describes the relation between two
elements of having a common lower bound. For an element and its negative in a
Boolean lattice it is characteristic that they do not have a common upper bound
except for the greatest element and do not have a common lower bound except
for the least element of the lattice. We define the relations

D := E ∩ E ; F := E ∩ ; E.
Here, the vector E ; = lbdE( ) characterizes the least element, as only this

is less or equal than all the others. Analogously, the vector ; E
T

= ubdE( )
characterizes the greatest element.

For an example consider as Boolean lattice the 3-dimensional cube, the ordering
relation of which is given as the fractal style matrix E. Also D and F are shown.

1

2 3

4

5

6 7

8

E =




1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
2 0 1 0 1 0 1 0 1
3 0 0 1 1 0 0 1 1
4 0 0 0 1 0 0 0 1
5 0 0 0 0 1 1 1 1
6 0 0 0 0 0 1 0 1
7 0 0 0 0 0 0 1 1
8 0 0 0 0 0 0 0 1




D =




0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1




F =




1 1 1 1 1 1 1 0
0 1 0 1 0 1 0 0
0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0




Using F , it is easy to present the relation
F ; F T = (E ∩ ; E); (E ∩ ; E)T = E ; (E ∩ ; E)T = (E ∩ ; E); ET
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of “not admitting common upper bounds different from the greatest element”.
Analogously with D, one finds the relation

DT ; D = (E ∩ E ; )T ; (E ∩ E ; ) = ET ; (E ∩ E ; ) = (E ∩ E ; )T ; E
of “not admitting common lower bounds different from the least element”. Again
we observe the fractal construction.

DT ; D =




1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0




F ; F T =




0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1




We are not allowed, however, to make use of it in a naive form. Naive would mean
to simply mirror the matrix DT ; D along the diagonal upper/right to lower/left
in order to obtain F ; F T, e.g. Another naive operation would be to rotate E.

An obvious idea is to look for the counter-diagonal, which resembles negation and
may be determined as N := DT ; D ∩ F ; F T. The counter diagonal normally has
not an easy algebraic characterisation compared with the diagonal. Multiplying
with N from the left turns upside down for a matrix. Multiplying with N from
the right flips horizontally.

3.1.1 Definition. A complete lattice ordering relation E will be called a com-
plete Boolean lattice ordering, if the derived constructs

D := E ∩ E ; , F := E ∩ ; E, N := DT ; D ∩ F ; F T

satisfy the following conditions given in equational style

i) ubdE(DT ; D) = F ; F T

ii) lbdE(F ; F T) = DT ; D
iii) N is total, , N ; =

The interpretation of (i) is that for every element x the following holds: The cone
of upper bounds of the set of “elements not admitting common lower bounds
different from the least element” with x is equal to the set of “elements not
admitting common upper bounds different from the greatest element” with x.

As we easily see that N is formed using a least upper bound, it is injective:
lubE(DT ; D) = ubdE(DT ; D) ∩ lbdE(ubdE(DT ; D))

= F ; F T ∩ lbdE(F ; F T) = F ; F T ∩ DT ; D = N
Now, we can state that two elements are in relation N if at the same time
they have no common upper bound except the greatest element and no common
lower bound except for the least element. Univalence and totality follow from
surjectivity and injectivity. Using symmetry of N , we get the involution property
from surjectivity and univalence: N ; N = N T ; N = .
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We now investigate the following constructs a and € together with some of their
surprising properties.

3.1.2 Definition. Given a Boolean lattice ordering E together with the cor-
responding N , we define

a := (E ; E ∩ E ; ∩ ; E); N € := a; E.

These definitions need some visualization. The relation a will turn out to be
the partial identity characterizing the atoms among the elements of the Boolean
lattice. In the matrix, this is certainly dependent in which order the elements
are arranged. An indication that the order chosen may be a favourable one is
given by €, which corresponds to the relation ε when omitting all rows full of
0 ’s. We have chosen the Euro-symbol € for two reasons. It indicates nicely how
several rows of E are taken according to a. In addition, it is not too different
from the usual direct power symbol ε.

a =




0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




€ =




0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




As already announced by the example, a will turn out to be a partial identity
characterizing the atoms of the ordering, a ⊆ . There has been proved a bulk
of algebraic properties around this, which cannot be presented here.

3.2 Power-Related Properties

From the following formulae, (ii) turns out to be a powerful one. It regulates two
forms of negation, one on the normal relational level, the other with N .

3.2.1 Lemma. In the given setting of a Boolean lattice ordering, we have
i) a; DT = a, a; ET ; a = a, F T ; a = a

ii) a; € = a; E = € ; N

iii) a; € = €

iv) a; € ; €T
; a; X = a; X

v) € ; €T
; X = a; X

vi) a; € ; €
T
; a; X = a; X

The next observation concerns least upper bounds and symmetric quotients.
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3.2.2 Proposition (Connecting syq and lub ). In an atomic complete Boolean
lattice we have for all relations X with the product € ; X defined that

lubE(X) = syq (€, € ; X)
€ ;lubE(X) = € ;syq (€, € ; X) = € ; X

€ ;syq (€, a; X) = a; X for all X.

3.3 Atomicity of a Lattice Ordering

Finite Boolean lattices as we consider here are necessarily atomic. Nonetheless,
we exhibit how existence of atoms may be expressed algebraically.

3.3.1 Definition. A complete Boolean lattice ordering relation will be called
atomic provided it satisfies the condition E ; = ET ; a; .

The additional property may be interpreted in the following way: Precisely all
but the least element of the Boolean lattice ordering E offer the opportunity
to reach an atom when going back against the ordering. The corresponding
properties for anti-atoms reads as follows: ; E = ; a; N ; ET.

The partial identity a together with the variant € of the well-known direct
power relation ε and atomicity just defined generate important new formulae
exhibiting similarities between €, E, and ε.

3.3.2 Lemma. In an atomic Boolean lattice ordering E = €T
; € = ET ; E.

Useful results are now available:
ubdE(€) = ubdE(a; E) = E

T
; a; E = ET ; a; a; E = €T

; € = ET,

lubE(€) = ubdE(€) ∩ lbdE(ubdE(€)) = ET ∩ lbdE(ET) = ET ∩ E =
syq (€, €) = syq (€, € ; €) =

4 Embedding Relation Algebras

As announced, a heterogeneous relation algebra will now be embedded into an-
other one. The first step would be to embed relations between X and Y to
relations on the singleton subsets R = a ; R ; a′ ⊆ P(X) × P(Y ). We will not
denote this and start from the latter. When strictness is demanded, the sur-
rounding relation algebra offers the opportunity to formulate an external arbiter
to check for availability.
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4.1 Embedding as a Galois Connection

As the mechanism of Galois connections is well-known, we need not give an
introduction into this topic. Rather we formulate the effects directly addressing
our particular case. Consider any two atomic complete Boolean lattice orderings
E, E′ together with their corresponding relations a, €, N and a′, €′

, N ′. Then
we have the following situation as our basic setting.

€,E, a, N €',E', a', N'

W,    σ(R)

π(W),    R

As a general assumption we assume two mappings relating relations with
R = a;R;a′, i.e., subrelations of the “rectangle” a; ;a′, to arbitrary relations W .

4.1.1 Theorem. The two constructs

σ(R) := €T
; a; R; a′ ; €′ and π(W ) := a; € ; W ; €′T

; a′

form a Galois correspondence between the set of relations R with R = a; R; a′

and arbitrary relations W , i.e.,
R ⊆ π(W ) ⇐⇒ W ⊆ σ(R)

As these two mappings form a Galois correspondence, the well-known conse-
quences follow immediately without any additional assumptions on σ, π, not
least that the composed mappings ρ(R) := π(σ(R)) and ϕ(W ) := σ(π(W )) are
expanding.

4.1.2 Proposition (Injectivity of σ). In the special case of σ, π of our general
assumption, i.e., considering the subset relations satisfying R = a ; R ; a′, the
fixedpoint set Fρ is always the full set of these relations ⊆ a; ;a′, or equivalently

R = π(σ(R)) for all R = a; R; a′ ⊆ a; ; a′.

Therefore, σ, π form what is usually called an adjoint pair. Fϕ will not be the
full set of all W . It is interesting, which relations may occur as images of σ. First
we investigate their greatest lower bound.

4.1.3 Proposition. syq (RT ; €, €′) = (glbE′(σ(R)T))T and
fR := syq (RT ; €, €′) is a continuous mapping.

The relations fR and R are capable of simulating one another via € and €′:
€′

; fT

R = RT ; €.

The following proposition shows that one may call fR “lower borderline” of σ(R).
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4.1.4 Proposition. The relation fR := syq (RT ; €, €′) satisfies the following
properties for given R with R = a; R; a′:
i) fR ; E′ = σ(R).
ii) R = π(fR).

It should be pointed out that the operation R �→ fR is different from the fre-
quently studied power transpose, since the latter lifts a relation R ⊆ A × B to
a relation R ⊆ A × P(B) what could be formulated as syq (RT, €). It is also
different from the construct of an existential image proposed by Oege de Moor
and Richard Bird, since this is defined as lifting a relation R ⊆ A × B to a
relation ∃R ⊆ P(A) × P(B) satisfying (∃R)(x) := {b | ∃a ∈ x : (a, b) ∈ R}
which is not monotonic but also maps multiplicatively.

4.2 Multiplicative Embedding

The multiplicative structure stays the same when embedding.

4.2.1 Proposition. i) The embedding R �→ fR is multiplicative.
ii) σ is multiplicative, i.e., σ(R); σ(S) = σ(R; S).
iii) π is multiplicative when restricted to images of σ, i.e.,

π(σ(R)); π(σ(S)) = π(σ(R); σ(S)).
iv) π is multiplicative when restricted to images of fR, i.e.,

π(fR); π(fS) = π(fR;S).
v) fa = .

One should, however, observe that transposition does not commute with the
embedding, i.e., that in general

(σ(R))T =/ σ′(RT), where σ′(RT) = €′T
; RT ; €.

Now we formulate our main result.

4.2.2 Theorem. Let a heterogeneous relation algebra R be given. Assume that
for every object A ∈ OBJR in the underlying category there is — in addition
to the identity A — also given some relation EA which is an atomic complete
Boolean lattice ordering. In every morphism set MORAB , we consider the sub-
set of mappings lattice-continuous with respect to the orderings EA, EB . On
the subsets FAB ⊆ MORAB defined in this way, we introduce the following
operations. To avoid confusion, they are denoted differently but analogously.

0-ary operations or constants
:= fa; ;a′ = fa, := fa; ;a′

1-ary operations:
f˜= f

a;π(f);a′ f† = fπ(f)T

2-ary operations
f � f ′ := fπ(f)∪π(f ′) f � f ′ := fπ(f)∩π(f ′)
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f ; f ′ = fπ(f);π(f ′)

f � f ′ :⇐⇒ π(f) ⊆ π(f ′)
The definitions above result in a heterogeneous relation algebra F .

While the relation algebra R initially given is a relation algebra of its own
right, the relation algebra F is derived from R in connection with the family
(EA)A∈OBJ R

. As far as the operations in R are concerned, this is more or less
immaterial. As far as one is interested in switching between strict and non-strict
behaviour, it becomes important as it is now possible to define strictness which
could not be done out of lattice-theoretic considerations alone.
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