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Abstract

In this text several concepts of topology, such as neighborhoods, transi-
tion to the open kernel etc., are integrated under one common relational
roof. Transitions between them are made possible, not least via TITUREL
programs.

Furthermore, a study of several approaches to spatial reasoning on dis-
creteness, proximity, nearness, apartness is presented, which are fre-
quently performed by logicians.

Also some ideas about how to work relationally on simplicial complexes
are demonstrated at least in examples.
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direct product, existential and inverse image, neighborhood, open set, continuity, nearness,
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1 Introduction

There exist lots of logical concepts around topology: open sets, neighborhoods, proximity,
nearness, betweenness, apartness, different concepts of contact and the like. Of course, they
are heavily interrelated which one cannot immediately recognize, because they are usually
discussed in quite different settings. We are going to identify the core concepts of those ideas
and to show how they may be mutually deduced from one another.

It is a requirement for such research to be acquainted with the relation-algebraic methods as
presented in [Schll] and [SW14] as well as with the treatment of the Kronecker product, the
strict fork and join operations.

This work is organized as follows: In Chapt. 2] we collect what has to be mentioned from known
relational methods to make the article self-contained. Also several new findings of this kind are
elaborated.

Known concepts of topology and continuity are recalled in Chapt. 3] They are then lifted to a
point-free relational form, thus opening them to being handled relationally, using the existential
image and the inverse image e.g., as it has partly been tried already in [Schi4].

Chapt. 4] mentions the less known Aumann contact relation — that later resurrected as be-
tweenness — and its connections with topology.

Several concepts of the border zone between topology and logics are recalled in Chapt. [f in
the highly diverse forms in which they frequently appear. They are then brought to relational
style and many of their interrelationships are exhibited and proved formally.

We study concepts of homology such as orientation, boundary operators, etc., in Chapt. [6]
Again, these are brought to a point-free relational form and then applied to simplicial complexes.

This work is completely based on relational methods. Its examples are all discrete. This
might persuade persons to believe that it is restricted to finiteness. This is not so: The
relational formulae are just “abbreviations” of the predicate logic formulae with which topology
is traditionally defined.

A remark by Dieudonné from [Die74] seems interesting in this context. He reconsiders what
René Thom said concerning superiority of “continuous” considerations as compared with “dis-
crete” ones. He rightly criticizes Kronecker for his one-sided view on mathematics as fully based
on the concept of a number. ... But then Thom himself, says that the continuum needs to be
discretized, and that since Poincaré the only way to understand topology somehow is the ever
increasing application of algebra leading to topological invariants as objects of study.

We show many computer-generated examples of finite discrete topologies, generated with the
language TITUREL http://mucob.dyndns.org:30531/~gs/TituRel/indexTituRel.html to
interpret relational terms and formulae. The well-known RELVIEW system would considerably
scale up the size of problems that may be tackled; see http://www.informatik.uni-kiel.
de/~progsys/relview/.

Quite often, one will detect similarities between approaches that come from absolutely different
sides. Sometimes, there is an attitude that one should study all these minor differences in ever
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new papers. Our approach is definitely different: Can we — led by the ideas of these differing
approaches — find some relational ‘ginder’ carrying all the intertwingled theories that shows us
a basis with several sound anchoring supports that are relationally related in a simple way and
that may provide a firm starting point for research. Such a ginder should serve as a reference
for further study; it should also be the measure against which any strengthening or weakening
of the axioms should be discussed.

There was an additional motivation for this type of research: We further develop the algebra
of the strict Kronecker, fork-, and join-operator from a rigorous relational axiomatization. It
seems that this has so far never been systematically collected although it is important with
regard to the difficult model questions around.

In total, a main aim was also to further grind, sharpen, and edge our relational tools. Thus, it
is a further extension of [Schill, ISW14].

2 Prerequisites

Relational Methods still need a detailed introduction. We recall some basics, not least from
[SS89L ISS93) [Sch11l, [SW14]. Some results, however, are new.

2.1 Preliminaries

The prerequisites presented routinely for relational work are by now fairly well-known: Boolean
operations and predicates U, N, ™, C, together with the least 1. and the greatest element T;
then the monoid operation of relational composition : together with the identities I, and finally
transposition or conversion .". The most immediate interpretation is that of Boolean matrices,
i.e., 0, 1-matrices; therefore we explain effects often via rows, columns, and diagonals.

When a non-commutative composition is available, one usually looks for the left and the right
residual, defined via

ABCC < ACCB" =C/B and ABCC < BCA'C = A\C.
The relation A\C describes which columns of A are contained in which columns of C'. Intersect-
ing such residuals in syq(R, S) := RS N RS, the symmetric quotient syq(R,S) : W — Z
of two relations R : V — W and S : V — Z is defined. Symmetric quotients serve the
purpose of ‘column comparison’

[syq(R, S)}wz =Yoo €V : Ryy — Sys.

The symmetric quotient is used to introduce membership relations € : V. — P(V') between a
set V and its powerset P(V) or 2. These can be characterized algebraically up to isomorphism
demanding syq(e,¢) C I and surjectivity of syq(e, R) for all R. With a membership ¢, the
powerset ordering is easily described as = 7. The equivalent version Q = £\e makes indeed
clear that columns of ¢ are investigated as to whether they are contained in columns of e.

The most well-known properties of a relation ) are being univalent, i.e., a (possibly partial)
function, (Q7:Q C 1T), being injective (when Q7 is univalent), being total (I C Q:Q" or
equivalently Q:T = T), being surjective (when Q7 is total), and finally being a mapping (when
univalent as well as total). The latter word is reserved for a total function.



There are three frequently applied rules that we recall here for convenience: When f is a

mapping, always
AfCB < ACBJ,

a transition we refer to as shunting. When we call a transition destroy and append, we mean
(AQTNB):Q =ANB:Q

which holds for every univalent (). Yet another rule is masking with a row-constant relation
(AN BT):C =ACN BT,

which says that one may annihilate rows according to B: T before or after composition with C.

We present a novel and useful rule for composition of a univalent relation ) with a symmetric
quotient which for @:T = T is an obvious generalization of Prop. 8.16.ii of [Schll]:

2.1 Proposition. A univalent relation () satisfies
Q:syq(A, B) = QT Nsyq(AQ", B).

Proof: Q:syq(A, B) = Q: [ﬂ N ﬁ] by definition
= Q;ZT;B NQ:AT:B since ) is univalent
= [Q;T N Q;ZT;B} N [Q;T N Q;AT;E} according to Prop. 5.6 of [Sch11]
=QTnN Q;ﬁ;B N Q;AT;E
=QTN[RTNQATBNQA"B again Prop. 5.6 of [Sch11]
=QTNQRTNQRA:BNQA"B masking; see [SS93, Prop. 2.4.2] or [Sch1ll, Prop. 8.5]
=QTN [Q_T U QAT B] NQ A"B De Morgan rule
= [Q;W N Q_T N QATE] U [Q;W NQA"BN Q;AT;E distributive
=1U [Q;T Nsyq(AQ", B)} |

2.2 Power operations recalled

There exists an interesting interrelationship between relations and their counterparts between
the corresponding powersets. It offers the possibility to work algebraically at situations where
this has so far not been the classical approach.

2.2 Definition. Let any relation R : X — Y be given together with membership relations
e: X — 2% & :Y — 2. Then the corresponding existential image mapping is defined
as ¥, := syq(Re,€'). One may correspondingly study the inverse image mapping defined
as ¥ = syq(R:',€). m

We further recall an interesting fact concerning the existential image; see [Schll]. In total, we
have for an existential image the equality

eV R = 193/8/1—.
Correspondingly, an appliction of this simulation rule to R" instead of R reads
eV RT = ¥prieT, or else Rie' = e,



Ny

T
fT

- ﬁf or syq(ex, fiey) C syq(fTex, ey).

fT

syq(ex,ex) : 2% — 2% is powerset negation.
T

) =syq(ex, fieyiNy) = syq(ex, fiey) Ny =0

,-?9f for an arbitrary mapping f: X — Y.
€y

syq(ex, f

f

.
N T f for an arbitrary mapping f: X — Y.

T
fT

:Ny

T
fT

=9
= Nx:syq(ex, frey) = syq(ex'Nx, frey) = syq(Ex, frey)

fT

]
W ) =00
T

fT

.
syq(ex, fiey)

fT
fT

T
T

) v
Ny

i) o

The following rule is not unimportant when later continuity is studied.

iii) f: X — Y surjective mapping — ¢

2.3 Proposition. In the following, Nx
Proof: of (iv); for the others see [SW14].

iV) NX’ﬁ

—_—
=
0
0010000000000000O0
01000000000O0OO0OCOO0O
00010000000000O00O0
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Fig. 2.1 Existential and inverse image for a surjective mapping



These results imply not least that 19;T is univalent, or a partial function, when f is surjective.
With (ii), we have then also ¢ N ﬁ;TW = 19;T. The illustrations below stem from [SW14].

Property (iv) may be visualized by the right relation of Fig. 2.1: Multiplying Nx from the
left means turning upside down, while Ny composed from the right side flips left /right. This
applies also to the non-surjective case as may be seen in Fig. 2.2. This means not least that
¥' - is univalent, or a partial function, when f is surjective.

fT
%“ —
~ [ T e S =)
—_ O T T T Y ) % e
o R T Xk e R s ey I o R
{}1000000000000000 100000001000000O00O0
{1}{0000100000000000 000010000000100O00O0
LaeTS {2)|o010000000000000 0010000000100000
2olo100 {1,2} 00000010000000O00O0 00000010000000O010O0
3\1 000 {3/]0100000000000000 0100000001000O0O0O0
{1,3]0000010000000000O0 00000100000001O00O0
{2,310001000000000000 000100000001000O00O0
{12,3\0000000100000000 0000000100000001

f ﬂf }T

Fig. 2.2 Existential and inverse image for a non-surjective mapping

2.3 Some categorical considerations

We simply recall here relation-algebraic concepts we will use afterwards. Everything is fully
based on the generic constructions of a direct sum, or product, etc. If any two heterogeneous
relations 7, p with common source are given, they are said to form a direct product if

rhr =1, phip=1, ma Npp' =101, wp=T.
Thus, the relations m, p are mappings, usually called projections. In a similar way, any two

heterogeneous relations ¢, k with common target are said to form the left, respectively right,
injection of a direct sum if

' =1, we'=1, "tUr k=1 wvk" =1

2.4 Definition. Given any direct products by projections

T X XY —X, p:XxY-—Y, 7 UxV —U p:UxV-—YV,
we define the Kronecker product, the fork-, and the join-operator:

1) (A@B) = W;A;W/Tﬂp;B;plT
ii) (CQD) =Cn""NnD:p"
iii) (EQF) =mENp:F m

It is sometimes helpful, not least for space reasons, to extrude a non-empty subset v out of its
surrounding set X and, thus, to give the copy 0, of the subset v an own identity. For such an
operation we provide notation as follows:

0,:0, — X, O,(2—) =x forall z € X



The injection of the copy ©, is denoted by 6,; it satisfies 6,:0, C Iy, 0,0, = Ig . One will
find out that the constructs 6,,0,, = are uniquely determined up to isomorphism. Should
someone come and present, say, f, F, T instead with rules corresponding to those above, we are
in a position to schematically define the transition as ® := 6, f' : O, — F with T = ®":x—.

Jan

Feb

o Mar
o Apr
May

Jun

) 0, — X v= "1
Aug

Sep

Oct

Nov

Dec

coococorRrROoOOOR
|

Fig. 2.3 Illustrating notation of subset extrusion

We recall the statements concerning the strict fork with respect to membership and powerset
ordering from [SW14] and then extend them.

2.5 Proposition. ¢(Q2QN) = (cQe) and (Q2QeN) =(Qe): (NX®N)

Proof: We use ) = ¢ in:
(eQe) =M™ Prop. 9.1.iv of [SW14]
=MT
=& (QQQ) Prop. 9.2.iv of [SW14]

The second claim is simply Prop. 9.2.vi of [SW14]. u]

Extending the preceding, we prove the following proposition. Direction “O” of it is trivial
and for other first factors than € one can in general not say more due to unsharpness. The
crucial point in proving “C” is a technically rather difficult application of the singleton injection
o =syq(L,e): X — 2% corresponding to ¢. It rests on a result obtained by Jules Desharnais,
[Des99]. However, this kinship is hard to realize.

2.6 Proposition. Given any relations R,S : X — 2% typed like membership relation
and singleton injection €,0 : X — 2%, together with two relations A : 2¥ — Y and
B : 2% — Z one may factorize

(RAQSB) = (RQS): (AR B).

Proof: (RAQS:B) = (RNoT):ALQS:B) o is a mapping, i.e. not least total
= (RNophin)AQS:B) property of the direct product 7, p
= ((R7"Naoip")mARQS:B) destroy and append rule
= (R7"Noip") mA7" NS B:p"  definition of fork operator
Cl(Rr NopH)n ... Ji[mAT N (R7" Noip ) S:Bip'"] Dedekind rule
C(RT"Noip ) [p:o™S Bip NmAn'"] transposed and shuffled



) ([(I®0™:S)p:BpT NmAz'] since p:Q = (I® Q):p, Prop. 7.2.i of [SW14]
) I®c™S)N...]: [pBp N (IQST0)mAr"] Dedekind rule again
p:Bip NmAr"] since (I® ...)wCr

0":9) (AR B) Prop. 7.3.1 of [SW14], definition of the Kronecker operator
)i (AR B) since ¢ is an injective mapping O

(aRaniaN!
B
ODODDOD
SRR
=
)
q—|
2

2.4 Lifting a Boolean algebra

For being self-contained, we need the following, which is more or less repeated verbally from
[SW14]. A note seems necessary concerning Boolean algebras; here supported with visualization
in a concrete example. The peculiar recursive and fractal symmetries of these examples often
give additional insight — and have already triggered secretaries to stitch such patterns for a
pot cloth.

Most people work with subsets U C X, while we distinguish between a subset in this standard
form and the corresponding element e, considered as a point in the powerset. The two are
related via the membership relation € as shown in Fig. 2.4 together with the powerset ordering

O =¢eTE

—~~ ’_A_‘/—’h\f_"“%j

~— P < ,—A—\r—*ﬁ'-op,—»—\'-c,‘ 'UF <

—_——l 002 T T T o9

8O0 duoc LT LR O SLd

i e e . s e e
f,ma111111111111111 0
{(a}[0101010101010101 0
U=ee e=syq(sU) mloo11001100110011]]0
{abl[0001000100010001 0
. = {¢¢][0OODOD111100001111 0
PN NN - MO N NSy {a,c} [0000010100000101 0
oo SN M =i M o e M S {be}[0000001100000011 0
e {abec}|000000010000000 1 0
a/0101010101010101 0 {d}jJooo00000011111111 0
bf0011001100110011 11 {ad}/|000000000101010°1 0
c]0000111100001111)10) {Hbd}]|0000000000110011 1
d\000000O0O0O11111111 1/ {abd}|0000000000010001 0
{cd}]000000000000111T1 0
(0000000000100000)=¢" {acd|0000000000000101/]|0
{bc,d!{000000000000001 1 0
{a,b,c,dd \OOOOO0OODO0000000O0 1 0

Fig. 2.4 Subset U and corresponding point e in the powerset via ¢, (2

Theoreticians frequently consider Boolean algebras “with signature (X, ,+,—,0,1)". Fol-
lowing their idea, we find on X the operations N, U, 1, T on subsets of X.

There is, however, a second “lifted” form, for which the elements are taken from 2% with
corresponding operations consisting of

M =syq((eQ¢e),e), I =sya((EQT),8), N,

(e" T =)syq(e, L), (E"T =)syq(e,T),
as defined below. Easiest to observe are the 0-ary operators or elements e™:T ~ 0,2 T ~ 1
for which obviously, looking at Fig. 2.4,

I =ee™T =esyq(e, L), T=e&"T=ecsyq(e,T).
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Next we study the unary operator
N :=syq(g,¢) N :2X — 2X
visualized in Fig. 2.5, for which we show in advance
&N =Zsyq(g,e) =¢ e:N =eisyq(E,e) = esyq(e,8) =€
ICQ=ce=c"eN = N Cc¢le.
Multiplying a relation with N from the left flips this relation upside/down, while multiplying

from the right side flips it left /right. Sometimes, we have to apply N to both sides of a pair,
for which purpose we also introduce

N:i=(NQN) =mN:a" NpNp 2% x 2% — 2% x 2X,

We identify here disjointness €7 which is shown in Fig. 2.5. Tt looks as if the powerset ordering
Q of Fig. 2.4 were rotated by an angle of —90 degrees, which may more mathematically be
expressed as (&' N = eT:¢; this time flipping left /right.

_~—~ e n QT T T O el O T T T O
—_—— 9 O“.-D“,_,_\"O_"UF.QR"Q o oQ —_——— O uﬁ@n,&@“'q,o“*q O o
AL duocg L TV 8L @ OS L 8L d oL T L S O L @
S e e S At e Myt e A A e el e A el el N " e e et et N e A e e A A A ol o el
{} 00000000000O0OO0O0O01 {}1111111111111111
{a} [0000000000000010 {a}[1010101010101010
{b} 0000000000000 1TO0O0 {b}1100110011001100
{a,b} 000000000O0O00O0O1TO0O0ODO {a,b}lOOOlOOOlOOOlOOO
{c}/0000000000010000 {c}/1111000011110000
{a,c} 00000000001 00O0OO0O0 {a,c}1010000010100000
{b,c} 000000000O0O1T00OO0OO0OO0ODO {b,c}llOOOOOOllOOOOOO
{a,b,c} 000000001 00000O00O0 {a,b,c}lOOOOOOOlOOOOOOO
{d} 00000001000000OO00O0 {d}1111111100000000
{a,d} 000000100000OO0OO0O0ODO0 {a,d}lOlOlOlOOOOOOOOO
{b,d} 00000100000000O00O0 {b,d}llOOllOOOOOOOOOO
{a,b,d} 00001000000000O00O0 {a,b,d}lOOOlOOOOOOOOOOO
{c,d} 000100000000O0O0OO0O0ODO0 {C,d}llllOOOOOOOOOOOO
{a,c,d} 00100000000000O00O0 {a,c,d}lOlOOOOOOOOOOOOO
{b,c,d}OlOOOOOOOOOOOOOO {b,c,d}llOOOOOOOOOOOOOO
{a,b,c,d}1000000000000000{a,b,c,d}1000000000000000
Fig. 2.5 Negation IV and disjointness €T:e = (& N in the powerset

3 Applying Relations in Topology

Since its first appearenceﬂ in the book Vorstudien zur Topologie by Johann Benedict Listing of
1847, topology (then and for a long period termed ANALYSIS SITUS) has been given many facets;
among the main ones are considerations of neighborhoods, open sets, and closed sets. We start
here, giving the corresponding definitions lifted to point-free versions, showing how they are
interrelated, thus exhibiting their cryptomorphism and offering the possibility to transform one
version into the other, not least visualizing them via TITUREL programs.

LCitation: Es mag erlaubt sein, fiir diese Art Untersuchungen rdumlicher Gebilde den Namen ,, Topolo-
gie“ zu gebrauchen statt der von Leibniz vorgeschlagenen Benennung ,,geometria situs“, welche an den Begriff
des Mafles, der hier ganz untergeordnet ist, erinnert, und mit dem bereits fiir eine andere Art geometrischer
Betrachtungen gebréuchlich gewordenen Namen ,,géométrie de position“ collidiert.
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It has also been reported that Karl von Staudt in Erlangen with his Geometrie der Lage of 1848
has made one of the greatest achievements of Geometry over thousands of years; see [Fab59].
von Staudt does no longer talk on the length of a line, nor on the degree of an angle. Instead,
he talks on points on lines, and incidence.

Early in the twentieth century, topology has split into ‘general topology’ or ‘point set theory’,
mainly invented by Georg Cantor and later developed further by Felix Hausdorff, and what we
today call ‘algebraic topology’.

3.1 General properties of kernel forming

Partly recalled from [Sch1i]: We consider some set X and its powerset 2%, so that one automat-
ically has also the membership relation € : X — 2%, the powerset ordering € : 2% — 2% the
powerset negation N : 2% — 2% and the powerset join and meet J, 9 : 2% x 2%X — 2X,

We recall here for convenience the definitions of closure as well as kernel forming p, K with
regard to some ordering () in general:

pCQ  QpCpQ  ppCp

KCQ QKCKOQ KKCK
This expresses that these mappings shall be expanding, resp. contracting, isotonic, and idem-
potent. Kernel-forming — up to a trivial additional totality requirement and the distributivity
in Prop. 3.2.iv below — will soon be recognized as being crytomorphic with a neighborhood
topology.

We first investigate in which way a monotone mapping f and forming binary meets with 9
are related. The interpretation of the following proposition is that when going from a pair of
subsets to the intersection of their f-images, one may also first obtain the intersection of the
two sets and take its f-image and find oneself below — and having to follow €2 to catch up
with the former.

3.1 Proposition. For every monotone mapping f we have with regard to meet forming 9

(F@ f)M C M. f.Q.

Proof: (f& f)M = (f&Q f)syq((eQe),e) Def. 9.1 of M in [SWI4]
= sya((@): (f®F)e) since (f@ ) is a map
=syq((eQe): (fT® f7),e) transposition distributed
syq((efTQe f7),e) Prop. 7.iii in [SW14]
= (m fie"Np: fieT);EN... by definition of the symmetric quotient

Now we proceed with only the first constituent:
(mifie™ N pifieT) 8 C M f:QQ = M: fie™:E
= M:fie"e C (mfie" Np: fie")E negated
— M fie" Cmfie"Npfie’
— M fie" Cmfie™ and M:fie? C pific’, from now on, we show only the first
— QUfie" =a"M:fie" C fie" shunting and Prop. 9.2.ii of [SW14]
— [fLQLfieT CQUffie? CQLe’ =" shunting, isotony, and univalence O




12

d}
b,d}

d}
b,c,d}

d}
c,d}
c,d}

{b.c}

Coococoo00o0C00OOO hhel
Socoococococoococoocooo(d}
COHOOCO-RO0O0000COO {,
o-roocoroo000OoCoOoO()
SCooOrHOOO0O0CO00CO00O00O |y

I

~

o

o

o

—
OOOHOOO»—H—H—H—H—H—H—!)—H—A{}
oooooooooooooooo{a}
OOOOOOOOOOOOOOOO{b}
OOOOOOOOOOOOOOOO{ayb}
OOOOOOOOOOOOOOOO{C}
OOOOOOOOOOOOOOOO{&C}
OOOOOOOOOOOOOOOO{C
OOOOOOOOOOOOOOOO{a
OOOOOOOOOOOOOOOO{b
n—nooooooooooooooo{a

{a’7bﬂcﬂd}

—~ OO OCOOCOOCOOCOOCOOOCOCOO

e
€y
)

Fig. 3.1 N-sub-distributive kernel forming, i.e., )M C M:KCQ; viz. {a,d} N {b,d}

We may qualify this as being sub-distributive: When starting from a pair with kernel forming
and intersecting afterwards, one will end above what one reaches when intersecting first and
forming then a kernel.

This shall now be specialized to kernel forming K.

3.2 Proposition. Meet forming, projections and the open kernel mapping are related as

11

i) QKNQ =K,
111) W;Kﬂp;’C - ?IR;IC, or (’C@’C) - Sﬁ;lC,
iv) mKTNp KT C M.

Proof: i) When in addition the assumption of Prop. 3.1 (X Q K):M C M:L:Q7, we have in
total
(KRLK)M C ML (QNQT) = M,

which means even equality, since both sides are mappings.

ii) The direction “2O” is trivial because (2 is reflexive and K C Q7. “C” is more challenging:

QEKNQT

=QK (KNI NQ"  since for the map K with idempotency (K NI =KKLNK =K
=QLNAH(KLNI) because @Q:'J N R=Q N RJ whenever J C I ‘filters columns’
COKLNQLK

CKQNKQT two times monotony of

CK(Q2NQT) K is univalent

CKI=K antisymmetry
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iii) We make use of (ii), namely Q:K N QT = K and apply Prop. 9.2.iiii of [SW14]:

I N p K C MM mT:(ﬂ‘;K N ,OIC) - m;(f)ﬁT;W;IC N mT;,O;IC) = f)ﬁ;(Q;/C N Q;/C) = QK
TN p K CmQ N pQt = MM:Q" Prop. 9.2.iv of [SW14]

So in total

KN pK C MQKN MO = M(QLNQT) = MK using (i)

iv) follows from 7 N p C M and univalency of K via shunting:

(TN KL CaNpl M =  (rNp)KT C MLT O

(ii) expresses when K, 9 commute; appropriately modified, however, to cope with a binary
and a unary mapping.

A first observation is the following counterplay of two relations U, IC, studied before entering
into the topology discussion proper:

3.3 Proposition. Based on an arbitrary membership relation € : X — 2%, we consider a
pair of transitions of the type

U — K:=syql,e):2*¥ — 2% and K — U=&K:X — 2%

i) Such transitions are inverses of one another and K is necessarily a mapping.

ii) The following two equivalences hold:
KT total <= U total

KK=K <= U=Usyq(e,U)

Proof: i) The K defined on the left is certainly a mapping, since K™:K C syq(e,e) = 1T,
and, since forming the symmetric quotient with € on the right side of syq always gives a total
relation.

eilsyq(U,e)]" = esyq(e,U) =U, since syq(e, X) is always surjective
syq(eKT,e) = Kisyq(e,e) = K:I =K since K is a mapping

ii) The first statement is trivial in view of the definitions. For “==" of the second state-
ment, we show using the definition of & and idempotency U:syq(e,U) = e KKT = KT = U.

=" KK =Kisyq(U,e) = syq(UiKT, ) = syq(Ussyq(e,U),e) = syq(U,e) =K O
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3.2 Topology via neighborhoods and kernel forming

We recall the definition of a topology via a neighborhood system from [Fra60] mentioning that
in the classical definition a set X endowed with a system U(p) of subsets for every p € X —
called neighborhoods — is a topological structure, provided

— p € U for every neighborhood U € U(p),

—ifU el(p) and V D U, then V € U(p),

— if Uy, Uy € U(p), then Uy NU; e U(p) and X € U(p),

— for every U € U(p) there is a V € U(p) so that U € U(y) for all y € V.

Thus prepared we give the relational definition of a topology in point-free form.

3.4 Definition. A relation & : X — 2% will be called a neighborhood topology if the
following properties are satisfied:

DUT=T and UCe,
i) UQCU,
i) U QU) M C U,

iV) U QZ/{;aT;L{. O

An example isf given in Fig. 3.2 where (since it is finite and discrete) only the tightest neigh-
borhood of every element is shown; others may be obtained forming arbitrary unions.

—~—
)
DR = 50,
—_——2 9 Uﬁ@r,_,ﬁ"dh"q.ﬁﬁ"cn oo
M8 00 duocd LI TV IL R OSSO
e A e e e e e
a/0101010101010101
U—b 0000001100000011
“¢|l0000111100001111 @
d\0O0OO0OO0OO0OO0OO0OO0OO0O0O0O0O1TT1TT1TT1
Fig. 3.2 A neighborhood topology and the basis of its open sets

Def. 3.4 obviously resembles being total and assigning only subsets as neighborhoods to an
element it is indeed contained in (i), being up-closed (ii), admitting binary meets (iii), and
providing open subsets. Property (iv) is not so easily recognized as providing an open kernel
for every neighborhood; in [Sch14], a detailed hint is given.

3.5 Proposition. In every neighborhood topology according to the minimalistic properties of
Def. 3.4, some stronger ones are satisfied.
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Proof: i) follows from Def. 3.4.ii since 2 is reflexive.

ii) In addition to Def. 3.4.iii:
UQU) M = [Un" NU:p"]: M expanded
= U™ N U;Q;pT]; mo (i)
= |\UM"maT NU: f)ﬁT;p;pT]-' M Prop. 9.2.ii of [SW14]
DUM NU: imT],: 9 projections are total
=UMTIM DU since meet-forming I is surjective

iii) Direction “C” is a trivial variant of Def. 3.4.iii obtained via shunting. The other direction
UMT CUT" NU:p" splits into two similar parts that are shown with Prop. 9.2.ii of [SW14]
after having shunted:

L{;Z)JITQZ/[;WT = UM'in=UN=U
iv) In addition to Def. 3.4.iv, we have U:e™"U CU <= UUCe"U <+ UCe

V) U =UQ =Ue"E CUUTE, using (i), definition of Q, and U C . It remains to show the
reverse direction.

UUTE - Ue™UUTE Def. 3.4.iv
C U:e™E see below

=U:Q) definition of 2

=Uu (i)

The postponed part:
ENU CE U is certainly satisfied

]

<— T UCU
—> eLe e U g etu
<— cLU:UTE CeTiE

vi) We start from (iv) and get immediately

U=Uc"U=Uc"eK =UceK =UQLK =UK" =Usyq(s,U).

vii) (KQK)M = (KLQK):syq((eDe),¢)
=syq((e@¢) (KT®KT),€)
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=syq((eKTQeKT),¢)
=syq((UQU) ,¢) O

We will now study in which way the idea of Def. 3.4 may also be expressed in terms of conditions
to be imposed on K instead of U.

—~— /‘H/—"ﬁ/_'\_i,:;:
—~— el O B T TG
——— OBQ,_A,”Q”C{@FQ o o
AL oL TV 8L 8 O L ®
e e e e e e e
{4}//1000000000000000 (/1 {} /0
{2} [0100000000000000 {a} [1 {a} [1
{b)[1000000000000000 (b} o (b1 |0
{abl{[0100000000000000 {ab} |0 {ab} |0
{c}/]0000100000000000 {c} |1 {c} |1
{ac}|0000010000000000 {a,c} |1 {a,c} |0
{be}|0000001000000000 {be} |1 {be} |1
{abc}|0000000100000000| {abc}|[1] {abe}|o0
{d}[1000000000000000 {d}]o {d}]o
{a,d[0100000000000000 {a,d} |0 {a,d} | 0
{bdl[1000000000000000 {bd} |0 {bd} |0
{ab,d}1|0100000000000000| {abd}|0]| {abd}|oO
{cd}|0000000000001000 {cd} |1 {cd} [ 1
{a,c,d1|0000000000000100| {acd |[1] {acd}|O
{be,dd |{0000000000000010) {bed|1] {bed |0
{a,b,c,d} \OO 0000000000000 1/ {abcd \1/ {abcdl \O
a/0100010100000101
bfoooooo1100000011) At
clooooi11100001111|Tc0=enTO"CU
d\0000000000001111

Fig. 3.3 Kernel forming, open sets, their basis, and membership in open sets for Fig. 3.2

3.6 Definition. We call a relation K : 2% — 2% a kernel-mapping topology, if
i) K is a kernel forming, i.e., £ CQ", QKL CKQ, KKCK,
ii) KT is total,

iii) (K@/C)gﬁ = M. O

From Prop. 3.2.ii, we know already that the sharpened version of property (iii) demands that
kernel and meet forming commute.

The following lemma may be helpful. It is intuitively clear when interpreted in the topology

context.

3.7 Lemma. Any kernel forming operation K satisfies
) QKNKT =K5K CT,
i) QT NOQ" =K.
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Proof: i) The containment in I follows simply from univalency. The term K"K is contained in
Q:IC because K C Q7. The term K™K is also contained in KT since shunting makes this state-
ment equivalent with 7 /C:KC C I, where the latter holds for the idempotent and univalent .

It remains to prove the other direction with

QKNK C(QNKLKD (KN QTKT) = (QN K (KN QTKT) C KT

i) “D” is trivial: LLLCT=0QN Q" and LT C QKT is via shunting LK = KT C Q.
On the other hand QTN QT C QAOQN QT =0 N Q" =1 and similarly

QL TNQTC(QNQLE):(KTNQ%QT) CLKT =K.
Together

LLCKTNI=KK"NIC(KTNLK):(KTNKI) C KUK, O

It is mainly the counterplay of Prop. 3.3 with which we study how a neighborhood topology
and a kernel-mapping topology are bijectively interrelated.

3.8 Proposition. The properties demanded for a neighborhood topology &/ may also be
expressed for K, and vice versa:

i) Given any neighborhood topology U, the construct K := syq(U,¢) is a kernel-mapping
topology.

ii) Given any kernel-mapping topology IC, the construct U := KT results in a neighborhood
topology.

Proof: i) Given the proofs of Prop. 3.3.i,ii, it remains to prove that K is contracting, monotonic
and idempotent: Firstly, K is contracting, K C €27, because the negated version £':e C UeU
U =syq(U,e) = K follows from U C e.

IC is monotonic wrt. 2: With Def. 3.4.ii, we obviously have

QLU E C Uie UUTE = syq(U,e) = K.
With the Schréder rule this is equivalent to Q) C UT:2. Now we use that U = e K" according
to Prop. 3.3.i, and that K is a mapping, ending in K C KC:Q.

That K is idempotent follows using Prop 3.3.ii and Prop. 3.5.vi.
The second condition that /T is total follows from Prop. 3.3.ii.

The third condition:
(KRK)M =syq((UQU),e) due to Prop. 3.5.vii
= syq(U: MT,e) Prop. 3.5.i
= Misyq(U,e) = MK

ii) U is total in view of Def. 3.6.ii. Contraction I C QT is equivalent with ;¢ C K, further
with &/C C g, and finally with &/ = &K C ¢ as demanded. In order to prove U:€2 C U, we start
with monotony, univalency, and shunting applied in
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eKTOK CeaKTKQCeQl=c¢ <~ sK'Q=UQCU =K.

UMT =M = MT (/CT ®/CT)
= (eQe) (KT®KT) Prop. 9.1.iv of [SW14]
= (eKTQeK") = (UQU) Prop. 7.3.iii of [SW14]

For the last property, we use Prop. 3.3.ii. |

The K of Fig. 3.1 does not satisfy (K &) )9 = MK and, thus, fails to satisfy the requirements
for a neighborhood topology. Also the mapping Ky := T:e which sends everything to the empty
set would be contracting, isotonic, and idempotent without e: K total; however it would lead
to Uy = 1L which cannot be a neighborhood system.

The open sets are often defined identifying a subset of all open sets as a so-called basis with
the idea that all their finite intersections and arbitrary unions will then produce them all. It
is often convenient to restrict such a basis to just the smallest ones, i.e., those that are not
non-trivial unions. Observe that the empty set is also an open one and would be the minimal
one when not explicitly excluded. For finite cases at least, it is possible to characterize a basis
of open sets as follows. The topology of the real axis, for example, does not allow such atomic
open sets since the basis mapping 8 below turns out to be the singleton injection.

3.9 Proposition. We consider the construct 8 := syq(EUT, ) : X — 2X.
i) ( is a mapping.
i) 8= [glbo@)]’

i) BCU = BQ=U

Proof: i) § is a mapping since 7 is surjective by definition of the membership relation £ and
because

P75 = syq(e, &U")syq(eUT €) C syq(e,e) = T
ii) See Prop. 9.10 of [Sch1l] relating greatest lower bounds with symmetric quotients.

iii) While it is trivial that 5 C U implies 5:2 C U:Q2 = U, we have to apply the general result
X Cubdp (glbg(X)),

namely that X is contained in the upper bound set of its greatest lower bound with regard to
some ordering F/, to obtain the reverse inclusion. Applied to this case here, it simply says

U Cubdg(fT) =087 «— QT CU <« UL «— U CQF o

We illustrate this result for a simple topology.
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Fig. 3.4 A topology U with its basis mapping [

3.3 Qualifying a topology via its open sets

Qualifying a topology via a neighborhood system U or kernel mapping K has, thus, been shown
to mean basically the same; U and K may be converted into one another. In what follows, we
will use them interchangeably as required.

The next idea for topologies was to define them via their open sets. In a similar way as we
could U, IC let more or less represent themselves mutually, we here have the versions Oy, Op
positioned against the former two:

U Op
<
K Oy

The transitions up and down between U/ and X on the left of the diagram above have already
been mentioned. Toggling between a vector Oy : 2¥ — 1 and the corresponding partial
identity Op : 2% — 2% is completely trivial and doesn’t need any topological consideration:

Oy = Op:T Op=1InNn0yT
Given any pair of a vector and a partial identity, we obtain the following results; we have,
however, maintained the notations Oy, Op of a set of open sets.

3.10 Proposition. Given Oy resp. Op, two other relations
co=enNT:O0] =0p and w:=syq(cop,¢)
are introduced for technical reasons. They satisfy the following properties:

i) w is a mapping that satisfies w™ C €.
i) epw=eNTuw

iii) ew’

iv) eo =eNTieop

Proof: i) The mapping property follows from the definition; furthermore

w' = syq(e,c0) CeTEp C e = (.

ii) eoiw = coisyq(eo,€) = e N Tisyq(eo,e) Prop. 8.12 of [Schll]
=eNT:w by definition
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ili) ew’ = esyq(e, c0) = €o

iv)eo=enNT:O, =cnN(TenNTO) =eNT:(eNT:0) =N Ticp O

The global situation with several methods of characterizing a topology is best visualized with
Fig. 3.5.
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e U co:=eNT:O =eKNe K :=syq(U,e) indicating Op as diagonal Oy
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Fig. 3.5 Open sets as membership and open kernel mapping

To relate the two, Op, Oy, with £, the membership e, but restricted to membership in sets
qualified as being open, is a little complicated:

co=eNT:0 =e0p, Oy =ep: T Usyq(e, L)

The disturbing term syq(e, L) = €T in the definition of Oy above owes its existence to the
fact that also the empty set is by definition an open set, but does not contain any element.
The marking of the empty set would not be shown in g} T.

We may, thus expect some purely technical difficulties when always adding or deleting it.
And this is the reason why we have decided for an alternative approach when relating the
‘membership-in-open-sets’ relation € forth and back with the U, K side. The mapping w
reproduces open environments. It does not, however, map environments to their open kernel,
as IC, but to the empty set.
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Fig. 3.6 K as opposed to w

A topology may also be characterized when the open sets are given as a vector or its equivalent
partial identity. One will recognize that in the following two definitions the first condition
concerns declaring the empty as well as the full set to be open, the second that arbitrary
unions and the third that finite intersections of open sets are open again.

3.11 Definition. A vector Oy along 2% will be called an open set topology provided
i) syq(e, 1) SOy syq(e,T) € Ov,
ii) v C Oy = syq(e,ev) C Oy for all vectors v C 2%,

111) mT (OV @ Ov) - Ov. O

The following means largely the same. The only difference rests in the representation as a
partial identity as opposed to a column vector which leads to minor technical changes.

3.12 Definition. A partial identity Op on 2% is an open diagonal topology provided
i) syq(e, L) C Op:T syq(e, T) C Op: T,
ii) v COpT = syq(e,ev) COpT for all vectors v C 2%,

iii) (OD®OD)9ﬁ Q EUI;OD. O
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It is relatively easy to see that these two versions mean the same, however, formulated with a
vector Oy or a partial identity Op, respectively. Only the equivalence of the (iii)’s may need
a bit of explanation:

MY (Oy O O0y) =M (Op: TS Op:T) by definition

=M" (Op®Op) T Prop. 7.3.iv of [SW14]

COpMTC Op:T =0y Def. 3.12.ii

(OD X OD) M = (I NOy:TRIN (’)V;T);Em by definition
=[I®I) N (O TOOT) | M Prop. 7.3.vi of [SW14]
=|IN (OV®OV);_W]; om

INT: (O}, QOY) | M  transposing a partial identity
MNT (O, QOy):M

MINT-O Def. 3.11.iii

(M. )(INMET:O) Dedekind rule

MA(INTO)

LN inin Il

|
=
S

The following is a slight variant of the latter two definitions.

3.13 Definition. A relation ¢p : X — 2% will be called a membership-in-open-sets
topology provided

i) €O;T =T Ep=¢€nN _ngo,

ii) v Cely T = syq(e,ev) CehTUeLT  ie =whT for all vectors v C 2%,

iil) (c0Qep) Cep M. O

We will also indicate in which way this is cryptomorphic with, e.g., Def. 3.11.
M (OV @ Ov) =M" (ZEBJT @) 8T;T®€B;T U 6T;T) by definition
= M1 (e TUEST) Npi(e TUEe™T)]  expanding the join operator
M (e TNpesT)U(..NpetT)U(me™TN...)U(me"TN...)| distributivity
M (ﬂ';&‘é;T N p;gé;w) UMTpe™TU MEmetTU MEme™ T
M (ep TOepT) UeTT  since Mie” = me’ N pie'N in Prop. 9.1.iv of [SW14]
M (ep Rep) T U e™T
=ecnp TUenT =0y Def 3.13.ii
(coQep) = (eNT:0] Qe NT:0Oy) by definition
= (8@8) N (TO; @WO‘T/)
—e M NAT.OLIMT Prop. 9.1iv of [SWI4] and Def. 3.11.iii
=(eNTOL)MT =co: MT

NN

One may also find it difficult to see how to obtain syq (e, T) C Oy of Def. 3.11.i, but
T=coT=(NTep)T =e(TNeyT) =ceyT

allows us to choose v := ey T, so that Oy = b,y T U T D syq(e,eiely T) = syq(e, T). The

cryptomorphy of the topology definitions Def. 3.4, Def. 3.6 and Def. 3.11 has, thus, slightly

informally been established.
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The transitions between U, K and Oy shall now be investigated.

3.14 Proposition. Given an open set topology Oy, the construct
U =c(QNO0yT)=(eNTO0)Q=c0pQ=co
constitutes a neighborhood topology.

Proof: The variants mentioned are obvious; in what follows we concentrate on the last. The
numbering of the proof follows that of Def. 3.4.

i) We have T = e:syq(e, T) C &:Oy following Def. 3.11.i and may proceed with
UT =& (QNOy:T):T by definition of U
=& (QTNOy:T) masking
=0y T since QT =T
=T:T=T seeabove
U=(QNOyT) CeQl=c¢

11) UuQ = &(Q N Ov;W);Q = 6;(Q;Q N OV"T) = &(Q N OV;T) =U

iii) Here it appears more convenient to use the condition on Op.
UQU) M = (e0pNQeOp: Q)M by definition

(eQ¢e): (Op 2R Op:Q): M  Prop. 2.6

(eQe) (OpROp): (LX) M  since (Op® Op) is univalent

(eQe) (OpR®Op) M:Q Prop. 9.4.iv of [SW14]

(eQe) :M:Op:Q  Def. 3.12.iii

e:Op:Q) Prop. 9.2.v of [SW14]

=U by definition

9
9

hin

iv) Ussyq(e,U) = & (2N Oy:T)isyq(e,U) by definition
=& (Qsyq(e,U) N Op:T) masking
eT&syq(e,U) N Oy:T)  definition of

ieisyq(e,U) N Oy:T)  the syq is a transposed mapping

e(QNOy:T)NOy:T) expanded
QN Oy:T NOY:T) trivial
U Dby definition i

ei(eTE
e(ehe
=c(enU N Oy:T)  property of the symmeric quotient
& (e
&

iy

One may also go from U (always connected with its ) to Oy:

3.15 Proposition. Given any neighborhood topology U, the construct Oy := KT is an open
set topology.

Proof: The numbering follows Def. 3.11.

i) We use Prop. 2.1 of [SW14] for the first inclusion:
Oy = KUT = syq(e,U): T = (ﬂ Ne™U)T D (I Ne™U):T
= (I Ne"U):T De"UT D e™T = syq(e, 1)
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In order to prove the second inclusion, we define g as notation for the point g := syq(e, T) and

start showing Qg = e76g = eTersyq(e, T) = 7T =71 = T. Now we get g C Oy
g =syal(e, T) = syq(e,U:T) = syq(e, Uk g) = syq(e,Urg) = syq(e,U):g = KTg S KTT

ii) We prove in advance that v C Oy = K':T implies K0 = v:
v=K"TNoC(K"No:T):(TNKwv)=(K"NouT):Kiv CKKiv Co,
since K is univalent, i.e. an equality. Therefore with idempotency
Kliv=K KUK Ko = KN v = .

Now follows U:v = &:KT:v = e:v, so that syq(e,Uiv) = syq(e,ev) =: p, which is necessarily a
point; it represents the union in the powerset. For p, we prove

ep=esyq(e,ev) =ev=Uv CUQLp=Up Cep

using

ev C & — ' EpCrv <= vCQp=clEp=clEp.
p p

This allows us to reason

p = syq(e,ev) = syq(e,eKTv) = syq(e,Uv) = syq(e,U:p) = syq(e,U)p=K":p
In total, we have shown that v C Oy implies syq(e,&v) C Oy.

i) M" (Oy ©O0y) =M™ (KLTOKTT)
=M~ (KTQK")T Prop. 7.3.iv of [SW14]
=KuMET  Def. 3.6.ii
CKLT =0y O

Having established the interrelationship, we proceed proving some additional formulae that
quite intuitively characterize the different aspects of a topology.

3.16 Proposition.
i) Op =K"K co =sKHK=UK
i) Kw=K wkK=w Tiw=TK
i) co = U
iv) eow=¢cp =cpw’
V) ww=w
vi) whw=K:K=wnNw"T
vil) eo: KT =U

vili) (w@w)M = syq((e0Qeo),e)
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Proof: i) The first follows from the definition Oy := K" T. The second:
Eo = &)(’)D =& KUK

ii) We easily observe K" IC:KT = KT, so that

Kiw = Kisyq(eo,e) = syq(co: KT, e) = syq(e KKK, e) = syq(e:KT, €) = syq(U,e) = K.
For the second statement, we prove just w://C C w from which equality follows since w:/C as well
as w are mappings. Via shunting this is equivalent with

syq(co,¢) =w Cw K" = syq(eo,e) K" = syq(co,eK") = syq(eo,U).
Expanding the symmetric quotients, we use U C ¢ to find out that it suffices to prove

85‘(7 CenE
which follows from

8@;88_;5 = &"CT;’C;m = S;KT;m = &"CT;m = &]CT;]C;E

=K KQ=coQCUQ=U.

Tiw=Twk CTK TK=TKwC Tw
ill) Uiw" = e KTw" = esw’  using the second of (ii)
iv) eow =UKiw=UK =ecp employing (i,ii)

co Cepwiw' wis a mapping
=co:w' preceeding result
=K KW’

Cew'=¢o (i)

V) ww = wsyq(eo,e) = syq(eow’,e)
= syq(eo,e) (iv)
= Ww

vi) KN = w" KT Kiw Cwhiw = Khwhiw L C KL using (ii) twice

The second equality follows using Prop. 2.1 for the univalent w™ w:
whwisyq(e,e) = whw T Nsyq(ewhw,e).
Now, w is total and syq(e, &) = I, so that this means — observing ep = e;w":w — in fact

whw=w"TNw.
vii) eo KT = e KN IKCKT = KT =U
vili) (W@ w)M = (wQw)syq((eQe),¢e) =syq((sw' Qew'),e)
= syq((coQ¢o),¢) o

Now follow some other transitions that might also be composed from preceding ones, but require
other techniques.

3.17 Proposition. Given the membership-in-open-sets topology o according to Def. 3.13,
one will obtain via U := £0:{) a neighborhood topology.
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Proof: We immediately have the counterplay of Prop. 3.3.i,ii between & and IC. The present
result is shown for U only.

DUT =0T =coT=T U=cplCel=c¢
) UQ =e0dQ =0 Q=U is completely trivial.

U@U) = (éon@EO;Q)

(coRep) (QRN) due to Prop. 2.6

EO; M (Q @ Q) Def. 3.13

o MT M QO™ consequence of Prop. 9.4.iv from [SW14]
60;9; M =UMm"

—

iii)

IaRIaNIaN|

NG

W) U=ecp0Q=(cNTicp)Q=c(2NeiT) using Def. 3.13.1

e(QNepTNepT)

e(eTe (2 NeyT) Nen ) trivial consequence of €: (2 N el T) C e (2 NelyT)

& (ﬁ NenT)  see first line of this proof

(eNTep)e™U mask shifting

core™ U Def. 3.13.i again

6(9;9;@

= U U by definition i

N

Nl

As a further proof of equivalence, we consider that from Op to U.

3.18 Proposition. Given an open diagonal topology Op, the construct
U:=¢ OD;Q
constitutes a neighborhood topology.

Proof: We follow the numbering of Def. 3.4.

HUT =e0pQT =e0pT Desyq(e, T) =T using Def. 3.12.i
U=ec0p) Cef)l=¢c since Op is a partial identity

ii) U = €;OD;Q;Q = &‘OD;Q =U is trivial

i) (UQU) M

(&OD;Q@S;OD;Q) PN

(e@¢) (Op®Op): (LX) M

(eQe) (Op®Op):M:Q  Prop. 9.4.iv of [SW14]
(eQe):M:Op:Q  Prop. 3.12.iii

e:O0p:Q=U Prop. 9.2.vi of [SW14]

=U

in

iv) We start with the trivial fact
eO0pQ Ce0p) <= eheOpQlC Op) <= OpiQ) C emie;Op:ifl.
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This allows to estimate as follows:
U= 8‘0[);9 = g;ODfOD"Q g 8;0D;8T;8;0D;Q g €;OD;Q;ET;€;OD;Q = Z/{;ET;H O

Now we investigate the reverse direction.

3.19 Proposition. Given any topology via U or K, we obtain an open diagonal topology with
the construct Op = K" K.

Proof: i) For the least element syq(e, L) =: n in the powerset, we have

n=syq(e, L) =T CUTT = K:e™:T = Kie™ T = Kin.
This implies nn"™ C K when shunting the point n. Transposing gives nn'™ C KT, shunting again
n C K%n, sothat n C KT =K5ICT = Op:T.

For the greatest element g := syq(e, T) =2-T : 2¥ — 1, we reason as follows:

L{;g = Z/{;Q;g = U;ﬁ;g = U:ET;@ = L{;ET;asyq(s,T) = Z/{;gT;T_T =UeT 1l = Z/{;I =UT=T
g =syq(e,T) = syq(e,U:g) = syq(e,U):g = KTig CKTT = KLKT = Op:T

i) Assuming v C KTICGT, we get the equality K KCiv = v, since
vCKKTNu=K"TNuoC (/CT N ’U;W);(T N /CU) C K% IKv Co.
According to its definition, e := syq(e,e:v) is a point. Therefore, e:v = e:e so that vie” C Q
and finally
Uvie" CUQ =U,
Uv CUe Cee=esyq(eev) =cv =K Kv=aK:K:Kv=Uwv,
e =syq(e,ev) = syq(e,Uie) = syq(e,U)ie = Klie CKT =KNKCT = OpiT.

iii) We find out that K = K/ = IC:KT: K K, since K is univalent, and since “C” of the second
equation is via shunting equivalent with K K:)C C KT C:KC.

Now we may reason as follows:
(Op®Op):M = (KRKRKLK): M = (KLKKQKLHLL): M since K is idempotent
= (KEKQRKK)(KQK): M because (KK QK™:K) is univalent
= (KNKQKTHK): MK due to Def. 3.6.1ii

(OpQOp):M:K by original definition

(Op®Op): MK since K is a mapping

(Op Q®Op):M:KT:K  reversing the first four lines

MLV since (Op ® Op) is a partial identity

m;OD O

in

Of course, there are also all the widely symmetric concepts, namely

— the closed hull map H := N:syq(U, <),

— the closed sets diagonal Cp :=H""H =H N1,

— the closed sets vector Cy :=Cp: T,

— the membership restricted to closed sets ¢ := ¢ N T:Cy,.
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3.4 Quotient topology

Before adding a remark on quotient topologies, we refer back to Prop. 4.3 of [SW14]. The
denotation developed there is shown in Fig. 3.7.

= € X/_W\ X X
Cx B>t
3 )
2 X X. X
X u- C 22 2

p=

Fig. 3.7 Quotient of a topology

In a quotient topology, a subset shall be open precisely when its inverse image is. For quite
some time, the authors were mislead to try the seemingly obvious version

U=z = gT;u;ﬁgT X — 2X=,

Fig. 3.8 illustrates that this does not work; one has to concentrate on open sets first, with o,
and include greater neighborhoods only later, i.e.

Eog = fT;Eo; ET : XE — 2X=,
The proof is easiest to be executed for the open sets vector version Oy, where we use that

co. =e= NT:O

= {r;a"ﬁg—r N TO;’[?;T
=N (a9 NT:0:9];) masking
3 ViU

=" (eNTOy) Vg since Ugr is univalent

see definitions in Prop. 3.20

=¢Teo ET

3.20 Proposition. Assume Oy C 2% to be a topology on the set X and = : X — X
an equivalence on that set. We consider its natural projection £ : X — Xz as well as the
membership ez : X= — 2%= on the quotient. Furthermore, we introduce the existential image
mapping ¢ := syq(£Te, ez) 1 2% — 2%= for £ as well as the inverse image U¢r := syq(&ez, €)
2%= — 2% In this setting

Oy = 29§T;OV C 2%=

is again a topology.
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Fig. 3.8 Quotient of a topology indicated via the open set bases

Proof: We convince ourselves in advance that the following hold
ez = {":&e=  since the natural projection € is a surjective mapping
= {Neisyq(e,&e=)  property of a symmetric quotient with regard to
C {Neisyq(€fie,ez) shifting a surjective mapping, Prop. 2.3.iii
C e= cancellation,
resulting in equality and
ez =Nl = e,
Furthermore
ey = eisyq(e, Ees) = Ees,
besides the standard property ez = e of an existential image.

Now follow the proofs of the topology properties numbered as in Def. 3.11:

i) We start from syq(e, L) € Oy, obtain ¥¢risyq(e, L) C e Oy = Oy, where
Verisyq(e, L) = syq(edir, L) = syq(&ez, L) = syq(&es, &)
= syq(ez, L) Prop. 8.16.i of [Schll]

Analogously syq(ez, T) C Oy..

ii) Assume v C Oy, = U¢r: Oy, which gives via shunting 19;;1} C Oy. Since Oy is an open-set-
topology then
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syq(a,e;ﬂ};v) C Oy.
This implies 759 (e, 8:1921:1}) C Je1: Oy = Oy, and consequently

syq(ez,e=v) = syq(&ees, {ezv) = syq(edgr, eirv) = Jerisyq (e, edrv) € O

111) (79€T ® 19§T);9ﬁ;19} = (19£T ® 19£T) ,‘Syq( (8 @ 8) 5 6);19; by definition
=syq((Q¢): (Jer @Ver) ", &:0r)

(eQe) (Vg ® i), )

(6?1921' @ 5’/1921') 5 6’(921’)

(Ce=Q&ez),&e=)  see above

§

(

I

0

<

Q
A~~~

(e2Qez),&e=)  since € is univalent
e=Qez),e=) Prop. 8.16.i of [Sch1l] since £ is a surjective map
by definition

[l
n m
Ba <
~.3 .0
—

Mz (O @ Ovz) =Ver M (Vir @ V) (Jer:Ov @ Uer:Oy)  see above
M (Vi @ Vi) (Jer @ Uer) (Oy @ Oy)  since (Jer @ Jer) is univalent

- 19£T; M (1915};195 X 1915};195); (OV ) Ov>

=Je M (Oy ©Ov)  because Vgrider =1

C YOy since Oy was supposed to be an open-set-vector topology

= OV: O

3.5 Inner points and tangent points

We have learned how to proceed from a powerset element to its open kernel element via IC :
a +— a®. Now we investigate how this works when a subset is given as a vector A C X and one
asks for its open kernel A° C A or its closed hull A C A~ respectively. Or else: we study when
a point x is a tangent point of a subset A or an inner point of A.

3.21 Proposition. Given a neighborhood topology U : X — 2% and any subset A C X, we
obtain the open kernel and the closed hull of A as

A° i =U:eT A A" =U: e

=

Proof: To the element a := syq(e, A) in the powerset that corresponds to A, we apply the
mapping to its open kernel.

a®° = K%a = syq(e,U)ia = syq(e,U:Q)-a = syq(e,U:e™E):a = syq(e,U:e™Fa)
and look for the corresponding vector

A° =ea® = esyq(e,U:c™Ea) =UeTEa = UeT A.

Correspondingly for the closed hull H = N:syq(U, ). O

Then, following [Schil] Prop. 7.14, obviously
A° = Z/{;ET;X g E;ET;Z = A,
A =UeTADegeT A=A
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We may also consider the production of the open kernel or closed hull for all subsets simulta-
neously, i.e., obtaining

50:1/{;%:2/{;9:1/{ .

g = um = UW,NN =U:c"e:N:N = UEN =USUEN=U:N.

In addition, we convince ourselves that these definitions meet the traditional expectation com-
bined with open kernel and closed hull:

A = U Al = Fu: Upy AV 2 Epy — Ay
A; = [L{;eT;A]$ =VYu: Z/{gcu — [Elp " Epu N AP]

3.6 Separation

A major question is to which extent points or subsets may be distinguished or even separated
by environments or open sets. This gave rise to several definitions which we recall here first
in their traditional form: Let a topology on X be given via neighborhoods, open sets, kernel
mapping as required. It is then called a

— Ty-space (sometimes a Kolmogorov space) if for any two points in X an open set exists
that contains one of them but not the other, i.e., points are topologically distinguishable.

— Ti-space when Ve, y:x+y - 3U, Ve Q: 2 c UNy¢UANy eV ANx ¢V,

— Th-space, i.e., a topology satisfying the Hausdorff property, when
Ve,y:x#ty —30,VeQ:xeUANyeVAD=UNV.

Following our general guideline, we intend to lift these conditions to the relational level. Our
first concern is as follows.

Concerning distinguishability, any given topology U : X — 2% introduces the equivalence = :=
syq(UT,U"), the so-called topological non-distinguishability of points. We convince ourselves
that always

Z:=syqU",U") =UUT N Ul by definition of the symmetric quotient
= 8@;]CT;K:;€1(:) N Eo;’CT;’C;E-(B Prop. 3.16.vii
= %;KT;K;EB N €O;ICT;’C;%

=Eoep Nepep since ep KK =UK = €p
J— T T
= syq(cp,€0)-

When we divide it out, i.e. consider the quotient mapping £ according to = = &£, we obtain
a topology that satisfies the Ty-property. We have, namely,

sYq(eb.:€0.) = syq(Veriehy &, Verieh:€) = syq(ehié, ep:€) [Sch11] Prop. 8.16.i

= £Nisyq(en, ep)i& [Sch1l] Prop. 8.18.i

=LEE=E6ENE=1

For the following definition, we choose U as the most convenient ones among the diversity of
topology definitions, but also O, I, e» might have been employed.
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3.22 Definition. Let a topology U be given in relational form. It is called a
i) Ty-space or a Kolmogorov space if 1 C W,
ii) Tj-space if ICUU ,
iii) T,-space or a Hausdorff space if ICUNU.
In all three cases this means in fact equality. O
Of course, we have the chain of implications
Th-space — Tj-space — Tj-space,

which can easily be proved observing
UNU CUN~e =UE CUU C syqUT,UT).

We establish equivalent versions using the membership-in-open-set topology definition.

3.23 Proposition. A topology given as U, resp. ¢, is a

=l

i) Ty-space <= C sya(eh,€p)s

=il
N

ii) Ti-space <= coel <= o0 Ceg,

S

iii) Ty-space <= C epieTicicly.

Proof: i) The Tj case follows from the initial remark on distinguishability.

ii) For the T case we have eo&" = UKE = Ussyq(U, ) E" = U:syq(U,E)E =UU"
and show in addition that this means that singleton sets are closed. If we write the claim
voluntarily complicated, it offers itself for shunting:

To Q_H/CN =ec B

I CUKN:o" =UsyqU,e):Nio" =Usyq(U,E

~—

0

=Usyq(U,z0") =Usyq(U,c07) =Usyq(U, 1) =UsyqU,T) C T

The Ts-case is easily shown using that U = €02 and, obviously, eT:e:Q" = T:e:
6(9;81—;5;5-('—9 = 80;9;81—;5;&)1—;8}—9 =UeTENU =UENU =UN:UT O

3.7 Continuity

For a mathematical structure, one routinely defines its structure-preserving mappings. Tradi-
tionally, this is handled under the name of a homomorphism; it may be defined for relational
structures as well as for algebraic ones in more or less the same standard way; it is available
for a homogeneous as well as a heterogeneous structure. For topologies, however, the situation
is different.
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A neighborhood system requires a heterogeneous setting with two neighborhood topologies
U,U" on sets X, X’. The continuity condition turns out to be a mixture of going forward and
backwards as we will see.

2" ot
1’)jT
u u
X X

Fig. 3.9 Typing around the continuity condition

The standard — i.e. not yet lifted — definition of topological continuity for a neighborhood
topology runs as follows: Let any two neighborhood topologies U, U’ be given on sets X, X',
and consider a mapping f : X — X’. One says that f is continuous when

for every point p € X and every neighborhood V' € U'(f(p)),
there exists a neighborhood U € U(p) such that f(U) C V.

This definition has here only been recalled for convenience. Converting it gradually — but
informally — to a point-free version is far from easy. Again, we must not quantify over subsets
U,V C X and move to quantifying over points u,v C 2% in the powerset.

For every p € X and every V € U'(f(p)), there exists a U € U(p) such that f(U) C V.

Vpe X YWV el (f(p):3U eU(p): f(U)CV
Vp e X Vo e 2X :u}(p),v — (Hu tUpy N [Vy D Eyu — 5}@)77}])

Vp Vo (fU )y — (3 Upu A VY 2 ey — (F)0])
¥p Vo (fU )y — (Fu: Uy ATy : ey A (Fe)y0)
Vp Vo (fU) — (u upu NET fiely,)

Vp Vo (fill) — (Use™ i),

f;ul - ux'éT;f;E

fU' U,

The last step is proved as follows:
M-e?—ﬁ - U;gT;f;s’;ﬁfT;ﬁ}T because 19fT is total
=U:es fielisyq(fie, 5);19}T by definition of ¥,
- U;sT;s;ﬁ}T cancellation; always Aisyq(A, B) C B
= Z/I;ﬁn?% since Y7 is a mapping
= Uk ﬁ}T
=U:Y+ Def. 3.4.ii

3.24 Definition. Consider two neighborhood topologies U : X — 2%¥ and U’ : X' — 2X
as well as a mapping f: X — X'. We call

f (neighborhood-)continuous <= fU' C U .
The equivalent version f:U":J;w C U is obtained shunting the mapping 9. o
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Observe that the mapping f cannot be shunted. This looks quite similar to a homomorphism
condition, but it is definitely not a homomorphism. It allows, nevertheless, to be extended to
iterated continuous mappings:

U: X — 2%, U : X — 2X, U . X" — 2X"

f: X — X g: X — X"
fu' C U:??}T, gU" C M’;ﬁ;T = figU" C f;Z/l’;ﬁ;T - Z/{;ﬁ}T;l‘};T =U (O m0r)"
- Z/[ (’199‘|',fT>T - Z/{; (lg(fg)T)T

What is not possible is “rolling the condition” to the same extent as for homomorphisms in
[Sch11] Prop. 5.45 — except what has been shown above wrt. to rolling based on the mapping
¥y alone. One has, thus, to apply the language of simulation as explained in [dRE9S] and
[Sch11] Prop. 19.17, calling U'" an f7, U r-LT-simulation of " — or else an ﬁ}T, fT-U-simulation
of U'.

We proceed defining continuity concepts for several topology versions, and prove afterwards
that they all mean the same.

3.25 Definition. Given sets X, X’ with topologies, we consider a mapping f : X — X’
together with its inverse image mapping ¥ : 2X" — 2X_ Then we say that the pair (f,? )
is

i) (open-kernel-map-)continuous K30 Ceo™ fTEr K

) (

ii) (open-diagonal-)continuous Opodpr CIpm:Opy
) (
) (

iii) (open-set-)continuous 3Oy, € Oy,

1v

P 1t

membership-in-open-sets-)continuous o, 04 Cep, O

The second and third definition obviously meet the classical form which says that inverse
images of open sets shall be open again. In the first definition, one can recognize some sort of
a homomorphism with respect to the converse of kernel-forming; however not with ¥, on the
right side, but with a residual slightly above.

One will observe that in the following proposition first a direct equivalence is proved and
afterwards four statements cyclically.

3.26 Proposition. The diverse continuity conditions mean essentially the same:

i) (neighborhood-)continuous open-kernel-map-)continuous

ii) (neighborhood-)continuous open-diagonal-)continuous

) (
) (
iii) (open-diagonal-)continuous
) (
) (

iv) (open-set-)continuous membership-in-open-sets-)continuous

byt

(
(
(open-set-)continuous
(

v (

membership-in-open-sets-)continuous neighborhood-)continuous
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Proof: i) filly¥yr CUy = K]  assumption and expansion of U,
[ K30 Ky C e expanding U, and shunting

eoli fTiEr C W Schroder rule

K30 Ky C ey fTE  negated

K3 C eo" fTEL K] shunting again

111y

i) 8;2/72 - 6;;fof/Z/TQ = ey [T filly = Vyrie] fildy C 0fo‘€IfZ/[1?19}T = ﬂfT{g-{fZ/Tlfﬁ;T
— Opy=1InN 851/72 - 7.9fo'l9}-|- N l9fT;€I;Z/Tl;l9}T = 19fT (]I N 8}'1/71);19;” = ﬁfTODl;ﬂ}T

iii) U3r:Ov, = U3 Opo T = U3 Opy T € Op i T = Opypt}ri T C Opyi T = Oy

iv) freo,0pr = f: (2 N W;O‘T/Q);ﬁfT = (fiea N f;W;O‘T/Q);ﬁfT
= (51;19}1— N O%);ﬁfT fOHOWiIlg Def. 2.2.
=& NT:O0y,dpr  destroy and append
CeNTOy, =co

V) f;Z/[Q;l(}fT = f;EOQ;QQ;ﬁfT
C fieo, Uy Q Prop. 5.2.1 of [SW14]
C ep,:{2; assumption
= Z/ﬁ O

This is a funny situation. Structure comparison mainly takes place in reverse direction, i.e. with
fT, 94 and only the latter of the two is a mapping. “Rolling the homomorphism” may, thus,
only be applied in a very restricted form.

4 Aumann Closure, Aumann Contact

Topology has been shown to be definable in cryptomorphically equivalent ways by neighborhood
systems, open sets, and closed sets, e.g. It is less commonly known that also Aumann closures
as originating from [AumT70, [Aum74] give rise to topologies. These in turn often stem from
contact relations.

4.1 Aumann contact related to topology

The following is some sort of a free re-interpretation of Aumanns concepts; see [Schll].

4.1 Definition. We consider a set related to its powerset, with a membership relation ¢ :
X — 2%, Then a relation C' : X — 2% is called an Aumannﬂ contact relation, provided

2Georg Aumann (1906-1980) was a professor at TU Miinchen since 1960. Before that, he was at LMU
Miinchen. Already in 1934/35 he visited the Institute for Advanced Studies in Princeton as a Rockefeller
Fellow. Some have considered him as one of the more significant mathematicians of the first half of the 20th
century, not least because of his book Reelle Funktionen. The first author knew him quite well, since in 1968 he
has been with him among those who formally founded the by now famous Mathematics faculty of TUM that
had as an offspin the equally famous Informatics faculty, — after its existence as an informal substructure of
the old faculty of ‘Allgemeine Wissenschaften’.
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i) eCCCTe

ii) C:e™:C C C, orequivalently, CT:C Ce":C, (which means in fact “=").

We call C' a topological Aumann contact relation, when in addition
(C @ C) g cC:mT. O

One will easily observe that the relation C'is up-closed, i.e.:
C:Q=Cie"EC Cie™:C c C.
This definition is slightly more restrictive than that of [Schill, Def. 11.18] in as far as contact

with the empty set is concerned; e.g., the first column of C' in Fig. 4.1 is demanded to be a
0-column. Aumann contacts may always be generated from an arbitrary relation R : X — Y

using the membership relation ¢ : X — 2% as ¢ := R R e = R/(¢\R). According to [Sch1]]

— =T

p. 281, we have in particular that every contact generates itself, i.e., C = C:C e = C/(e\C).
This is easily shown remembering the upper and lower bound funct1onals.

4.2 Propostion. Whenever C' is an Aumann contact, then so is the possibly smaller relation
C'":= C N Lo with 0 := syq (I, ¢) the singleton injection.

Proof: i) I.o = I'syq(I,¢) = L'syq(I,&) C g, so that also ¢ C Lo. Obviously C" C C C Te.

ii) We have to prove (C'N ﬂ)ﬁ(@ UTo) C e (C UTo), from which the product with C' is
trivial since C' is an Aumann contact by assumption. It suffices then to show that
(cn ﬂ)rﬁ-a C 5T-Ea'
00 shunting

since o is total
:0)NICe"T  because C C Tie
Te transposed
e and I(Len ﬂ) C T, splitted T=TU I
Le since the first one is trivial
=T

7) TenTo) see below
IT:0c masking

q
IN
N =11N

—

;0 again as shown below

N 1IN
I A =
SRR

Here, we had been allowed to replace I by T; which is trivial — when interpreted in matrices:
TenNTo=(TeUTLe)NLoULo=(TeUTLe)NagNLo = (e UTe) N (Te Us) NTLo
— [Teu(eng)]NTo=TenTo O
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In (7, it is no longer allowed that an element is in contact to a singleton set it is not contained
in. Quite obviously, this is strongly related with the forth-coming Prop. 5.17.

__ e © ,M,A,"JFFM@""OF 5} _~— o= © ,,H,_A,”qﬁ—chﬁq o
—_—— 002 T T T o9 —_—— 00 T T T o9
MM L0 d o LT LT UL ML d o’ LT IL T UL
(VDN NNy NS] S v N I NN ] S ) e e e e L e
a/0101010101010101 a/0101010101010101
O—b 0011011101110111 b0011011101110111_0/
" c¢|l0O0O11111111111111 cl00O1111101111111]|
d\0001010111111111 d\0001010111111111
Fig. 4.1 Aumann contact with or without modification of Prop. 4.2
From such contact relation, we first get a closure operation p' := syq(C, ¢) in a rather simple

way, see Def. 17.13 of [Sch11], from which in turn a topology may be derived.

4.3 Proposition. Given a topological Aumann contact relation C', the construct
U:=CpQ=0CCTe
is indeed a neighborhood topology as defined in Def. 3.4.

Proof: ii) is trivial. We follow the numbering scheme of Def. 3.4 and prove at the beginning

piQ = plieTE = plieTiE = syq(C,e)e"e = CTE.

i) The relation U is total since C:p QLT = Cip/ T =C:T DT =T.
CpQlCe <<= =s0"CCyp <+ CCpCe < C(CCep.

iii) U = C:p/:Q) is typed like a membership relation, so that we may apply Prop. 2.6 and get

(C;p/;Q @ C;p,;Q) = (C;p, @ C;IO/); (Q ® Q)
(CRC) (P& (L)

C:MmT (p ®p): (QLQQ)

C;p/;Q: M (Q ® Q) Prop. 3.1
Cipi 0 MT  Prop. 9.4.iv of [SW14]

/.

IaRIaNIaNI|

~ Q
<
=
=

iV) C;,O/;Q = C;p/;Q = 1bd6(pl;Q) = lbda(ubdé(lbdg(p’;ﬁ))) = C; (ubdg(lbdg(p’;ﬂ)))
= C;OT;lbdg(p’;Q) = CCT:CipiQ = Ciplie™:Cipi Q) = C;p’;ET;C;p’;Q - O;,O/;QET;C;p’;Q O

)

But also the other way round:

4.4 Proposition. Given a neighborhood topology U, the construct C' := U: N is always an
Aumann contact.

Proof: i) ¢ C UN < E=aNCU <+= U Ce whichholds by definition.

We consider g := syq(T,e) = T.&, the mapping that sends every element to the powerset
element corresponding to the greatest subset. Then obviously
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Qg'=cgg =cTeg =chesyq(e,T) =TT =L =T.

This allows us to proceed as follows
T=UT=UQg"=Ug" = T:gCU viashunting
in order to finally arrive at
C=UNCTe <+= UCTeN=Tz=Ty.

<:|

C =UN

dl

N CUN=C

ii) CUN
U:}U

CU <— U

IN
ml

CU <= Prop. 3.5.v o

ml

The concepts underlying the Aumann contact and Aumann closure have attracted further
attention. In the voluminous Theory of convez structures, [vdV93], the concept of betweenness
is defined in predicate logic form which we lift to point-free style as follows.

4.5 Definition. A relation B : X — 2% will be called betweenness provided it satisfies in
combination with the membership relation € : X — 2% the following:

i) B C Tie, i.e., no point is between the empty set
i) eCB
iii) B"B C "B O

It is evident that this concept coincides with the earlier one of an Aumann contact. A detailed
study of certain aspects of betweenness may also be found in [AN9S].

4.2 Overview and Examples

In total, we have the interrelationship of these topological concepts as shown in the following
diagram. The result of Prop. 4.4 does not help in identifying the way back from U to C; it
gives a different contact relation.
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U
K =syq(U,e)
U=cKk"
K = syq(eo:Q,¢)
K < S €0
co=eKNe
A A
K =syq(e:0OpiQ,¢) co =eNT:O
OD = KK OV = 61(—9;T UethT
Y Y
Op=1IN0OyT
OD OV = OD;W ! OV

To the lowest two we may go also directly from U:

OD =Ine=U OV = &TT;H;T.

This follows since

K™ =syq(e,U) =cTUNEUDUNEc =eUNQT, but also e™:U C 7z = Q.

5 Proximity and Nearness

Proximity is introduced when trying to axiomatize the concept of being in some sense “near”
that may hold from a set to another set. Far better known are point-to-set notions that
characterize being element of a neighborhood or of an open set. Proximity was described in
1908 by Frigyes Riesz and then ignored. Others to be mentioned for having worked on such
ideas include V. A. Efremovi¢ in 1934 and A. N. Wallace in 1940. More recently, we found
some work in [NW70, VDDB02, BD07].
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5.1 Proximity

The conditions for a proximity relation § are often formulated as being symmetric, only defined
for nonempty sets, encompassing nonempty intersection, being join-distributive and satisfying
a last not so easily describable law, which we will bring over several steps to a point-free version.

A proximity space (X, ¢) is therefore a set X with a relation § between subsets of X satisfying
the following properties: For all subsets A, B and C' of X

~ ASB => BJA,
-~ ASB = A+,

~ ANB+#) = AJB,

~ AS(BUC) <= (ASB or ASC),

~ VE, ASE or B§(X\E) => AJB.

The first four items are required for a so-called contact in [BDOT7]; in [NW70] the last one is
called the strong aziom. This indicates the importance of the last.

If A0B, one says that “A is d-near B” or “A and B are J-proximal”. It is not too easy to
rephrase the intention of the last property above in plain words: Two arbitrary sets A, B aren’t
0-near when there exists a subset E and its complement so that A is not near to F and at the
same time B not to its complement.

The main properties of such a set neighborhood relation obviously ask for an alternative ax-
iomatic characterization lifted to point-free form; it is provided with Def. 5.1. We restrict to
justifying the lifting process for the most complicated of these laws, the strong one, in some
more detail:

[VE : AGEV BS(X\E)] — AdB

[-3E : ASE A B(0; N)E| — AéB

AS;N;6B — ASB

ON:6C 6

This leads us to define in a completely point-free form as follows:

5.1 Definition. We speak of a pre-proximity relation on a set X if in addition to member-
ship € : X — 2% and join J : 2% x 2%¥ — 2% a relation A : 2%¥ — 2% is given satisfying
the following properties

AT CA,

1

iii

i)
i) AT C e,
i) e

) J

iv = (mUp)A

A proximity relation is a pre-proximity satisfying the strong A C A:N:A in addition. |
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The following remark indicates the coarsest proximity, so that there is no smaller one, and the
biggest.

5.2 Remark. Given any membership relation € : X — 2%, the constructs A := "I as well
as A" := " TNTe=¢e"Te satisfy the requirements for a proximity.

Proof: i,ii,iii) are trivial in both cases.

iv) is shown simultaneously for both cases using Prop. 9.1.iii of [SW14]:

eJ =enUesp =e(r"Up")

The additional “strong” property that makes these to proximities is also satisfied, which we
show for the first variant with

A - OA=cTaA =cTaN:A = A N:A.

For the second, we recall that [ := ™:T is a point, namely the least element in 2%, and that
Il CI:N:l,
which is a consequence of shunting the point [
[Ce"T:Nil <+ LI"Ce"T:N=¢"T.N=¢"T.
Therefore A’ =1 UI" C (LUIT):N:(1Ul") = A:N:A. O

Fig. 5.1 shows the proximity A = £"lle mentioned above and the one obtained from the topology
of Fig. 5.2 following Prop. 5.3. With Fig. 5.1, it is relatively easy to see that A’ = " T:¢ is the
biggest conceivable proximity; biggest means: exactly first row and column with 0s.

e S e s g o W N e ot g ok

Hﬁr&h\ 1—1'\;;\ H‘\ C\]'\ F"\Q 1—1'\ C\l'\ F“\ M'\ F"\ C\]‘\ 1—1'\ /—"ﬁ’:T/—C\T 1—1'\’;;‘ 1—(.\ C\]'\ —Tq‘—f N'\ 1—(“ M'\ H'\ C\]ﬁ v—:\

S S S S S e e e e e S e e e e e e e e

{} 000000000O0O00O0ODO0ODO0O0DO {} 00000000000O0ODO0OO0O0ODO
{1}0101010101010101 {1}0111011101110111
{2} 00110011001 10011 {2}0111011101110111
{1,2}0111011101110111 {1,2}0111011101110111
{3} 0000111100001T1T11 {3} 0o00111111T111111
{1,3}0101111101011111 {1,3}0111111111111111
{2,3} 0011111100111 111 {2,3}0111111111111111
{1,2,3}0111111101111111 {1,2,3}0111111111111111
{4} 0000000O0O0O1T1T1T1T1111 {4} 0oo0o001111T1T1T1T1T1111
{1,4}0101010111111111 {1,4}0111111111111111
{2,4} 0011001111111 111 {2,4}0111111111111111
{1,2,4}0111011111111111 {1,2,4}0111111111111111
{3,4} 0oo0o0011111T1T1T1T1111 {3,4} 0o0o001111T1T1T1T1T1T111
{1,3,4}0101111111111111 {1,3,4}0111111111111111
{2,3,4} 0011111111111 111 {2,3,4}0111111111111111
{1,2,3,4}0111111111111111 {1,2,3,4}0111111111111111

Fig. 5.1 Coarsest and a bigger proximity
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Fig. 5.2 The basis of open sets of the topology used for the right part of Fig. 5.1

Some interrelationships with topology seem obvious. The following proposition states that the
relation between two points results in a pre-proximity when one takes their complements and
finds a common point to which these are not neighborhoods.

5.3 Proposition. From an arbitrary neighborhood topology determined equivalently by
U, K, H, one may obtain the pre-proximity relation A := NU UN =HQEK N

Proof: Prior to the proof, we show equivalence of the variants:
N;UT;U;N = NiKeTe: KN = N:KCEZEKHN = NG N:ie"aK"N = H QKW N

i) A defined by the first variant is obviously symmetric by construction.

ii) We use that U is total, U:Q =U and Q = e"E to show T=UT =U:(QU Q) CUUT:E
— U C&T <= NU Ce"T. Now obviously AT C N-U T C T,

= 3 NCQH using the above variant in transposed form
e IC QM pomt free De Morgan rule, Prop. 9.2.i of [SW14]
(KR K) M Q' H™ Def. 3.6.iii
i ( )MQTHT since I is a mapping
F(K®K): mT—meT H"™  Prop. 9.2.iv of [SW14]
(KQK): <7TQ UpQ' ) HT
N (IC@IC) T H UN (KQK)pQ HT
—NmKQ H UNpKQ H Prop. 7.2.i of [SW14] with K total
= W;Nf’C;QT;'HT U pr;IC;ﬁT;'HT
=mATU p AT
= (mUp)A using (i) O

We do not give here the proof of the additional “strong” axiom to establish a proximity (and
not just a pre-proximity). It would need to assume some separation such as by the Hausdorff-
property. An example in Fig. 5.3 shows that a topology not necessarily results in a proximity
via Prop. 5.3; again based on the topology of Fig. 3.2.
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.
—~= /-‘H,—'—V—H’-Cl
© el Lol
ﬁﬁﬁﬁ?ﬁ:ﬁ:ﬁﬁ{%@:% S g4
A~ OO0 d oL TVT I LT OO
S S S S S e e
{1 ,0000000000000000
{21(0101010101010101
b}lo0O01 1111100111111
fapllo111111101111111
{}lOO1T1111111111111
fac}lo1111111 11111111 =
fbe}lOO01 1111111111111 @
A, — fabe}|0111111111111111
1= {ddfooo0o0111111111111
fadyf[o101111111111111
(bd}fo0011111111111111
fabd}fo111111111111111 @
{fcd}/OO11111111111111
facdyf0111111111111111
fbed}lOO11111111111111
fabedf\0111111111111111

Fig. 5.3 Example of a pre-proximity which is not a proximity because of b, d; cf. Fig. 3.2

5.2 Another proximity concept

A similar concept is provided in the following definition; see also [DV06, [DL12]. For purposes of
distinct notation, we will call the concept a DV-pre-proximity; others have sometimes termed
it contact, which would be misleading in the present context. Such a DV-pre-proximity D on a
Boolean algebra B (with 0, <, —, U) is given provided the following properties hold:

Dy =— Dz,

Dy = z,y+0,

r#0 = 2Dz,

- 2D(yUz) = (2Dy or zDz),

xDyand y <z = 2Dz.

These are the basic rules. Also here additional properties are often demanded to hold, such as:
— D(z) = D(y) implies z =y,
— If (Vz)(«Dz or yD — z) then zDy.

The translation of this still partly predicate-logical version to a point-free form is immediate:

5.4 Definition. Given ¢,€), J as usual, the relation D is called a DV-pre-proximity rela-
tion, provided

i) DT C D,
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ii) D C €T;W;€,
iii) INe™T C D,
iV) D:J"C D;(W U p)T,

V) DQQD O

Of course, the requirements of Def. 5.1 and of Def. 5.4 appear to be somehow similar. We prove
that this is indeed the case.

5.5 Proposition. Every DV-pre-proximity is a pre-proximity and vice versa.

Proof: First we prove “Def. 5.1 = Def. 5.4”. Properties (i,iv) are obvious.

ii) From Def. 5.1.ii, we get A C A:T C &% as well as by symmetry A C T:e, so that with
masking

ACemTNTie=(TNe"M)e =e"Te.

iii) From Def. 5.1.iii, we get with the Dedekind rule
e"TNIC (e"NET):(TNel)=ce CA.

v) AQ = A" J Prop. 9.2.ii of [SW14]
C A;(ﬂ.T U pT>’_ 3
=AJ"J Def. 5.1.iv
CA since J is univalent

Now we switch to proving “Def. 5.1 <= Def. 5.4”:
i) follows from Def. 5.4.i.
ii) D:T C =T follows from Def. 5.4.ii because T:e: T C T.

iii) From Def. 5.4.1,v, we get Q":D:Q) C D. Applying this to (iii) and using Lemma 4.2.viii of
[SW14] produces
ele=(Q"NTe)(QNe™T) =QH(INTe)(INe™T):Q =01 Ne"T):QCQ"D:Q CD.

iv) follows from Def. 5.4.iv as far as “C” is concerned. Regarding “2”, we prove, e.g.,
Dan"CD:J" <= Dr=JCD <<= DOQCD
shunting and using Prop. 9.2.ii of [SW14] as well as the present property 5.4.v. |

As this is now proved, we may use either of these definitions together with the strong axiom
mentioned. With the following proposition, we see that a pre-proximity may arise from fairly
trivial sources.
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5.6 Proposition. Given any reflexive and symmetric relation R : X — X together with
the corresponding membership ¢ : X — 2%, the construct D := £": R:¢ turns out to be a
DV-pre-proximity relation.

Proof: i) and (ii) are trivial for symmetric R. (v) follows from £Q = «.

For (iii), we have obviously &I C R:e when R is reflexive; therefore
e Re C1, INne“ReCl,
so that, splitting T = [_6 U R;s],
INne"T=IN¢g" [m U R;e} =1InN [5T;m U 5T;R;5} ClUe"Re=¢e"Re="D.

iv) We recall Prop. 9.1.iii of [SW14], namely & J7 =& (7" U p"), implying
Dy =c"ReJ =c Re(n"Up") =D:(rUp). O

It shall now even be shown that there is a one-to-one correspondence between reflexive and
symmetric relations R and DV-pre-proximity relations D. In the following, we first recall the
folklore properties of a Galois correspondence.

5.7 Proposition. Let be given any relations A: X — Y and B: U — V.

i) Then there is a Galois correspondence between relations R: X — U and C: Y — V

when defining ~ 7(C) := A:C: BT, o(R) := A" R B, ie.
RCn(C) <<= (CD2oa(R).

ii) Specializing to A:=B:=¢: X — 2% o(R):=¢""Re is an embedding.

Proof: i) We use the Schroder rule to obtain
RCACB" <= ACB'CR < RBCAC < ACCRB <= ATRBCC.

ii) With the property of the membership relation e, shown as [Sch11], Prop. 7.14, we get
m(0(R)) = ecT Ree” = Ree™ = R=R,

so that o must be injective, i.e., an embedding making this an adjunction. o

We now concentrate on the special case of R being reflexive and symmetric and we see what
it means in Prop. 5.6. It is obvious that symmetry propagates from R to D and vice versa.
Starting from D, we are in a position to prove that R is reflexive by

R =¢eDie" Degieligiet =€’ = Tee™ = ﬁ =1I.
Nevertheless, it is possible as before to start from an arbitrary R and obtain the contact C'
with closure forming p.
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—~= f-““,—»w—'a%j

_—~ e n QT T T O

—_—— 00 T T T o9

2L ILLTELLLE Ll

{}y , 0000000000000 0O00O0

{a}(0100000000000000

—~ {b}|0010000000000000O

Y % % =% {ab}|0000000000010000

RN - YN N g = {c|[oooo100000000000

soos CELSCSLSSTSLSSI5E8%  {ac}|/0000010000000000
a/l1101 010101011111 1111 {be}|{0000001000000000O0
b|{1010 0011001111111111) {abe}|0000000000000001
c{0111 0000111100001 111 {d1}]0000000000010000
d\1000 000100011111 1111 {a,d}|0O000000000010000
{b)d}|0000000000010000

{a,b,d} |]0OO0O00000000010000

{cd}|000000000000000O01

{a,c,d}|0O000000000000001

{b,c,d}{0000000000000001

{a,b,c,d} \OOOOOO0O0O0O00O0000000O01

Fig. 5.4 Non-symmetric, non-reflexive R with contact C' and closure mapping p := syq(C,¢)

We are by Prop. 5.5 entitled to use properties of Def. 5.1 and Def. 5.4 jointly when we show
that proximities give rise to topologies.

5.8 Proposition. From an arbitrary proximity relation A, one may obtain the neighborhood
topology U := 0: AN (or equivalently = o: Ai N).

Proof: We recall in advance

e=Le=o0ic"e Lemma 4.2.1 of [SW14]
C oA Def. 5.1.1ii
=0 AT CoT:AT CoTie=Te Def. 5.1.ii and ¢ is a mapping

i) U=0ANCeN=F=c¢ seeabove
U=0cANDTeN =Tz Dsyq(T,e)
Thus U is total since the definition of ¢ demands that every syq (e, X) be surjective.

ii) We have rather obviously N:Q" = Q: N and A:Q C A due to Def. 5.4.v, so that
UQ =oAN:Q - o AN=U <= ocANQ =aAQN - o AN.

i) UQU) M = (ANRQAN) M by definition
=0 (AQA) (NQN):Mm
=0 (AQA)N: M
=0 (AQA):J: N point-free De Morgan rule, Prop. 9.2.i of [SW14]
=0 (AT NAp): I N
=0 (AT NAp):J: N
=oArTUpTJ: N
= o\ 3 3 N:(T;Z;NT SN Pl“Op. 5.1.1v
CoAN=U
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iv) In order to show U C U:e™:U, we use that AQ C A; see above. In addition, 0:c"2 = [[Z = ,
so that we may employ o":e C 7 = (.
U=0ANCoANAN using the “strong” condition for a proximity
CoANQUAN since N is a mapping and A:Q C A
C 0:A'N:e":0:A:N see above

=U:e™U O

We may also go the other way round which has already been shown with Prop. 5.3, i.e., from
U to A.

As for every mathematical structure, one has also defined a structure-preserving mapping f for
proximity in [NW70]. This not yet lifted definition demands that

(A7 B) € A1 — (f(A>7f(B)) € A27
from which we derive the following

5.9 Definition. Given proximities A, : 2% — 2%i § = 1,2, and a mapping f : X; — X,
of the underlying sets, we call

f a proximity mapping < Al;f}f - ﬁf;Ag. o

We have had problems to apply the traditional homomorphism scheme to continuity, when we
define “traditional” to mean

structure X mapping C  mapping X structure.

For proximity mappings, we can say that their definition adheres more or less to the traditional
form; there is only a slight deviation, because f is given, but the definition is based on its
existential image 5

In Prop. 5.8, we have identified a topology for every proximity. It is remarkable that proximity
mappings lead to continuous mappings between such topologies.

5.10 Proposition. Any surjective proximity mapping is continuous with respect to the neigh-
borhood topologies according to Prop. 5.8.

Proof: We have to prove f:lly C Z/lm?;T, which expands to
f;O’g;AQ;NQ g 0’1;A1;N1;79;T = O'1€A1;N1;19;T.
<~ fT;O'l;Al;Nl;ﬁ;T = fT;O'lfAl;’l?;T;NQ - O'Q;AQ;NQ since Nl;ﬁ;-r = ﬁ;T;NQ, PI'Op. 2.3.1v
<~ fT;(Il;Al;??;T C o9y
— al;Apﬁ;T C fio9:Ay shunting

This shall now be proved:
al;Al;ﬁ;T C 0’1;A1;19f Prop. 2.3.iii for surjective f
- Ul;ﬁfr'AQ Def. 5.9
= fioy: Ay Prop. 5.3.ii of [SW14] O
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It seems to be an interesting task to study how the additional “strong” properties sometimes
demanded for pre-proximity as well as for DV-pre-proximity relations are related with one
another.

5.3 Nearness

Closely related with “proximity” is the concept of “nearness”. We have said “A and B are
d-proximal” if A6B. Now we proceed to saying that “B is in a d-neighborhood of A”, written
A < B when A§(X\B) is false. This changes the axioms slightly. The main properties of
this set neighborhood relation are listed below. They also provide an alternative axiomatic
characterization of proximity. For all subsets A, B,C, and D of the set X in question, one
demands

- XX

A<B = ACB

- ACBx(CCD = AxD

- (A< Band A< () = A<BNC
~A<B — X\B<X\A

- A<B = dE:AKFEKB

This is now lifted this to a point-free version.

5.11 Definition. We call the relation R : 2¥ — 2% a nearness, provided

€CR (or more intuitively syq(e, L) C R syq(e,T) C R)

RO, in fact an equality!

, l.e., Ris dense |

Equality for (iv) is easy to verify using (iii): B9M™ C (RQR) = R:7' N R:p", where, e.g.,
R:9MT C R:7" is via shunting equivalent with R: 91" C R with 9 "7 = Q according to
[SW14] Prop. 9.2.ii.

5.12 Remark. Given any membership relation € : X — 2%, the powerset ordering (2 satisfies
all the requirements for a nearness.

Proof: Again, (i,ii,iii,vi) are trivial.
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iv) follows from Prop. 9.2.iv of [SW14].

V) ON =cTaN =cTe = N:ghie = N:QT |

The nearness consisting simply of the powerset ordering is the greatest among all possible ones.

5.13 Proposition. For any given proximity A, the relation R := A: N is a nearness.

Proof: i) is shown for the first part using Prop. 5.1.ii. It follows by symmetry for the second:
eTTCR <= RCe T <« RNCe TN <«— A=RNCeT

i) RCQ <= ANCeE <<= ¢ ECAN < &aN=cecCA

where the latter is guaranteed by Def. 5.1.iii.

iii) Following Prop. 5.5, we are entitled to use Def. 5.4.v, viz. AQ) C A, and in transposed form
also QA C A.

QROQCR S QOANQC AN

A QAN - A N:Q < AN - A N:Q)

— ANQCAN < ANQCAN = AQ=ANQ.NCA

iv) We prove even equality:
ANINT=AN:N:JTN  due to Prop. 9.2.1 of [SW14], De Morgan rule
=AJN=AJN
=N\ (7T U p)TN =AU A;pT;N
=A7nN U Apr;./\/’ =AN:7TU A;N;pT =/AN:7TN A;N;pT =AN:7" N A;N;pT

‘N =ANN=AN:N =

T

= N:NA=N.AN =N:R"

=
>
>

v)

VI)ZQZNZ <~ AN C AiN:A:N <~ ANCAN: AN < RCRR O

N

In Fig. 5.5 and Fig. 5.6, we show an example of proximity and nearness.

Fig. 5.5 The basis of open sets for Fig. 5.6
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Fig. 5.7 Biggest and a smaller nearness corresponding to Fig. 5.1

Nearly the same as Prop. 5.13 is possible in the other direction.

5.14 Proposition. For a given nearness R, the relation A : 2% — 2% defined as

)

A = R;N

will be a proximity.

i.e. Def. 5.11.v

Y

RN < RN CN:RT

TC

N

R:

—

Proof: i) AT C A

i.e. with Def. 5.11.1

T - (ngT ﬂ W?)!T g ngT7

T

(€

U

€T

i.e. Def. 5.11.ii.

Y

ET;E;NCE <~ RCQ

e" g

—

=
S~
[

iii) ehe C A
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iv) A:JT=RN:J7 by the definition above
= R:N:J7 since J is a mapping
= RN  point-free De Morgan rule
= (RQR):N using the equality in (iv)
= (RNQRN) since N = (N®N) is a mapping
= RN:m" N R:N:p"
= RN:wm"U R:N:p"
=RN7"U R;N;pT
=RN(rUp)"=A(rUp)T

v) We start from Def. 5.11.vi to obtain
RCRR < RNCRRN=RNNRN s A

N
g
=
|
O

5.4 Apartness and connection algebra

Others formalize the concept of a point being apart from a set of points. We reinvestigate the
definition of [BStV01], which reads as follows: Assume a set X and a relation apart : X — 2%
intended to express that a point x is apart from a subset uw when (x,u) € A that satisfies

- r#y = apart(z, {y}),

— apart(z,u) = z¢u,

— apart(z,u Uv) <= apart(z,u) A apart(z,v),
-r€—-uCwv = apart(x,v),

There follows sometimes a last point not mentioned here; it is considered interesting when
dealing with specialities of constructive mathematics.

We lift the idea of the preceding definition so as to obtain a point-free version.

5.15 Definition. Assume a set X and a relation A : X — 2%. This relation will then be
called an apartness, provided

i) .o C A, with the singleton injection o := syq(T, ¢),

i) AJT = (AQA) = Ax" N AT,

iv) AN:QC AN or better AQT C A. i
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In view of Prop. 5.17, one should discuss whether it is wise to postulate instead of equality in (iii)
— and less restrictive — only “C”. With the following remark we establish the complemented
membership relation € as a most trivial example of an apartness.

5.16 Proposition. Given any membership ¢ : X — 2%, its complement A :=  is an
apartness.

i) AJT =83 =eJT=ecnUep' =en" Nep" = An"NAp" using Prop. 9.1.iii of [SW14]

iV) ANQON =eN:QUN =cOON=cN=g=A O

Also the complement of an Aumann contact in the form as obtained in Prop. 4.2 always comes
close to an apartness.

5.17 Proposition. Given any Aumann contact relation C' : X — 2% its complement
modified to

A::6UE‘O'

is nearly an apartness, i.e., only with “C” in (iii).
Proof: i) is satisfied by construction.
ii) By definition of contact, ¢ C C; furthermore L'syq(T,¢) = I'syq(IL, z) C &.

iii) Without loss of generality, we confine ourselves to proving A: 3" C Asm™, which means via
shunting A J "7 C A and by Prop. 9.2.iii of [SW14] AQ" C A, that is (C U Lo):Q" C C U Lo,

We start with property Def. 4.1.ii for contact cT.C g_aT;a g_eT;E = (2, transpose this to
C".C C Qand apply the Schroder rule to finally obtain C:Q2" C C.

Furthermore
E’(EQT =. ;((TU_ZE Irop. 4 Ol
=LoULTe Q Lo UTe Q LouC Def 4.1.i

iv) AQT = (CULo)Q" =CQT U_EO’:QT =C:Q"UTL(0c UTe) using Prop. 4.2.iii of [SW14].
This should now be contained in C' U .o = A. The middle part is obvious. The last follows
with

ITeCTeCC
The first uses the contact property

CT;6 - €T;6 - el e = ﬁ

— C.C C Q' transposed

— (C:Q"CC Schroder rule ]
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The reverse will only be satisfied in specific situations, not in general.

5.18 Remark. Given an apartness 4 : X — 2% on a set X with at least two elements
(algebraically: with I T = T), its complement C' := A need not form an Aumann contact
relation.

We would have to show ¢ C C' C T:e and C™:C C £":C of which the first inclusion is trivial in
view of Def. 5.15.1i.

For the second, we start with

CUTie=AUT:e D AQ"UT:e Def. 5.15.v

D E‘O';QT U T:e Def. 5.15.1

=L(cUTe)UT:e DLTeUTe Lemma 4.2.i of [SW14]
=TLT.euULTe condition above

(_ U Wfé)

T =T condition above

Concerning the third, we have only A:Q" = A" C A, which doesn’t suffice to establish
ANACETA = FAACA = AAeCA o

In total, there seems to be a strong indication that one should not postulate Def. 5.15.i. When-
ever one has an apartness A’ without, one may add A := A’ U I:syq(I, ) and will get an
apartness-like relation again. The neighborhoods for A, A’, however, are differently interesting.
While those for A" produce interesting topologies, those for A don’t.

—~~ "A"/—Mv—"ﬂ:éj

lt) e U'\ ;—/-\r—*ﬁ'-on,—»—\'-q‘ror O.\

—_—— O OAQH,_A_,@“”Q..D“FQ SRS N=}
~~c O duouc LT LTS0S
M M M e e M M M A e e e
a/1010101010101010
b{1100100010001000
c{1100000000000000O0
d\1110101000000000O0

Q.

Fig. 5.8 Complement of an Aumann contact as standard example of an apartness without (i,iii)

The underlying Aumann contact is obviously non-topological. We now show apartnesses stem-
ming from Aumann contact relations and suggest to discuss the relevance of properties (i) and

(ii).

5.19 Example.
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an open set V' O U that does not contain x. In this form, it reminds us of a separability axiom

Looking at these examples, an observation is immediate: x is apart from a set U, if there exists
like 1o, T7 . ..
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Connection algebra

Some other concepts have also been studied: Boolean contact algebras. Their definition in
[GW14] is as follows:

5.22 Definition. A relation C : 2% — 2% defined besides membership ¢, powerset contain-
ment €2 and projections from pairs 7, p, is called a Boolean contact algebra when

i) T.eDC, v) CiJTCCintUCip,
i) INnTeCC, vi) syq(C,C) CT,

iii) C vil) C:N:C C C,

iv) C viii) NNT.enTeCC.

This obviously subsumes under our general theme, which we will, however, not elaborate here.
One should consider all these, nearness, proximity, apartness, etc. as cryptomorphic concepts,
thus avoiding to study them in separate axiomatizations over and over again.

6 Simplicial Complexes

This section is intended to show how one might work relationally also for algebraic topology.
We give a glimpse on simplicial complexes, usually subsumed under that topic.

Siegel writes in [Sie79] about his former Frankfurt colleague Max Dehn solving the 3. Hilbert
Problem: “We know that the areas of two given triangles can be proved equal by means of
elementary geometry, i.e., without resorting to integral calculus or other limit processes. The
question remained as to whether the same were possible for 3-dimensional figures; specifically,
whether the volume of a tetrahedron could be rigorously defined without taking limits. This
was one of the famous unsolved problems in mathematics posed by Hilbert at the international
congress of mathematicians in Paris in 1900; Dehn was the first to have solved one of the Hilbert
problems. The answer to the problem was in the negative, for Dehn showed that the theory of
volume could not be developed on the basis of elementary geometry alone.” Dehn has simply
constructed two equally voluminous polyhedra that he proved not to be zerlegungsgleich nor
erganzungsgleich, i.e. not equal by cutting it into pieces and recombining.

This remark has been inserted in order to prevent us from all too simplistic reasoning. Another
hint in that direction are the four articles by Oskar Perron [Per40bl, [Per40d, [Per40al, [Per41], the
titles of which seem astonishing.

6.1 Simplices

Several aspects of topology have been treated successfully using simplicial complexes. It seems
that part of this can also be handled relationally. A non-oriented simplex is simply a finite set
X with all subsets of it declared to be simplices. One then studies properties of the descent
from a simplex of size n to all its subsets of size n — 1. The Hasse relation of the powerset
ordering {2

H:=CNC.C with C:=1INQN
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is obviously helpful. Its converse H' leads from a subset precisely to subsets of one element less.
An example is given in Fig. 6.1 with the set X := {a,b,c} of which all subsets are considered
as being simplices.

o o
~8 0 oL ~8 0 o cLa
e N S S S S e ]
a C {yspr1111111 {}y/01101000
{fa}{01010101 {fal{00010100
(pyloo110011 {pylooo10010
{a,b}|00010001 {a,b}|00000O0O01
{c}/oo0001111 {c}|]ooo000110
h {facl|00000101 {ac}[00000001
{be}|00000011 {be}| 00000001
{a,bc} \DO0O0OO0O0O 1 {a,bc} \DO 0 000O0O

Fig. 6.1 Powerset ordering 2 and its Hasse relation H

responding fractal generation of H is less immediate: Hy = (0), H,., = (ﬁ" H) Another

n
example of a simplex is provided with Fig. 6.2.

—
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W H {12,334 {000000000000000 1
- {441/0000000001101000
{14}]0000000000010100
2 {24}]0000000000010010
{1,24}{0000000000000001
{34}]0000000000000110
{1,34}{000000000000000 1
{2,34}10000000000000001
{12,344} \00OOOO0OO0O0O0O00000O0O0OO0OO0O

Fig. 6.2 Hasse relation H of the powerset order of a 3-dimensional simplex

6.2 Orientation

The next idea is to attach to all the so far non-oriented simplices some orientation and to study
how the descent mentioned behaves with regard to orientation.

Convention for the representation of oriented simplices: For all the lower-dimensional sim-
plices we demand that their tuples always be oriented according to the baseorder of the set X.
An exception from this rule is made for the maximum-dimensional simplices: Since we usually
give them as an input when studying some example, we accept for them also the orientation as
given in the input. o
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Fig. 6.3 illustrates this convention. We have typed (2,1, 3) providing an orientation indicated
with the rotational arrow. In the cases of 1-dimensional arrows we always assume (1,2), (2,3),
and (1,3) etc. Obviously, (1,3) agrees with (2,1,3) in orientation, but (1,2) does not.

Fig. 6.3 Boundaries of a 2-dimensional oriented simplex

Based on this observation, transition to the boundary shall now be subdivided into two parts,
which we call the positive as well as the negative side.

Interlude An early attempt in this regard stems from classical homology of simplicial com-
plexes: There, one is usually given an (additive) Abelian group G, and has to consider linear
mappings sending the set of all oriented simplices into G. A mapping sending the n-dimensional
oriented simplices into G is called an n-chain C,, provided C,(—S) = —C,(.5) for positively and
negatively oriented versions of any simplex S. One is normally not interested in the values of
these mappings beyond the combinatorial effect of applying a boundary operator to chains.

The boundary operator d is a linear functional sending n-chains to (n — 1)-chains. Since the
boundary operator on chains is assumed to be linear, it need only to be defined for simplexes.
If the n-simplex (xq, ..., z,) gets by C assigned the value g € G, we will for the moment denote
this as (zg,...,%,)s. The definition of 0 is then given showing to which lower-dimensional
simplexes it contributes, written as a formal sum

(0, Tn)g —> D (=) (@0, ..., @im1, x5 deleted!!!, Tii1,..., %),

This suffices as a definition, since every chain may be decomposed down to the values it assigns
to the single simplices. It means in particular that 0 maps the value g assigned to (a, b, c) as

(a7 b, C)g — (bu C)g B (a: C)g + (aa b)g
and correspondingly (a,b), — (b), — (a),. The main theorem then says that 0(d(x)) = 0. To
understand this result, we observe in this example how the contributions develop
(a7 b, C)g — (bu C)g - (CL, C)g + (aa b)g
— [(e)g = (0)g] = [(c)g — (a)o] + [(b)g — (a)g] =0,

regardless of how C is actually defined, just following from the assumed linearity of 0. |

We take our visualization from Fig. 6.14 and give a fairly “arbitrary” chain with group G equal
to Z in Fig. 6.4. It shows the result of applying the boundary operation twice to a 2-chain
getting a O-chain assigning always 0. What homology is intended to do using all this group
theory is to keep track of the relative situations of the oriented simplices involved.

Working relationally, we are not in a position to subtract as above. We can, however, do some
accounting or book-keeping of positive as well as of negative orientations and finally show that
both sides result in the same.
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(4,0,3) (1,04) (43,2) 23.1) (2,1,0)
17 2 29 -3 5 2-chain
(1,4) (0,4) (0,3) (34) (2,4) (2,3) (1,3) (1,2) 0,2) 0,1

from (4,0,3) -17 17 17

(1,04) 2 2 2

432) 29 29 29

23.1) 3 3 3

(2,1,0) 5 5
Sum 2 15 17 -12 29 32 3 -8 5 7 1-chain

(0) (1) (2) (3) (4)

from (1,4) 2 -2

0,4) 15 -15

0,3) 17 17

34 12 12

24) 29 29

23) 32 32

1,3) 3 3

1,2) 8 -8

0,2) 5 5

©0,1) 7 7 .
Sum 0 0 0 0 0 0-chain

Fig. 6.4 Applying the boundary operation 9 twice to a 2-chain

Considering Fig. 6.4, we have in mind the subgroup of cycles, defined as having boundary 0 as
well as the subgroup of boundaries, characterized as images of higher-dimensional chains. The
quotient “cycles/boundaries” establishes the famous homology concept.

In a way corresponding to the boundary 0, the converse B := H' of H shall now be partitioned
as in Fig. 6.5. This gives a boundary operation assigning to every simplex the set of all the
oriented simplices that consist of precisely one element less and are oriented as described above:
Positive boundaries of (a,b,c) are (b,¢) and (a,b), while (a, ¢) is considered a negative one.

) )

A8 0 d O’ A0 3 0L

N " e e A e S Al " e e S e e o A

{}/00000000 {}/00000000

. N {a}[{10000000 {a}[00000000
(pt|10000000 {by|oooo0o0000

\O/ pP_ {ap}{00100000 pv_ {aby[01000000
~ {¢}|10000000 ~ {c}|00000000

b {ac}[00001000 {ac}[01 000000
{bell00001000 {be}l00100000

{fabec} \0OO 010010 {abec} \0OO 000100

Fig. 6.5 Positive and negative boundary operation H™ = BY U BM

Linear ordering of the powerset When given an ordering £ : X — X on a baseset, one
may wish to find an ordering F : 2¥ — 2% on its powerset that respects E in some way.
For comparison think of the pair of two ordered sets for which we are accustomed to work
with the lexicographic ordering which is monotonic wrt. the first projection. This brought
forward the study of Egli-Milner orderings when working on semantics of nondeterminism and
powerdomains. However, in nearly all cases these turned out to be just preorders even if £ was
a linear order, and one had trouble to handle the empty set appropriately; see Chapt. 19 of
[Sch11].
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In the following, we show how it is indeed possible to obtain a linear ordering on the powerset

using relational means. We start with the linear baseorder
< Q o

a/l11
E:b<011>,
c\001

consider its Hasse relation Hg and evaluate its decreasing sequence of points as

— a /0 a /0 a /1
ep:=E:T=bl0) e:=Hge =b|1l] e3:=Hge=b|0].
e \1 c\o c \0

Herefrom, we get sets “above” as

{} /0 {} /0 {} /0
i} | 0 |1 | 0
v i=¢c'e] = {a,b} 1 0 Vg :=c'eg = {a.b} | 1 V3 i=¢c'eg = {a.b} | 1
1-= 1= {c} |1 2 - 2 — {c}]0 3= 3 — {c}]0
{a,c} |1 {a,c} | O {a,c} |1
{bye} |1 {byc} | 1 {b,c} | O
{a,b,c} \1 {a,b,c} \1 {a,b,c} \1
This allows us to form N .
() O
A8 0 T UL ~~8 0 v 8L
(SNBSS NN N} SV N N N NN N
(/00001111 {},/0011001 1
{a}(o00001111 {fa}{oo0110011
{(b}loooo1111 {b}|0000000O
_—.17_ {ab}|00001111 T T {a,p}|0 0000000
Q== Tralooooo0o0o00| ©TWWRNA = Tralgooo0001 1
{ac}[00000000 {ac}[00000011
{be}|0000O0DO0O0O {be}{00000DO0O0O
{a,bc} \OOO0O000O00O {a,b,c} \OOOOOOOO
~~
Q
/A8 L0 T U’
e e e e
{},01010101
{a}{00000000
{(btlooo0o10101
[ +_ {apll{00000000
4=V 00 N = “rafoooo00101]
{ax}|00000000
{be}|000000O01
{a,bc} \OO 00O O0OO
out of which we finally obtain
)
PRV A=)
e F AN RIS
(Jsopr1111111
{a}{01111111
(yloo111111
{fabl|00011111]|_
F= "aloooo1111|=1VaVaeUs
{ac}]00000111
{be}{00000011
{abc} \DOD 0O 0O0O0O 1

This is — as of yet — an ugly iteration that should be simplified; but it shows that we have
F =TUq Ugs U qs finally evaluated by a relational construction out of E in a way comparable
with a lexicographic ordering for a product of linear orders.
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Quite obviously, E, F' satisfy F:e = &/ F. Since F' may recursively be generated as
F, T
FO = (1) Fn+1 = (ﬂ 1),
which may be proved over this recursion:

]_ 1 EnT n n
Bi=(1) =01 A=(y7) Fur=(71) an=G7)

Foien T B, T
Ent1i€ni1 = < if T) = (8 I T) = eny1 Frnt1

Using F, it is possible to evaluate these boundary operators BY, BM from H and the order E of
the baseset X in the following way. It follows directly the idea stemming from homotopy theory.
A first contribution to positive boundaries is given by taking rowwise the greatest elements of
HT according to F:

r—H,—A—,,—A—\f—;'Z
IR N Y
TELLLELS
{} /00000000
{a¥[10000000
{(b}|10000000
P . {ab}|00100000
By = greRp(HT) = {c;|[10000000
{ac;[00001000
{bet{00001000
{abet \OO 000010
Hﬁ
]
cilLLsllL
{} /00000000
{a{[00000000
{b}]oooooo0o00
Mo r~7Py_ {ab}|01000000
By" = greRp(HT N BY) = {c|[ooooo0000
{ac;|]01000000
{bet{o0o100000
{abc} \OO 000100
— e
RN N Y
A0 8 o 8L
e S e e
{} /00000000
{a[10000000
{b}|10000000
p_ r ~ PR {abl|[00100000
By =greR,(H" N B UBM) = {t|10000000 ete.
{a,c} |]00001000
{bet{00001000
{abet \OO O 10010

The idea how to proceed is evident. Already at this early point we have stability of this example
iteration with H™ = B” U BM | where B” = BY and BM = B.
6.3 Simplicial complexes

A simplicial complex in topology is usually defined on a set X of which subsets are declared to
be simplices. Whenever a simplex is identified, all its subsets have to be simplices againﬂ One

3Should X be non-finite, one usually demands that every element be contained in only a finite number of
subsets: locally finite.
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then studies in particular the descent from one simplex of size n to all its subsimplices of size
n— 1. This leads us to conceive a simplicial complex on a set X as a vector s along its powerset
2%, Tt must be down-closed, i.e., 2:s C s (with  the powerset ordering). We are interested
in subsets of precisely one element less, so that we again work with the converse of the Hasse
relation H of the powerset ordering. A not yet oriented example is provided with Fig. 6.6.

Later, we will forget the vector s and restrict the boundary relation correspondingly omitting
rows and columns; see e.g. Fig. 6.7.

We intend to give orientation not just to a single simplex, but to a whole simplicial complex and
start with a most trivial example of Fig. 6.7. The two triangles will be said to have the same
orientation because the vertical arrow gets a counter-running orientation from the orientations
of the two triangles. This resembles the idea that then the vertical arrow might be removed,
leaving us with a common circuit orientation.

. DU

— e QT T O

——l 00 BT T o9

CELLRELSRELIRELS
{, ,0000000000000000O0 {} 11
{a}[1000000000000000 fa} [ 1
b (h}/1000000000000000 {b} |1
{a,b} |01 10000000000000 {ab} |1
{}|1000000000000000 fep |1
{ac}[0100100000000000 {ac} |0
a ¢ {be}[00O10100000000000 {be} |1
{abcl[000O01011000000000 {a,bct |0
{}/1000000000000000 {d} |1
Al {2,d}[0100000010000000 {a,d} 1
{bd}|0010000010000000 {bd}[1
{a,b,d} |0001000001100000 {abd} |1
{ccdJ)[0OOOOD100010000000 fed}f[1
{a,c,df[OO0OOD0D10001001000 {acd} |0
{becd}|l0000001000101000 {bed} | 1
{a,b,e,d) \OOO0OO000100010110 {a,b,c,d} \O
Fig. 6.6 Set-theoretic concept of a simplicial complex with boundary operator H' and s

6.1 Definition (Oriented boundary operators). For any finite set X consider the powerset
ordering Q : 2¥ — 2% and the converse B of its Hasse relation H. When a disjoint partition
B = B U BM is given that satisfies

BY:B? U BM.BM = B¥.BM U BM. BY,
we will be speak of oriented boundary operators. The relations B and B will in this
case be called the positively (plus), resp. negatively (minus), oriented boundary operator. O

Every oriented simplex imposes an orientation on its bounding simplices, for instance running
(¢,b,d) means running along (c,b), (b,d), and (d,c). We have, however, agreed upon orienting the
lower-dimensional simplices according to the baseorder, so that the first and the last contradict
the orientations of (b,c) and (c,d) but the middle one, (b,d), agrees. Orientations may thus
agree or may disagree, so that we have chosen to define the disjoint partition H™ = Bf U BM
indicating agreement resp. non-agreement.
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(1 000000000000 * . O | © 100000000000 0
{c}[100000000000 \/{6}000000000000
{d}lOOOOOOOOOOO d {d}OOOOOOOOOOOO
1100000000000 1060000000000
{bp}OlOOOOOOOOOO :Bp BM:{b,c}OOOOIOOOOOOO
{c,d}OOlOOOOOOOOO {c,d}OlOOOOOOOOOO
{bd1/001000000000 {bd}/000010000000
{a,d}OOlOOOOOOOOO {a,d}OOOlOOOOOOOO
{a,b}OOOOlOOOOOOO {a,b}OOOlOOOOOOOO
{c,bd)|00D0D0D0D0010000 {cbd)|00D00D001100000
{d7b,a}000000001000 {d7b,a}000000010100
Fig. 6.7 Oriented simplicial complex with boundary operators BP BM .2X __, 2X

Unfortunately, we have to pay attention also to whether the original maximum-dimensional
simplex is positively oriented or not. To cope with orientation in a general fashion, one will
consider the simplices in a two-fold form, namely as positively as well as negatively oriented.

The proper relational tool for such a consideration is the extrusion of the full subset obtaining
its injection ¢ := 0 : © — 2%, We thus have the set © of negatively oriented versions
for all the simplices, thereby generating for the simplex (a,b,c), e.g., its negatively oriented
version (a, b, ), so that symbolically]] §((a, b, c}>) = (a,b, ). We recall that as an injection,
the extrusion mapping 0 satisfies 60%:6 = Iox, 0:0" =1Ig.

In the following, we form the direct sum of these two copies introducing the injections
2%+ 0

1:2%¥ —2¥X4+0 and k:06 —2¥4+0, /\

Xe—F— 0

and thus having all positively as well as all negatively oriented simplices in one set. The relation
Sy = 0Tk U K00

obviously regulates the transition to the differently oriented counterpart; see Fig. 6.8.

Using this basic configuration, we will now define matrices of relations to express, e.g., in
submatrix position (1,2) that we go with B " from a positively oriented simplex to its negative
boundary. This together with the two boundary operators gives four relations, positive /negative
versus positive/negative. However, instead of using the former relations BY, BM of Fig. 6.7,
we embed them in the new configuration as

positive negative
positive BF BM.gT
negative 9: BM 9:BY.0"

which can be seen in Fig. 6.9, where BY, BM.0", 0:BM 6: BY.0" are shown as separate relations.

Some immediate consequences follow when we conceive the matrix B and compute its square:

4For technical reasons shown in the matrices with curly brackets.
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B__(BP BMﬂj BZ_<:B3BPUBMﬁ3&BM BRBMﬁTUBMﬁt&BRm')
= (4 _ §

:BM 9. BP.9" 0:BM. B U 9: BY:0":0: BM 6:BM.BM.9" U #: B:0":0: BY:0
o BY.B? U BM. M (BP;BM U BM;BP);QT
— \¢:(BM:BP u BY:BM) 0:(BM.BM U B";B"):0"

T
e R P e
O TERa A LI g mesa s
~oTU s L L v 0O I UOUT~~MoT L0 0L @ S 0T
" M M e M e M e e s e e e e e e e
{};/000000000000100000000000
{c}][00000000000001000000000O00O0
{d}J/]000000000000001000000000
{2}/000000000000000100000000
{b}|0OO0O0O00O0D0O0000000000010000000O0
{bec}/000000000000000001000000
{cd}]/]000000000000000000100000
{bd}|0OO00000000000000000010000O0
{a,d}|00O0O000000000000000001000
{a,b}|00O0O0000000000000000000100
{¢,bd}]|OO0O00000000000000000O00O0O010O0
S_ﬂQT_ {db,a}|0O0OD00000000000000000000 1
o\ L) T {(}-|100000000000000000000000
{c}»|0100000000000000000000O00O0
{d}—-]1]001000000000000000000000
{a}—-[000100000000000000000000O0
{b}»|000010000000000000000000O0
{be}—+]1000001000000000000000000
{¢cd}»]1]000000100000000000000000
{bd}—-1000000010000000000000000O0
{a,d}—»(000000001000000000000000
{a,b}»]|000000000100000000000000
{c,b)d}-|{000000000010000000000000O0
000000000001 00000000DO0O0OO0DO

h

Fig. 6.8 The immediate switch Sy toggling positive/negative for Fig. 6.7

One will easily recognize that the two matrices in the diagonal as well as the two outside are
equal — up to their indications via 6,0". The negatively oriented outer region (2, 1,3}, for
instance, has via §: BM the positive boundary (1,2).

We could see the orientation of the simplicial complex considered and how it switches. In
algebraic topology, one would use the chains with values in a group. Their values might
annihilate one another resulting after double application of the boundary operator bringing the
result 0, which is here reflected by delivering the same result in two different ways.

Size restriction Examples will soon get big, so that we are interested in a less spacious
representation, for which we choose to concentrate on the largest dimension and the one below.
Since mainly the maximum-dimensional simplices are interesting, we will later — referring back
to Fig. 6.7 —, concentrate on just

AT AN AT AN A

0T TT L 0T T T LR

L 00 c a L ol a8 a

o e e k] o e e ekl

BP . {ebd} (0 010 0) M _ {cbd} (1 100 0)
(21) 7~ {d,b,a}\0 00 10 21) 7 {d,ba}\0 010 1)

on which all the rest depends more or less trivially.
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Fig. 6.9 Boundary operations evaluated for all directions positive/negative

6.4 Orientability of a simplicial complex

When asking for orientability of a whole simplicial complex, it must, however, be observed that,

e.g.,

has via B” boundary (0, 3) and

(0,3,1)> has via : BY:0" boundary (0,3},
thus in opposite orientation, so that (0,3,1) goes via BY:0%:6: BY".0"

(0,3,1)

BP:BPT.07 to its inverse
(0,3, 1)>. This immediate change of orientation is uninteresting; we will only be interested in

long-range changes.
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The basic idea is therefore to consider two different simplices as having the same orientation
when their coinciding boundaries have opposite orientation — as already mentioned. For this,
we will first observe that the inversion matrix Sy satisfies

B:Sy = Syp:B B% Sy = Sy B Sp?=1Iaxie
and then define some sort of an adjacency I' derived from B, namely
PT MT, T MT PT, T
B — B § B T,QT Sy BT = B . B ,THT
0:BM" 0. B0 d 0:BPT 6. BM"0
BP.BMT U BM, P [ﬁ N (BP:BP" U BM,»BMT)],HT

I' .= Sy NB:gyB" = -
! ! 0. [T (B"BM UBPBP)|  o(BM BT U BP B )6

A comparison with the former double application 9;(0:(a, b, ¢)) shows how BY: B u BM; BM
as well as BY: BM U BM: B? lead to the same — as opposed to making their difference 0.

%
_>
_>
%
%
_>
_>
—

555E aem 55T aew
— e — e — — M — o e —
5882 §3S9 5382 §8S3
(213 /0111 0000 213} /1111 0000
230} (1011 0000 (23011111 0000
0313|1101 0000 0313|1111 0000
(012} \1110 0000 012} \1 111 0000
5EER meew 5558 sonw
e — i = e — iy =
5882 a8 SR
{2131 /000 0 0111 {2,131 /0 00 0 1111
{230} [0000 1011 {230} [0000 1111
{0,3,1}—» {000 0 1101 {0,3,1}—=+1000 0 1111
{01,225 \0 00 0 1110 {01,225 \0 00 0 1111

Fig. 6.10 Maximum dimension parts of I' of Fig. 6.9 and its reflexive transitive closure I'*
A slightly bigger example is shown in Fig. 6.11.
6.2 Definition. A simplicial complex will be called orientable if I'* C switch. |

Any long-range adjacency must never switch orientation of a simplex.
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Fig. 6.11 Torus — after identifying equally named vertices
The situation is different for the following example of a simplicial complex describing the

triangulation of a Moebius tape.
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Fig. 6.14 Boundary functions evaluated for all directions positive/negative of a Moebius tape
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Also for the projective plane Fig. 6.15, we obtain I'*
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Fig. 6.15 TI'y; and I's; of the projective plane
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The following example shows the well-known 2-pretzel with its triangulation.

1 2 0 5 6 0 3 4

0 0
=S

7 9 10 11 12 13 14 15 16 ’
0 17 18 19 20 21 22 23 24 8
0 0

1 2 0 7 8 0 3 4

Fig. 6.16 A triangulation of the 2-hole-pretzel

Fig. 6.17 Partial folding to obtain the 2-hole-pretzel

After this first folding of Fig. 6.16 to Fig. 6.17, further identifications are conceivable. When
one identifies the two 0’s of the middle ellipse, two tangent holes will appear, into which the so
far open left and right ends of the “pipe” may be glued, ending with the pretzel announced. It
turns out that this pretzel is indeed orientable. Since we had expected that, we do not show
the respective relations here.

One will observe that the triangulation given for the 3-dimensional cube is fully determined by
the dashed space diagonal and the square diagonals emanating from its endpoints, and is, thus,
far from symmetric.
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Therefore, one will easily convince oneself, that the number of simplices required to represent
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an n-cube increases as a factorial!

We obviously have the chance to handle also higher-dimensional examples in this way. This
might bring the possibility for work in knot theory! The idea is to tesselate a part of the 3-
dimensional space to the extent that a given knot may be represented in it. When considering
a knot as a closed file or wire, i.e., an image of mapping the unit circle into IR®, “represented
properly” would mean that it never touches simplices of dimension < 1 and the intersection
of the file with a 3-simplex should never consist of more than one connected component. One
may hope that this enables us to compute. A knot will then be just a sequence of 3-simplices
with common adversely oriented boundary. The sequence will indicate over which bounding
subsimplex the wire or file of the knot runs.

The most trivial “unknotted” knot consisting of just a circle around the dashed space diagonal
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{1737475}
{4,5,7,8}
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{2,4,5,6}
{1,245}

{3,4,5,7}—
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{4,5,7,8}—>
{4757678}%
{2,4,5,6}—
{1,2,4,5}—

would then be represented as the cyclic sequence

(1,3,4,5),(3,4,5,7),(4,5,7,8), (4,5,6,8)>, (2,4,5,6), (1,2,4, 5

of simplexes.
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8 3-dimensional cube triangulated, with I', I'* indicating orientability
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7 Concluding Remarks

In the present work, we have for the first time presented a thorough relational and algebraic
treatment covering the broad range of such concepts as topology, proximity, nearness, contact,
closure, and finally simplicial complexes. Much of the impetus to execute all these computations
came from the intention to sharpen the relational tools. In the mean time, we have reached a
status from which it seems possible to classify what can be achieved relationally and what not.

Yet another stimulation for this research was the possibility to compute. For several of the topics
mentioned, it seems that problems may be solved in practice. The implementation of relational
methods as with RELVIEW http://www.informatik.uni-kiel.de/~progsys/relview/| has
gained substantial power. The merely term calculating TITUREL system http://mucob.
dyndns.org:30531/~gs/TituRel/indexTituRel.html proved versatile enough to underpin all
the formulae with the examples presented.

Another topic that more or less obviously lends itself to being treated relationally are matroids
and their exchange property. It would be highly desirable to find a point-free relational form of
the respective axioms, which are in the literature mostly given with some counting arguments.

It has been a particular concern to identify those topics where one inevitably has to use points,
in the relation-algebraic sense, and where one may get along without. The evasion to pointwise
reasoning, much in the same way as in the sharpness problem in the early 1980ies, could widely
be avoided.
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