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Abstract

As a contribution to the Festschrift on the occasion of the 60th birthday of José
N. Oliveira, the author opens a glimpse of his relational scrapbook. Earlier
work on relational measures, preference aggregation [4, 7, 5], and social choice
[6] motivates to approach also questions of stochastics relationally. This re-
quires some nontrivial work in function spaces. Several examples are computed
with different measuring spaces as well as different types of measures, using the
relational language TituRel.
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1. Introduction

This is an attempt to discover a relational basis in probability, transferring
some definitions to a relational level. Probability theory is dominated by the
fact that from the very beginning questions of summability and convergence
are involved and restrictions to σ-algebras have to be taken into consideration.
Notationally, the typing distinction between a set, its powerset, and the set in
which to measure is often not made sufficiently clear; in particular, no use seems
to be made of the by now well-established algebraic interrelation via existential
images or power transposes. Lattice properties of the measuring space are rarely
made use of.

A remark seems necessary: The unit interval [0, 1] is a complete lattice with
regard to the traditional ordering “≤” accompanied by “∨ ≈ lub ≈ least upper
bound” and “∧ ≈ glb ≈ greatest lower bound”. It is, however, nearly exclu-
sively used in stochastics with “+, ∗”, which seems highly natural, but doesn’t
lead to a lattice. The absorption law, namely, is violated, viz.

a ∧ (a ∨ b) = a, but 0.3 ∗ (0.3 + 0.5) = 0.24 < 0.3.

Stochastics is in particular concerned with the aggregation of probabilities, mea-
suring on the linear scale [0, 1] already mentioned. The broadly known work on
fuzzy sets by Lotfi Zadeh can also partly be seen from this point of view. Here
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information is no longer required to be crisp and may be fuzzy. Michio Sugeno
[13] defined a method of integration in the fuzzy environment.

Others have investigated how trust and belief may even be dealt with when no
longer p(X) = 1 − p(X) is required and p(X) + p(X) < 1 may occur. Arthur
Dempster and Glenn Shafer introduced a theory of reasoning about belief and
trust that are not just expressed as probabilities, [2, 12]. This brought forward
an alternative theory that has widely been applied in engineering and artificial
intelligence. It is concentrated around the belief and the plausibility measure
to be explained later in this text.

Yet another question is whether one has to restrict to a linear scale. Diverging
criteria may obviously better be expressed valuating in a lattice. It requires the
ability of aggregating also in this case, which the famous French mathemati-
cian Gustave Choquet has already provided with his theory of capacities and
integration, [1].

It is impossible to include Choquet’s theory of capacities and integration, Sugeno
integration and Dempster-Shafer theory in the present text. Rather, we must
refer the potential reader to the original sources mentioned.

Following such attempts, stochastics has been approached from the relational
side. It inherently allows non-linearity and is best suited for work with trust
and belief as already shown via relational integration in [4, 7, 5]. It is, however,
difficult to convince people that such an approach may be useful; so a study is
needed to compute examples and to visualize how the results using the different
techniques fit to what we expect. Such work has here been executed using the
TituRel system.

The latter system consists of the relational language TituRel and a support-
ing tool kit. The language offers constructs to work with relational operations,
e.g. with union, intersection (meet), composition, converse, etc. It has, in ad-
dition, a sophisticated type control concerning the category aspect and some
conceptually new constructs using dependent types. These include projection
operations around direct products, injections for direct sums, membership rela-
tions in connection with direct powers. Even more intricate are those to handle
natural projections wrt. to an equivalence, natural injections of a subset into its
superset, and the otherwise completely unknown ‘target permutation’ according
to a bijective mapping.

Slightly adapting the system, introducing relations with non-finite target but
finite codomain, and not least introducing operators to cope with binary map-
pings, it became possible to work out the examples. We have chosen them
as lattices, related them to the interval [0, 1], and made visible their effects.
We have also been eager to cover all the different measures known as belief,
plausibility, or possibility measure in these simple examples. Any question of
complexity has as of yet been ignored.
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2. Relation-algebraic preliminaries

The texts [8, 9, 5, 10, 11] are given as general references, since the prerequisites of
relation algebra cannot be presented over and over again. We write R : V −→W
if R is a relation with source V and target W , often conceived as a subset of
V ×W . If V and W are ordered finite sets and of size m and n, respectively,
we may consider R as a Boolean matrix with m rows and n columns.

We assume the reader to be familiar with the basic operations on relations,
namely RT (converse), R (negation), R ∪ S (union), R ∩ S (intersection),
and R ; S (composition), the predicate R ⊆ S (containment), and the special
relations (empty relations), (universal relations), and (identities).

Then a heterogeneous relation algebra is a structure that

— is a category with respect to composition “ ; ” and identities ,

— has morphism sets that are complete atomic Boolean lattices with opera-
tions resp. predicates ∪, ∩, , , ,⊆,

— obeys rules for transposition T in connection with the latter two that may
be stated in either one of the following two ways:

Dedekind R;S ∩ Q ⊆ (R ∩ Q;ST); (S ∩ RT;Q) or

Schröder R;S ⊆ Q ⇐⇒ RT;Q ⊆ S ⇐⇒ Q;ST ⊆ R.

When a multiplication is given, one looks for right residuals A;B ⊆ C ⇐⇒
A ⊆ C;BT =: C/B. A left variant is A ;B ⊆ C ⇐⇒ B ⊆ AT;C =: A\C.

Intersecting such residuals in syq (R,S) := RT;S ∩RT
;S, the symmetric quotient

syq (R,S) : W −→ Z of two relations R : V −→ W and S : V −→ Z is
introduced. Symmetric quotients serve the purpose of spotting where columns
coincide. Given an ordering relation E and some subset or vector U , one may,
thus, determine the least upper bound column-wise as

lubE(U) := syq (ET, E
T
;U);

see, e.g., [8, 9, 5]: Look where the majorant or upper bound set ubdE(U) :=

E
T
;U of U equals the majorant set of some point. Given a relation X, it is

also possible to form lubRE(X) :=
[
lubE(XT)

]T
, i.e., to obtain the least upper

bound row-wise.

We will use membership-relations ε : V −→ 2V between a set V and its powerset
2V . They can be universally characterized via the symmetric quotient. Given
a membership relation, the powerset ordering is easily described as the residual
Ω = εT;ε.

If a mapping f : X −→ Y between sets ordered by EX , EY is given, we will call
it (lattice-)continuous when fT;lubEX

(U) = lubEY
(fT;U) for all U ⊆ X. This
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combines being “additive” with sending least element to least element. The
ordering E represents a complete lattice if lubE(X) is surjective for every X.
It is also possible to relationally characterize a Boolean lattice.

When two sets X,Y are considered with direct product X × Y and projections
π, ρ, as well as relations from and to other products, one defines the Kronecker
product and the strict fork (when sources coincide) as

(R©× S) := π;R;π′
T ∩ ρ;S;ρ′

T
(R©< S) := R;π′

T ∩ S;ρ′
T
.

3. Power operations

There is a highly useful interrelationship from relations to their counterparts be-
tween the corresponding powersets. It offers the possibility to work algebraically
at situations where this has so far not been the classical approach; some has
already been collected in [5].

3.1 Definition. Let any relation R : X −→ Y be given together with mem-
bership relations ε : X −→ 2X and ε′ : Y −→ 2Y . Then the corresponding
existential image mapping is defined as ϑ

R
:= syq (RT;ε, ε′). One may also

study the inverse image mapping defined as ϑ
RT = syq (R; ε′, ε). The con-

struct Λ
R

:= syq (RT, ε′) : X −→ 2Y is called the power transpose of R.

We recall an important fact concerning the existential image, see [5], namely

εT;R = ϑR;ε′
T
,

which allows us to work algebraically. Correspondingly, an application to RT

instead of R reads

ε′
T
;RT = ϑRT ;εT, or else R ;ε′ = ε;ϑT

RT .

The existential image and the inverse image also satisfy formulae with respect
to the powerset orderings:

3.2 Proposition.

i) Ω′;ϑfT ⊆ ϑfT ;Ω if f is a mapping,

ii) Ω;ϑ
T

fT = ϑ
f

;Ω′ if f is a mapping.

A proof may be found in Prop. 5.2 of [10]. Another rule, Prop. 5.3 of [10],
combines the inverse image with the singleton injection (see an example in
Fig. 4.2).

3.3 Proposition. i) Any relation R : X −→ Y with the singleton injections
σ : X −→ 2X , σ′ : Y −→ 2Y satisfies

σ;ϑ
T

RT
;σ′

T ⊆ R and ε;ϑ
T

RT
;σ′

T
= R.
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ii) When f is a mapping, this sharpens to σ;ϑ
f

= f ;σ′.

We will need the meet and join forming with respect to E also as relations.

3.4 Proposition. Whenever an ordering E : X −→ X is given, the corre-
sponding binary meet and join are the functions M , J : X×X −→ X (possibly
partial) obtained as

M := syq ( (E©< E) , E), J := syq ( (ET©< ET) , ET).

Should E happen to be a powerset ordering εT;ε, more can be said according to
Prop. 9.1 of [10]:

3.5 Proposition. Assuming a membership relation ε : X −→ 2X , binary meet
and join with respect to the powerset ordering may be expressed as

M = syq ( (ε©< ε) , ε) J = syq ( (ε©< ε) , ε).

Least and greatest elements of a lattice will be denoted, respectively, by

0E = glbE( ) = syq (E,E; ), 1E = lubE( ) = syq (ET, E
T
; ).

When using TituRel in examples, writing down such terms produces the re-
spective map as a relation that may be processed further.

4. Basics of stochastics interpreted relationally

Typically, one starts from a set D, the membership relation ε : D −→ 2D with
its powerset, the powerset ordering Ω : 2D −→ 2D, and the singleton injection
σ := syq ( , ε) : D −→ 2D. The standard definition assumes then that valuation
takes place in [0, 1]. It calls a mapping m : D −→ [0, 1] a probability vector,
provided

∀d ∈ D : m(d) ≥ 0 and
∑
d∈Dm(d) = 1.

The corresponding probability measure is in this case characterized by the
mapping µ : 2D −→ [0, 1], defining for every D ⊆ D

µ(D) :=
∑
d∈Dm(d).
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µ = εT ·m =
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{red,gre}
{blu}

{red,blu}
{gre,blu}
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{gre,ora}
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1 0 0 0
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1 1 0 0
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0 1 1 1
1 1 1 1
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

·
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
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


Fig. 0.0.1 Probability vector m leading to a probability measure µ

Output of testTiturel for jhgjhgjhg01 on 10.11.2015

Fig. 4.1 Probability vector m leading to a probability measure µ

How to proceed from the probability vector m : Colors −→ [0, 1] to the probabil-
ity measure µ is shown with an already slightly relational touch in the example
of Fig. 4.1, using the membership relation ε.

There has been used an obvious but not completely formal mixed operation
between a (Boolean-valued) relation ε and a real-valued vector m.

Already this step could, thus, somehow be seen from a relational perspective.
For the relation ε with True/False- or 1 / 0 -entries, one had to proceed to
its obvious real 1, 0-matrix equivalent and multiply the matrix with a vector
in the usual way. Then one has a tiny result as follows, where σ denotes the
singleton injection into the powerset. Observe the multiplication with “·” and
the application of the rule a ; (b · c) = (a ;b) · c invented just for this purpose.
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0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0




Fig. 0.0.1 Singleton injection σ ⊆ ε

Output of testTiturel for jhgjhgjhg01 on 10.11.2015

Fig. 4.2 Singleton injection σ ⊆ ε
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4.1 Proposition. Given any relation m : D −→ [0, 1], the relation

µ := εT ·m : 2D −→ [0, 1]

will satisfy m = σ;µ.

Proof : σ;µ = σ;εT ·m = ·m = m

We will pursue this basic idea even further: staying as long as possible on the
relational side and only finally switching to real arithmetics. Using the system
TituRel to execute several examples, this means not least to consider ∗ and
+ as function parameters in an enveloping program. The system — written in
Haskell — had to be adapted only slightly so as to be able to apply lattice
intersection M , e.g., as a binary operator much in the same way as ∗.

The preceding has long been successfully re-modeled with the idea of trust and
belief in the Dempster-Shafer theory [2, 12], i.e., admitting also non-additive
valuations that allow p(X) + p(X) < 1 to occur. It has later been brought to
relational form with valuation in some lattice L by [4, 7].

4.2 Definition. Given the powerset ordering Ω : 2D −→ 2D and some ordering
of a complete lattice E : L −→ L, the mapping µ : 2D −→ L will be called a
relational measure, provided

i) Ω;µ ⊆ µ;E,

ii) µT;0Ω = 0E ,

iii) µT;1Ω = 1E .

When µ is also (lattice-)continuous, it is called a Bayesian measure.

µε

Ω

m,X

E

D

2D

L

M

Fig. 4.3 Elementary situation of relational stochastics

This definition refrains from mentioning real numbers, but postulates monotony
(not necessarily continuity) together with some gauging, “least to least and
greatest to greatest element”. A special example for L is [0, 1] ⊆ IR with its
traditional ordering E ≈ ≤ and 0, 1, however with meet M and join J instead
of ∗,+. With this definition, we did not deviate too far from the traditional
case.
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When using the mapping m of Fig. 4.1 as a relation in Fig. 4.4, however, εT;m
is by no means univalent. What we can do is to remind us of the ordering E
on L and form the least upper bound row-wise. This definitely deviates from
addition, but will produce a mapping; see Fig. 4.4.

Of course, should m be so defined as to attach always the least element 0E of E,
the least upper bound lubR would do the same and, thus, violate the gauging
requirement µT;1Ω = 1E .

This is the reason to employ the vacuous belief µ0 in order to gauge the measure.
Vacuous belief1 doesn’t believe anything, i.e. assigns the least element — up to
the greatest to the greatest, just due to gauging. Observe that µ1 is always
Bayesian while µ0 is not.

1
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{red,blu}
{gre,blu}

{r,g,b}
{ora}

{red,ora}
{gre,ora}

{r,g,o}
{blu,ora}

{r,b,o}
{g,b,o}
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
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1 0 0 0 0
0 0 0 1 0
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0 0 0 1 0
0 0 1 0 0
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

Fig. 0.0.1 Probability vector m leading over εT;m to a probability measure µ

Output of testTiturel for jhgjhgjhg01 on 10.11.2015

Fig. 4.4 Probability vector m leading over εT;m to a probability measure µ

This observation illustrates the following result that may be found in [4, 7, 5].

4.3 Proposition. Whenever a mapping m : D −→ L is given together with
the vacuous belief µ0, the following is a Bayesian measure:

µ := lubRE(µ0 ∪ εT;m)

1A schematic example is shown in Fig. 4.5 together with a light-minded belief µ1; it refers
to Fig. 5.2.
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We do not recall the proof, since more can be proved; see Prop. 4.4. Let us
compare the traditional real-valued case: That the empty set is mapped to 0 is
clear when specializing

µ(U) :=
∑
d∈U m(d) to µ(∅) :=

∑
d∈∅m(d) = 0.

That the full set D is mapped to
∑
d∈Dm(d) = 1, is also a separate requirement.

We improve this, recalling Prop. 8.1 from [4, 7]. The forthcoming Fig. 6.9 shows
an example.

4.4 Proposition. Given any relation m : D → L, the construct

µm := lubRE(µ0 ∪ εT;m),

is a measure, the so-called possibility measure µm : 2D −→ L for m.

Should m be a mapping2, µ will be Bayesian and satisfy m = σ;µm.
A Relational View on Stochastics 9
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

Fig. 4.5 Vacuous as opposed to light-minded belief: µ0, µ1

Proof : The proof is based on the easy to prove fact that the antitone

σ(a) := εT;a;E and π(b) := ε;b;E
T

constitute a Galois connection, i.e.

a ⊆ π(b) ⇐⇒ b ⊆ σ(a).

We restrict to demonstrating how the greatest lower bound of σ(m) leads
to the least upper bound of εT;m.

glbRE(σ(m)) = glbRE(εT;m;E) =
[
glbE(E

T
;mT;ε)

]T

=
[
lbdE(E

T
;mT;ε) ∩ ubdE(lbdE(E

T
;mT;ε))

]T
definition of glb

=
[
lbdE(ubdE(mT;ε)) ∩ ubdE(lbdE(ubdE(mT;ε)))

]T

=
[
lbdE(ubdE(mT;ε))∩ ubdE(mT;ε)

]T
ubd(lbd(ubd(x))) = ubd(x)

=
[
lubE(mT;ε)

]T
definition of lub

= lubRE(εT;m)

Therefore, the classical probability measure resulting from a probability
vector m more or less subsumes to the idea of a relational measure of
Def. 4.2.

In a similar way as in Prop. 4.4, we may derive relational measures out of
an arbitrary relation M : 2D −→ L, the so-called body of evidence. It is
restricted only by the requirement that MT;0Ω ⊆ 0E , i.e., when M should
relate the empty subset somehow, then necessarily to the least element.
There exist two relational measures closely resembling M , namely the

Fig. 4.5 Vacuous as opposed to light-minded belief: µ0, µ1

Proof : The proof is based on the easy to prove fact that the antitone

σ(a) := εT;a;E and π(b) := ε;b;E
T

constitute a Galois connection, i.e. satisfy

a ⊆ π(b) ⇐⇒ b ⊆ σ(a).

We restrict to demonstrating how the greatest lower bound of σ(m) leads to the
least upper bound of εT;m.

glbRE(σ(m)) = glbRE(εT;m;E) =
[
glbE(E

T
;mT;ε)

]T

2as it occurs with the probability vector in Prop. 4.3
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=
[
lbdE(E

T
;mT;ε) ∩ ubdE(lbdE(E

T
;mT;ε))

]T
definition of glb

=
[
lbdE(ubdE(mT;ε)) ∩ ubdE(lbdE(ubdE(mT;ε)))

]T

=
[
lbdE(ubdE(mT;ε)) ∩ ubdE(mT;ε)

]T
since ubd (lbd (ubd (x))) = ubd (x)

=
[
lubE(mT;ε)

]T
= lubRE(εT;m) definition of lub

Therefore, the classical probability measure resulting from a probability vector
m more or less subsumes to the idea of a relational measure of Def. 4.2.

In a similar way as in Prop. 4.4, we may derive relational measures out of an
arbitrary relation M : 2D −→ L, the so-called body of evidence. The relation
M is restricted only by the requirement that M T;0Ω ⊆ 0E , i.e., when M should
relate the empty subset somehow, then necessarily to the least element. There
exist two relational measures closely resembling M , namely the

belief measure µbelief(M) := lubRE(µ0 ∪ ΩT;M) and the

plausibility measure µplausi(M) := lubRE(µ0 ∪ ΩT; (Ω ∩ Ω; );M).

Proofs can be found in [4, 7, 5]. In general, the belief measure assigns values
below those of the plausibility measure, i.e.,

µbelief(M) ⊆ µplausi(M);ET.

Visualizations will follow in the examples to come. The belief measure accumu-
lates with least upper bound what all subsets together deliver as measure. The
plausibility measure instead accumulates what might flow into a set when all
intersecting sets contribute with their total values. (In addition, gauging takes
place.)

But also the stochastic concepts of product probability and independence seem
to find their analogues on the relational side.

4.5 Proposition. Given two probability vectors mi : Di −→ L with common
measuring lattice L, one obtains as the product probability vector

(m1©× m2) ; ME : D1 ×D2 −→ L.

In adddition, a product probability measure for given probability measures
µi : 2Di −→ L may be defined as

(µ1©× µ2) ; ME : 2D1 × 2D2 −→ L.

Proof : The first claim is trivial. For the second, we only prove monotony:

(Ω1©× Ω2) ; (µ1©× µ2) ; ME ⊆ (Ω1;µ1©× Ω2;µ2) ; ME

⊆ (µ1;E©× µ2;E) ; ME ⊆ (µ1©× µ2) ; (E©× E) ; ME = (µ1©× µ2) ;E
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Probability vector and measure above are not related as in Prop. 4.3, Prop. 4.4,
and Fig. 4.3, which one might have expected in the first place. When observing
strict typing discipline, the much bigger µ

(m1©× m2); ME
: 2D1×D2 −→ L should

here have been taken. This is, however, traditionally neglected in stochastics,
which leads to the observation that only rectangular sets will get a measure.
For such pairs of subsets one has a well-known concept:

4.6 Definition. Assume a probability measure, defined as µ : 2D −→ L. We
say that a pair of subsets U1, U2 ⊆ D, or correspondingly the pair of points
ui := syq (ε, Ui) in the powerset, is independent when it belongs to the set[

(µ©× µ) ;ME ∩ MD;µ
]
; .

Here, the mappings (µ©× µ) ;ME and MD ;µ are considered as to where they
agree. The first term assigns the respective two measure values and proceeds
to their greatest lower bound. The second in turn delivers the measure of the
intersection of the two.

Relational integration with such measures is not easy to capture. We therefore
recall the formula, referring to [4, 7, 5], and then present examples. These will
be given with different measuring spaces and all the types of measures already
mentioned.

4.7 Definition. Given a relational measure µ and some relation X indicating
the values attributed to certain criteria, the relational integral is defined as

(R)

 
X ◦ µ := lubRE( ; glbRE [X ∪ syq (X ; ET; XT, ε) ;µ]).

This follows in a pointfree formulation the general scheme: summation (lub )
over products (glb ). The relational integral, written as a term for TituRel,
may in particular be used to aggregate preferences.

5. Examples of valuation spaces

Many of the assessments in everyday life are fully based on a linear scale. This
may have its origin in the omnipresent work with money, for which numbers
seem adequate. When, however, deciding which company shall build a complex
technical building, autobahn, airport terminal, subway station, etc., it doesn’t
seem wise to just orient oneself at price alone. Quality of material, architectural
beauty, costs to follow periodically, and many others are criteria at least as
important.

11



A generally accepted way of working with a multitude of criteria seems not
yet to exist; when one is about to respect these, it will most frequently be via
endless debates — as opposed to clear rational reasoning. We have decided
for four different examples of valuation spaces L. The first three are complete
lattices while the last is not a lattice. The third lattice fails to be modular.

To handle these four as long as possible completely in parallel, we always look at
meet M and join J , derived from the given ordering E. They shall be handled
in the same way as at other occasions ∗ and +. Every single example will, thus,
consist of giving an L via the respective ordering E, as well as meet and join
M , J computed thereof in TituRel applying the terms shown earlier.

5.1. First example of a valuation lattice

The lattice of Fig. 5.2 (for space reasons it is shown on the next page) might
allow a fine grained — not just linear — assessment of a person, with respect
to its intellectual capability and the intensity of work; see [4, 7, 5].
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A generally accepted way of working with several criteria seems not to
exist; when one is about to respect these, it will most frequently be via
endless debates — as opposed to clear rational reasoning. We have de-
cided for four different examples of valuation spaces L. The first three
are complete lattices while the last is not a lattice. The third lattice fails
even to be modular.

To handle these four as long as possible completely in parallel, we always
look at meet M and join J , derived from the given ordering E. They
shall be handled in the same way as at other occasions ∗ and +. Every
single example will, thus, consist of giving an L via the respective ordering
E, as well as meet and join M , J .

5.1 First example of a valuation lattice

The lattice of Fig. 5.2 (for space reasons it is shown on the next page)
might allow a fine grained — not just linear — assessment of a person,
with respect to its intellectual capability and the intensity of work; see
[Sch06,SB08,Sch11].

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1

2

3

4

5

6

7

8

9

10

11

12




1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 2 1 2 2 1 2 2 2

1 1 3 1 3 3 3 3 3 3 3 3

1 2 1 4 2 1 4 2 1 4 2 4

1 2 3 2 5 3 5 5 3 5 5 5

1 1 3 1 3 6 3 6 6 6 6 6

1 2 3 4 5 3 7 5 3 7 5 7

1 2 3 2 5 6 5 8 6 8 8 8

1 1 3 1 3 6 3 6 9 6 9 9

1 2 3 4 5 6 7 8 6 10 8 10

1 2 3 2 5 6 5 8 9 8 11 11

1 2 3 4 5 6 7 8 9 10 11 12




1 2 3 4 5 6 7 8 9 1
0

1
1

1
2




1 2 3 4 5 6 7 8 9 10 11 12

2 2 5 4 5 8 7 8 11 10 11 12

3 5 3 7 5 6 7 8 9 10 11 12

4 4 7 4 7 10 7 10 12 10 12 12

5 5 5 7 5 8 7 8 11 10 11 12

6 8 6 10 8 6 10 8 9 10 11 12

7 7 7 7 7 10 7 10 12 10 12 12

8 8 8 10 8 8 10 8 11 10 11 12

9 11 9 12 11 9 12 11 9 12 11 12

10 10 10 10 10 10 10 10 12 10 12 12

11 11 11 12 11 11 12 11 11 12 11 12

12 12 12 12 12 12 12 12 12 12 12 12




Fig. 5.1 Mappings M , J of Fig. 5.2 represented in tabular form

The qualifying pairs of words are for space reasons also abbreviated by
numbers. Only the first rows of the 144 × 12-relation M can be shown.
In addition, its tabular form is presented as Fig. 5.1.

Fig. 5.1 Mappings M , J of Fig. 5.2 represented in tabular form

The qualifying pairs of words are for space reasons also abbreviated by numbers.
Only the first rows of the 144 × 12-relation M can be shown. In addition, its
tabular form is presented as Fig. 5.1.
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high

medium

low lazy

fair

good

bulldozer

1

2 3

4 5 6

7 8 9

10 11

12

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
2
3
4
5
6
7
8
9

10
11
12




1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1




1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(1,7)
(1,8)
(1,9)

(1,10)
(1,11)
(1,12)
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
(2,6)
(2,7)
(2,8)
(2,9)

(2,10)
(2,11)
(2,12)
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
(3,6)
(3,7)
(3,8)
(3,9)

(3,10)
(3,11)
(3,12)
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
(4,6)
(4,7)




1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0




Fig. 5.2 Complete lattice E together with first rows of meet forming relation M

The triple E, M , J resembles the computation in the measuring lattice.
Given a valuation lattice in this way, we will later provide a set D of —

Fig. 5.2 Complete lattice E together with first rows of meet forming relation M

The triple E, M , J resembles the computation in the measuring lattice. Given
a valuation lattice in this way, we will later provide a set D of — in this example
— persons together with some measure µ : 2D −→ L. We have already discussed
different methods how to obtain such a measure µ.
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5.2. Second example of a valuation lattice

14 Gunther Schmidt

in this example — persons together with some measure µ : 2D −→ L. We
have already discussed different methods how to obtain such a measure µ.

5.2 Second example of a valuation lattice

1

2 3

4
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7

8
1 2 3 4 5 6 7 8
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2
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5
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7
8




1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1
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(1,1)
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


1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
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1 0 0 0 0 0 0 0
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

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0 0 0 1 0 0 0 0
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0 0 1 0 0 0 0 0
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0 0 0 1 0 0 0 0
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0 0 0 1 0 0 0 0
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

Fig. 5.3 Complete lattice E with first rows of meet and join forming relations M , J

This non-modular lattice could express different attitudes around a medium
case.

Fig. 5.3 Complete lattice E with first rows of meet and join forming relations M , J

This non-modular lattice could express different attitudes around a medium
case.
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
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

Fig. 5.4 Mappings M , J of Fig. 5.3 represented in tabular form

The relations M , J are produced by the term mentioned in Def. 3.4. The
transition from E to the tables of Figs. 5.3 and 5.4 occurs completely on
the representation side as provided with TituRel.

5.3 Third example of a valuation lattice: the unit interval

Presented continuously, the unit interval with operations glb and lub

looks as in Fig. 5.5.

(0,0) (1,0)

(0,1) (1,1)

(0,0,0) (1,0,0)

(0,1,1) (1,1,1)

(0,1,0)
(1,1,0)

(0,0,1)

(0,0,0) (1,0,0)

(0,1,1) (1,1,1)

(1,1,0)

(0,0,1)

(1,0,1) (1,0,1)

Fig. 5.5 Corresponding to Fig. 5.6: relation x ≤ y, and mappings
lub (x, y), glb (x, y) on the unit interval [0, 1]

The following shows the unit interval, however, granulated down to steps
of 1

8 . Every such interval is represented by its middle value which is then
abbreviated again due to space limitations. Thus, it appears still as a
finite one.

Fig. 5.4 Mappings M , J of Fig. 5.3 represented in tabular form

The relations M , J are produced by the term mentioned in Def. 3.4. The
transition from E to the tables of Figs. 5.3 and 5.4 occurs completely on the
representation side as provided with TituRel.

5.3. Third example of a valuation lattice: the unit interval

Presented continuously, the unit interval with operations glb and lub looks as
in Fig. 5.5.

(0,0) (1,0)

(0,1) (1,1)

(0,0,0) (1,0,0)

(0,1,1) (1,1,1)

(0,1,0)
(1,1,0)

(0,0,1)

(0,0,0) (1,0,0)

(0,1,1) (1,1,1)

(1,1,0)

(0,0,1)

(1,0,1) (1,0,1)

Fig. 5.5 Corresponding to Fig. 5.6: relation x ≤ y, and mappings
lub (x, y), glb (x, y) on the unit interval [0, 1]

The following shows the unit interval, however, granulated down to steps of 1
8 .

Every such interval is represented by its middle value which is then abbreviated
again due to space limitations. Thus, it appears still as a finite one.
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Fig. 5.6 Complete lattice E together with first rows of meet and join forming M , J

5.4 Standard valuation space: Mixing unit interval with reals

Opposed to the former three, we have the non-lattice on the unit interval
formed by the classical x ≤ y with mappings x 7→ x ∗ y and x 7→ x + y.
The corresponding Fig. 5.7 does not look totally different from Fig. 5.5.

Fig. 5.6 Complete lattice E together with first rows of meet and join forming M , J

5.4. Standard valuation space: Unit interval with ∗ and +

Opposed to the former three, we have the non-lattice on the unit interval formed
by the classical x ≤ y with mappings x 7→ x∗y and x 7→ x+y. The corresponding
Fig. 5.7 does not look totally different from Fig. 5.5.
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(0,1,0)

(0,0) (1,0)

(0,1) (1,1)

(0,0,0) (1,0,0)

(0,1,1) (1,1,1)

(0,1,0)
(1,1,0)

(0,0,1) (1,0,1)

(0,0,0) (1,0,0)

(0,1,1) (1,1,1)

(1,1,0)

(0,0,1)

(1,0,1)

(1,1,2)

Fig. 5.7 Relation x ≤ y with mappings x 7→ x+ y and
x 7→ x ∗ y on the unit interval [0, 1]

Multiplication is a tiny part cut out of a hyperboloid, while addition produces a
plane. Of course, addition is applied only to the extent that, while measuring,
it never exceeds 1 when reasonable problems are dealt with. But this is not
axiomatized, and just a well-established traditional way to work.

In total, one or the other mathematically minded person may find the three
former measures in some sense more natural.

6. Examples of relational integration

Using these valuation or measuring spaces and differently generated measures,
we show several examples of relational integration, stressing the aspects they
enjoy in common. We visualize, thus, not least that all the measures lead to
reasonable outcomes, in particular when aggregating votings.

6.1. First example of relational integration

Here, we assume the lattice indicated in Figs. 5.1 and 5.2. Then a measuring
into this lattice is defined; this time as a belief measure µ via an “arbitrary”
body of evidence M : 2D −→ L; see Fig. 6.1.
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Fig. 6.1 Body of evidence M with belief measure µ

Over some X, the typing of which has thus already been agreed upon,
shall now be integrated. One may take the color as representing the ap-
parel of the person to be assessed. We ask for the overall score of this
team.
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Fig. 6.2 First step of integrating X

The right relation of Fig. 6.2 indicates — as columns — those rows of X
that carry values equal or above. By comparison with the membership
relation ε — see column inscriptions — one obtains relation s of Fig. 6.3.

Fig. 6.1 Body of evidence M with belief measure µ

Over some X, the typing of which has thus already been agreed upon, shall now
be integrated. One may take the color as representing the apparel of the person
to be assessed. We ask for the overall score of this team.
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Fig. 6.1 Body of evidence M with belief measure µ

Over some X, the typing of which has thus already been agreed upon,
shall now be integrated. One may take the color as representing the ap-
parel of the person to be assessed. We ask for the overall score of this
team.
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Fig. 6.2 First step of integrating X

The right relation of Fig. 6.2 indicates — as columns — those rows of X
that carry values equal or above. By comparison with the membership
relation ε — see column inscriptions — one obtains relation s of Fig. 6.3.

Fig. 6.2 First step of integrating X

The right relation of Fig. 6.2 indicates — as columns — those rows of X that
carry values equal or above. By comparison with the membership relation ε —
see column inscriptions — one obtains relation s of Fig. 6.3.
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Fig. 6.3 Second step of integrating over X with measure µ

These sets are now measured by µ and processed further according to
Fig. 6.4, thus resembling the definition of the relational integral in Def. 4.7.

s;µ =

(l
ow

,l
a
zy

)
(m

ed
iu

m
,l
a
zy

)
(l

ow
,f

a
ir

)
(h

ig
h
,l
a
zy

)
(m

ed
iu

m
,f

a
ir

)
(l

ow
,g

o
o
d
)

(h
ig

h
,f

a
ir

)
(m

ed
iu

m
,g

o
o
d
)

(l
ow

,b
u
ll
d
o
ze

r)
(h

ig
h
,g

o
o
d
)

(m
ed

iu
m

,b
u
ll
d
o
ze

r)
(h

ig
h
,b

u
ll
d
o
ze

r)

red
gre
blu
ora




0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0




X ∪ s;µ =

red
gre
blu
ora




0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 1 0 0




glbRE(X ∪ s;µ) =

red
gre
blu
ora




0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0




;glbRE(X ∪ s;µ) = {} (1 1 0 0 0 0 0 1 0 0 0 0)

(R)

∫
X ◦ µ = {} (0 0 0 0 0 0 0 1 0 0 0 0)

Fig. 6.4 Relational integration executed in full detail

When one looks at Fig. 5.2 and identifies the values according to X as
points in the lattice, the relational integral may be considered a reasonable
aggregation. The remarkable fact is that no real numbers have been used
and no numerical pseudo-precision has been generated.

Fig. 6.3 Second step of integrating over X with measure µ

These sets are now measured by µ and processed further according to Fig. 6.4,
thus resembling the definition of the relational integral in Def. 4.7.

A Relational View on Stochastics 19

s := syq(X;ET;XT, ε) =

{} {r
ed
}

{g
re
}

{r
ed

,g
re
}

{b
lu
}

{r
ed

,b
lu
}

{g
re

,b
lu
}

{r
ed

,g
re

,b
lu
}

{o
ra
}

{r
ed

,o
ra
}

{g
re

,o
ra
}

{r
ed

,g
re

,o
ra
}

{b
lu

,o
ra
}

{r
ed

,b
lu

,o
ra
}

{g
re

,b
lu

,o
ra
}

{r
ed

,g
re

,b
lu

,o
ra
}

red
gre
blu
ora




0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0




Fig. 6.3 Second step of integrating over X with measure µ

These sets are now measured by µ and processed further according to
Fig. 6.4, thus resembling the definition of the relational integral in Def. 4.7.

s;µ =

(l
ow

,l
a
zy

)
(m

ed
iu

m
,l
a
zy

)
(l

ow
,f

a
ir

)
(h

ig
h
,l
a
zy

)
(m

ed
iu

m
,f

a
ir

)
(l

ow
,g

o
o
d
)

(h
ig

h
,f

a
ir

)
(m

ed
iu

m
,g

o
o
d
)

(l
ow

,b
u
ll
d
o
ze

r)
(h

ig
h
,g

o
o
d
)

(m
ed

iu
m

,b
u
ll
d
o
ze

r)
(h

ig
h
,b

u
ll
d
o
ze

r)

red
gre
blu
ora




0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0




X ∪ s;µ =

red
gre
blu
ora




0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 1 0 0




glbRE(X ∪ s;µ) =

red
gre
blu
ora




0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0




;glbRE(X ∪ s;µ) = {} (1 1 0 0 0 0 0 1 0 0 0 0)

(R)

∫
X ◦ µ = {} (0 0 0 0 0 0 0 1 0 0 0 0)

Fig. 6.4 Relational integration executed in full detail

When one looks at Fig. 5.2 and identifies the values according to X as
points in the lattice, the relational integral may be considered a reasonable
aggregation. The remarkable fact is that no real numbers have been used
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Fig. 6.4 Relational integration executed in full detail

When one looks at Fig. 5.2 and identifies the values according to X as points in
the lattice, the relational integral may be considered a reasonable aggregation.
The remarkable fact is that no real numbers have been used and no numerical
pseudo-precision has been generated.

19



6.2. Second example of relational integration

In nearly the same way, we start an investigation with the valuation lattice [0, 1]
according to Fig. 5.5, i.e., using lub , glb . Our just finitely many elements of
the interval are here visualized first on a continuous scale. To avoid any pseudo-
precision introduced by real numbers, we have chosen only rational ones that are
presented as fractionals. For measuring into this lattice, the possibility measure
µ derived from the fairly “arbitrary” m : D −→ [0, 1] is chosen as in Fig. 6.5.
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In nearly the same way, we start an investigation with the valuation lattice
[0, 1] according to Fig. 5.5, i.e., using lub , glb . Our just finitely many
elements of the interval are here visualized first on a continuous scale. To
avoid any pseudo-precision introduced by real numbers, we have chosen
only rational ones that are presented as fractionals. For measuring into
this lattice, the possibility measure µ derived from the fairly “arbitrary”
m : D −→ [0, 1] is chosen as in Fig. 6.5.
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Fig. 6.5 Possibility measure µ for m

Again, this completes the general setting and fixes the typing. Over some
candidate votings X, shall now be integrated.

Fig. 6.5 Possibility measure µ for m

Again, this completes the general setting and fixes the typing. Over some can-
didate votings X, shall now be integrated.
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| 0/1

| 2/5
| 4/7

| 1/3

X;ET;XT =

U
S

F
re

n
ch

G
er

m
a
n

B
ri

ti
sh

S
p
a
n
is

h




1 1 1 0 1
0 1 0 0 0
0 1 1 0 1
1 1 1 1 1
0 1 0 0 1




Fig. 6.6 Candidate voting X and relation to all rows with values equal or below

Remarkable is that X ;ET ;XT is a relation in the normal sense. Again,
s := syq(X;ET;XT, ε) identifies the sets according to the columns.
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Fig. 6.7 Identified subsets according to X;ET;XT

These are measured by µ and the results united with X, so as to proceed
further according to the definition Def. 4.7 of relational integration:

A remark may be in order concerning the row inscription {} in the two
final lines of Figs. 6.4,6.8. The row vector multiplied from the left has
simply a 1-element source, and the most universal denotation for it is
“powerset of the empty set”.
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These are measured by µ and the results united with X, so as to proceed
further according to the definition Def. 4.7 of relational integration:

A remark may be in order concerning the row inscription {} in the two
final lines of Figs. 6.4,6.8. The row vector multiplied from the left has
simply a 1-element source, and the most universal denotation for it is
“powerset of the empty set”.
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These are measured by µ and the results united with X, so as to proceed further
according to the definition Def. 4.7 of relational integration:

A remark may be in order concerning the row inscription {} in the two final
lines of Figs. 6.4 and 6.8. The row vector multiplied from the left has simply
a 1-element source, and the most universal denotation for it is “powerset of the
empty set”.
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X ∪ s;µ =

0 1

US
French

German
British

Spanish

| | 3/7, 4/7
| | 0/1, 1/1

| | 2/5, 4/7
| | 2/11, 4/7
| | 1/3, 17/19

glbRE(X ∪ s;µ) =

0 1

US
French

German
British

Spanish

| 3/7
| 0/1

| 2/5
| 2/11
| 1/3

;glbRE(X ∪ s;µ) =

0 1

{} | | | || 0/1, 2/11, 1/3, 2/5, 3/7

(R)

∫
X ◦ µ =

0 1

{} | 3/7

Fig. 6.8 Final steps of relational integration with possibility measure in [0, 1]

We arrive at a value inside the codomain of our target valuation space
that rests on a clear formal basis and looks quite acceptable. In particular,
we do not end somewhere between the values of the codomain simply
following numerics.

6.3 Third example of relational integration

This time again a possibility measure shall be derived from the “arbi-
trary” relation m0 : D −→ L according to Prop. 4.4.

The relation m0 is far from a mapping, so that µ is not a Bayesian mea-
sure, which may be seen from sets {AA,BB} and {CC,DD} together with
their union.

Fig. 6.8 Final steps of relational integration with possibility measure in [0, 1]

We arrive at a value inside the codomain of our target valuation space that rests
on a clear formal basis and looks quite acceptable. In particular, we do not end
somewhere between the values of the codomain simply following numerics.

6.3. Third example of relational integration

This time again a possibility measure shall be derived from the “arbitrary”
relation m0 : D −→ L according to Prop. 4.4.

The relation m0 is far from a mapping, so that µ is not a Bayesian measure,
which may be seen from sets {AA,BB} and {CC,DD} together with their union.
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Fig. 6.9 Valuating in a lattice with possibility measure µ according to Prop. 4.4

This completes the general setting. Again, we decide for some X. The
typing of X has already been determined. The relational integral shall
now be formed according to Def. 4.7.

(l
ow

,l
a
zy

)
(m

ed
iu

m
,l
a
zy

)
(l

ow
,f

a
ir

)
(h

ig
h
,l
a
zy

)
(m

ed
iu

m
,f

a
ir

)
(l

ow
,g

o
o
d
)

(h
ig

h
,f

a
ir

)
(m

ed
iu

m
,g

o
o
d
)

(l
ow

,b
u
ll
d
o
ze

r)
(h

ig
h
,g

o
o
d
)

(m
ed

iu
m

,b
u
ll
d
o
ze

r)
(h

ig
h
,b

u
ll
d
o
ze

r)

AA
BB
CC
DD




0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0




A
A

B
B

C
C

D
D

AA
BB
CC
DD




1 0 1 1
0 1 1 0
0 0 1 0
1 0 1 1




Fig. 6.10 Relation X with intermediate result X;ET;XT for relational integration

The following X ;ET;XT indicates as columns the rows of X that carry
values equal or above. By comparison with the membership relation ε,
one obtains the s of Fig. 6.11.

Fig. 6.9 Valuating in a lattice with possibility measure µ according to Prop. 4.4

This completes the general setting. Again, we decide for some X. The typing
of X has already been determined. The relational integral shall now be formed
according to Def. 4.7.
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0 0 0 0 0 0 1 0 0 0 0 0
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Fig. 6.9 Valuating in a lattice with possibility measure µ according to Prop. 4.4

This completes the general setting. Again, we decide for some X. The
typing of X has already been determined. The relational integral shall
now be formed according to Def. 4.7.
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

Fig. 6.10 Relation X with intermediate result X;ET;XT for relational integration

The following X ;ET;XT indicates as columns the rows of X that carry
values equal or above. By comparison with the membership relation ε,
one obtains the s of Fig. 6.11.

Fig. 6.10 Relation X with intermediate result X;ET
;XT for relational integration

The following X ;ET;XT indicates as columns the rows of X that carry values
equal or above. By comparison with the membership relation ε, one obtains the
s of Fig. 6.11.
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X ∪ s;µ = glbRE(X ∪ s;µ) =
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BB
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DD
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;glbRE(X ∪ s;µ) = (0 1 0 0 0 0 1 1 0 0 0 0)

(R)

∫
X ◦µ = lubRE( ;glbR(X ∪s;µ)) = (0 0 0 0 0 0 0 0 0 1 0 0)

Fig. 6.11 Further steps of relational integration

Again, when having in mind Fig. 5.2 and looking at the X in Fig. 6.10,
the result of this aggregation seems reasonable.

6.4 Fourth example of relational integration

Now a measuring into the lattice of Fig. 5.3 is defined; this time as a
plausibility measure via a body of evidence M . One may see therein a
valuation around a presupposed medium point with positive as well as
negative deviations.

Fig. 6.11 Further steps of relational integration

Again, when having in mind Fig. 5.2 and looking at the X in Fig. 6.10, the
result of this aggregation seems reasonable.

6.4. Fourth example of relational integration

Now a measuring into the lattice of Fig. 5.3 is defined; this time as a plausibility
measure via a body of evidence M . One may see therein a valuation around a
presupposed medium point with positive as well as negative deviations.
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1 2 3 4 5 6 7 8

{}
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{green}

{red,green}
{blue}

{red,blue}
{green,blue}

{red,green,blue}
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{red,orange}
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M : 2D −→ L µ

Fig. 6.12 Body of evidence M with corresponding plausibility measure µ

We explain with an example how the plausibility measure is formed: To
red, blue, orange and the set {red,blue} no value is assigned via M . How-
ever, subsets as e.g. {red, green} get assigned 3 and others as e.g. {green,
blue} a 2. When all these values flow together, the subset {red, green,
orange} will get a 4.

Now we are prepared to integrate over every relation X the typing of
which is X : D −→ L. Our example shall be the left relation of Fig. 6.13.

X =

1 2 3 4 5 6 7 8

red
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orange
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0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
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0 0 1 0
0 1 1 1




Fig. 6.13 Next example X to be integrated with corresponding X;ET;XT

The right side of Fig. 6.13 assigns to the row entries all rows of X that
carry values equal or below. One will need to consult Fig. 5.3 rather
carefully to be convinced about that. By comparison with the membership
relation ε — see column inscriptions — one obtains the s of Fig. 6.14 and
everything else evaluated out of it in the by now known form.

Fig. 6.12 Body of evidence M with corresponding plausibility measure µ

We explain with an example how the plausibility measure is formed: To red,
blue, orange and the set {red,blue} no value is assigned via M . However, subsets
as e.g. {red, green} get assigned 3 and others as e.g. {green, blue} a 2. When all
these values flow together, the subset {red, green, orange} will get a 4, according
to the lattice of Fig. 5.3.

Now we are prepared to integrate over every relation X the typing of which is
X : D −→ L. Our example shall be the left relation of Fig. 6.13.
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We explain with an example how the plausibility measure is formed: To
red, blue, orange and the set {red,blue} no value is assigned via M . How-
ever, subsets as e.g. {red, green} get assigned 3 and others as e.g. {green,
blue} a 2. When all these values flow together, the subset {red, green,
orange} will get a 4.

Now we are prepared to integrate over every relation X the typing of
which is X : D −→ L. Our example shall be the left relation of Fig. 6.13.

X =
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Fig. 6.13 Next example X to be integrated with corresponding X;ET;XT

The right side of Fig. 6.13 assigns to the row entries all rows of X that
carry values equal or below. One will need to consult Fig. 5.3 rather
carefully to be convinced about that. By comparison with the membership
relation ε — see column inscriptions — one obtains the s of Fig. 6.14 and
everything else evaluated out of it in the by now known form.

Fig. 6.13 Next example X to be integrated with corresponding X;ET
;XT

The right side of Fig. 6.13 assigns to the row entries all rows of X that carry
values equal or below. One will need to consult Fig. 5.3 rather carefully to
be convinced about that. By comparison with the membership relation ε —
see column inscriptions — one obtains the s of Fig. 6.14 and everything else
evaluated out of it in the by now known form.
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s := syq(X;ET;XT, ε) =
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red
green
blue

orange


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0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


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s;µ =

1 2 3 4 5 6 7 8

red
green
blue

orange




0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0


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X ∪ s;µ =

red
green
blue

orange




0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0


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glbRE(X ∪ s;µ) =

red
green
blue

orange




0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0




;glbRE(X ∪ s;µ) = {} (0 1 1 1 0 0 0 0)

(R)

∫
X ◦ µ = lubRE( ;glbRE(X ∪ s;µ)) = {} (0 0 0 1 0 0 0 0)

Fig. 6.14 Evaluating relational integral over X of Fig. 6.13 with µ of Fig. 6.12

In view of the arguments, this integral seems intuitively acceptable.

7 Random Variables

Here, we follow the book [Jac92] by Konrad Jacobs on discrete stochastics
when defining random variables. He sticks to standard probability mea-
sures. The generalization is again that we allow measuring also in lattices
L with glb and lub , instead of just the unit interval [0, 1]. As relational
tools we will use the existential image ϑ

R
= syq(RT;ε, ε′) of a relation R

and its power transpose Λ
R

= syq(RT, ε′).

Fig. 6.14 Evaluating relational integral over X of Fig. 6.13 with µ of Fig. 6.12

In view of the arguments, this integral seems intuitively acceptable.

7. Random Variables

Here, we follow the book [3] by Konrad Jacobs on discrete stochastics when
defining random variables. He sticks to standard probability measures. The
generalization is again that we allow measuring also in lattices L with glb and
lub , instead of just the unit interval [0, 1]. As relational tools we will use the
existential image ϑ

R
= syq (RT ; ε, ε′) of a relation R and its power transpose

Λ
R

= syq (RT, ε′).
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Fig. 7.1 Schema of a random variable f and the expectation relation Λ
fT

; µ

When any measure µ : 2D −→ L is given, a mapping f : D −→ X into some set
X shall be called a random variable with state space X; see Figs. 7.2 and 7.3
for an example.

7.1 Proposition. For the membership εX : X −→ 2X and the random vari-
able f , the relation µf : 2X −→ L defined as µf := ϑfT ;µ is again a measure.

Proof : The main point to be proved is monotony:

ΩX ;µf = ΩX ;ϑfT ;µ ⊆ ϑfT ;Ω;µ Prop. 3.2 (or Prop. 5.2 of [10])
⊆ ϑfT ;µ;E since the measure µ is monotonic
= µf ;E

Merely as an exercise, we prove also for the point 0ΩX
= syq (εX , )

µT

f
;0ΩX

= µT;ϑT

fT
;0ΩX

= µT;syq (ε, f ;εX);0ΩX
existential image

= µT;syq (ε, f ;εX ;0ΩX
) = µT;syq (ε, f ;εX ;syq (εX , ))

= µT;syq (ε, f ; ) = µT;syq (ε, ) = µT;0Ω = 0E due to gauging of µ.

The case of 1ΩX
= syq (εX , ) is handled completely analogously.

In the preceding proof there has in no way real arithmetic been involved, so it
holds true also when L should happen to be the unit interval [0, 1] with glb,lub.

We are going to visualize Prop. 7.1 along the random variable f of Fig. 7.2, in
which the number strings are taken to give the intuition of reals.
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f =

9
7
.8

2
1
1
.2

5
-4

5
.3

6
6
1
.2

4
4
2
.3

3

US
French

German
British

Spanish




0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0




Fig. 7.2 Example of a random variable f to be studied with µ of Fig. 7.3

The measure shall be a belief measure µ based on a body of evidence
M : 2D −→ L as shown in Fig. 7.3.

0 1

{}
{US}
{Fr}

{US,Fr}
{Ge}

{US,Ge}
{Fr,Ge}

{US,Fr,Ge}
{Br}

{US,Br}
{Fr,Br}

{US,Fr,Br}
{Ge,Br}

{US,Ge,Br}
{Fr,Ge,Br}

{US,Fr,Ge,Br}
{Sp}

{US,Sp}
{Fr,Sp}

{US,Fr,Sp}
{Ge,Sp}

{US,Ge,Sp}
{Fr,Ge,Sp}

{US,Fr,Ge,Sp}
{Br,Sp}

{US,Br,Sp}
{Fr,Br,Sp}

{US,Fr,Br,Sp}
{Ge,Br,Sp}

{US,Ge,Br,Sp}
{Fr,Ge,Br,Sp}

{US,Fr,Ge,Br,Sp}

0/1
| 5/7

| 5/13
0/1
0/1
0/1

| | 11/17, 23/29
0/1
0/1
0/1
0/1
0/1

| 5/16
0/1
0/1
0/1

| 3/7
| | 3/17, 23/27

0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1
0/1

0 1

| 0/1
| 5/7

| 5/13
| 5/7

| 0/1
| 5/7
| 23/29
| 23/29

| 0/1
| 5/7

| 5/13
| 5/7

| 5/16
| 5/7
| 23/29
| 23/29

| 3/7
| 23/27

| 3/7
| 23/27

| 3/7
| 23/27
| 23/29
| 23/27

| 3/7
| 23/27

| 3/7
| 23/27

| 3/7
| 23/27
| 23/29
| 1/1

Fig. 7.3 Body of evidence M and belief measure µ

Fig. 7.2 Example of a random variable f to be studied with µ of Fig. 7.3

The measure shall be a belief measure µ based on a body of evidence M : 2D −→
L as shown in Fig. 7.3.
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M : 2D −→ L as shown in Fig. 7.3.
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We might even get something similar to a probability vector out of the µf thus
obtained and define m := σ;µf , with σ the singleton injection. However, this m
so defined will hardly sum up to 1.
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Also the well-known concept of an expectation may be found in the
present context:

7.2 Definition. Let a measure µ : 2D −→ L be given and consider any
random variable f : D −→ X. Using the power transpose of fT, we call
Ef,µ := Λ

fT
; µ the expectation relation of f under µ.
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7.2 Definition. Let a measure µ : 2D −→ L be given and consider any random
variable f : D −→ X. Using the power transpose of fT, we call Ef,µ := Λ

fT
; µ

the expectation relation of f under µ.
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Of course, not a real number appears but a relation closely resembling it as we
show with the following tiny example. The column inscriptions of Fig. 7.2 had
been just a fake, number strings, to make clear how these are related via the
measure and how one might now form a scalar product.
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To capture variance in a similar way seems hardly possible, at least much
more delicate.

8 Concluding remarks

This was a structural study. It may lead our minds to conceive some con-
cepts in another way than before. In particular is it a plea not to mix up
the measuring space with what has to be measured when indiscriminately
using the always present real numbers IR. Real numbers are often admired
for offering the possibility to express results with high precision. But ex-
actness so obtained is all too often just a virtual one, due to numerical
circumstances, that hides structural effects.

The author has sometimes listened to talks by economists and responded
to scientific outcomes of investigations, obtained by long and elaborate
arguments discussing curves. The answers he sometimes got were that
“we don’t, of course, believe in these models”. But why on earth do so
many people work and talk on these?
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To capture variance in a similar way seems hardly possible, at least much more
delicate.

8. Concluding remarks

This was a structural study. It may lead our minds to conceive some concepts in
another way than before. In particular is it a plea not to mix up the measuring
space with what has to be measured when indiscriminately using the always
present real numbers IR. Real numbers are often admired for offering the possi-
bility to express results with high precision. But exactness so obtained is all too
often just a virtual one, due to numerical circumstances obfuscating structural
effects.

There is a considerable difference between making decisions and computing
arithmetic means. When designing decisions, one should devise a measuring or
valuation space and stick to it. Decision making is something that should have
an outcome of yes/no, resp. inside the scale. It should not depend on overly
detailed evaluations of real numbers. Precisely this requirement is frequently
violated. There may be reason to change the measuring space. It is unwise to go
slidingly to ever more fine granulated reals and base decisions on such results.
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One may find interesting in this article also the examples of possibility, belief,
and plausibility measures. It is shown how they come into existence as well as
how they work.
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