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Abstract. Relational composition is an associative operation; therefore
semigroup considerations often help in relational algebra. We study here
some less known such effects and relate them with maximal rectangles
inside a relation, i.e., with the basis of concept lattice considerations.
The set of points contained in precisely one maximal rectangle makes up
the fringe. We show that the converse of the fringe sometimes acts as
a generalized inverse of a relation. Regular relations have a generalized
inverse. They may be characterized by an algebraic condition.

1 Introduction

Relation algebra has had influx from semigroup theory, but only a study in
a point-free form seems to offer chances to use it in a wider range. Inverses
need not exist in general; the containment-ordering of relations, however, allows
to consider sub-inverses. Occasionally the greatest sub-inverse also meets the
requirements of an inverse. In interesting cases as they often originate from
applications, not least around variants of orderings (semiorder, interval order,
block-transitive order, e.g.), an inverse is needed and it may be characterized by
appropriate means from that application area. It seems that this new approach
generalizes earlier ones and at the same time facilitates them. In particular,
semiorder considerations in [7] get a sound algebraic basis.

2 Prerequisites

We assume much of relation algebra to be known in the environment of RelMiCS,
to be found not least in our standard reference [8, 9], and concentrate on a few
less known, unknown, or even new details. Already here, we announce two points:
Unless explicitly stated otherwise, all our relations are possibly heterogeneous
relations. When we quantify ∀X,∃X, we always mean . . . for which the construct
in question is defined.

A relation A is difunctional1 if A ;AT ;A ⊆ A, which means that A can be
written in block diagonal form by suitably rearranging rows and columns. If A
is difunctional, the same obviously holds for AT.
1 In [1] called a matching relation or simply a match.



If A,R are relations, f is a mapping, and x is a point, then negation commutes
with composition so that f ;A = f ;A as well as R;x = R;x.

Given any two relations R,S with coinciding domain, their left residuum is
defined as R\S := RT ;S, and correspondingly for P,Q with coinciding codomain
their right residuum Q/P := Q;P T.

Combining this, we define the symmetric quotient syq (A,B) := AT ;B∩AT
;B

for any two relations A,B with coinciding domain. Obviously, syq (A,B) =
A\B ∩ A\B. We recall several canceling formulae for the symmetric quotient:
For arbitrary relations A,B,C we have

syq (A,B);syq (B,C) = syq (A,C) ∩ syq (A,B);

= syq (A,C) ∩ ;syq (B,C) ⊆ syq (A,C).

If syq (A,B) is total, or if syq (B,C) is surjective, then

syq (A,B);syq (B,C) = syq (A,C).

For a given relation R, we define its corresponding row-contains preorder2

R(R) := R;RT = R/R and column-is-contained preorder C(R) := RT ;R =
R\R.

Given an ordering “≤E”, resp. E, one traditionally calls the element s ∈ V an
upper bound of the set U ⊆ V provided ∀u ∈ U : u ≤E s. In point-free form we
use the always existing — but possibly empty — set ubdE(U) = E

T
;U . Having

this in mind, we introduce for any relation R two functionals, namely

ubdR(X) := R
T
;X, the upper bound cone functional and

lbdR(X) := R;X, the lower bound cone functional.

They are built in analogy to the construct given before, however, without as-
suming the relation R to be an ordering, nor need it be a homogeneous relation.
The most important properties may nevertheless be shown using the Schröder
equivalences.

2.1 Proposition. Given any fitting relations R,X, the following hold

i) ubdR(lbdR(ubdR(X))) = ubdR(X), i.e., R
T
;R;R

T
;X = R

T
;X

ii) lbdR(ubdR(lbdR(X))) = lbdR(X), i.e., R;R
T
;R;X = R;X

These formulae are really general, but have been studied mostly in more spe-
cialized contexts so far. We now get rid of any additional assumptions that are
unnecessary and just tradition of the respective application field.

For the symmetric quotient, we once more refer to our standard reference [8, 9]
and add a new result here.

2 In French: préordre finissant and préordre commençant; [5]



2.2 Proposition. For any fitting relations R,X, Y
syq (lbdR(X), lbdR(ubdR(Y ))) = syq (ubdR(lbdR(X)), ubdR(Y )).

Proof : Applying syq (A,B) = syq (A,B) first, this expands to

syq (R;X,R;R
T
;Y ) = XT ;R

T
;R;R

T
;Y ∩ XT ;R

T
;R;R

T
;Y

syq (R
T
;R;X,R

T
;Y ) = XT ;R

T
;R;R

T
;Y ∩ XT ;R

T
;R;R

T
;Y

Now, the first term in the first equals the second term in the second line. The
other terms may be transformed into one another, applying Prop. 2.1.

With the symmetric quotient we may characterize membership relations ε, de-
manding syq (ε, ε) ⊆ to hold as well as surjectivity syq (ε,R) for arbitrary
relations R. Using this, the containment ordering on the powerset may be built
as Ω := εT ;ε = ε\ε.

3 Rectangles

For an order, e.g., we observe that every element of the set u of elements smaller
than some element e is related to every element of the set v of elements greater
than e. Also for equivalences and preorders, square zones in the block-diagonal
have proven to be important, accompanied by possibly rectangular zones off
diagonal.

3.1 Definition. Given u ⊆ X and v ⊆ Y , together with compatible universal
relations , we call u ; vT = u ; ∩ (v ; )T a rectangular relation or, simply,
a rectangle3. We say that u, v define a rectangle inside R if u; vT ⊆ R (or
equivalently R;v ⊆ u, or R

T
;u ⊆ v).

The definitional variants obviously mean the same. Sometimes we speak corre-
spondingly of a rectangle containing R if R ⊆ u; vT, or we say that u, v is
a rectangle outside R if u, v is a rectangle inside R. Note that yet another
definition of a rectangle u, v inside R may be given by u ⊆ R/vT and vT ⊆ u\R.

Although not many scientists seem to be aware of this fact, a significant amount
of our reasoning is concerned with “rectangles” in/of a relation. A lower bound
cone of an arbitrary relation R together with its upper bound cone form a rect-
angle inside R. Rectangles are handled at various places from the theoretical
point of view as well as from the practical side. Among the application areas
are concept lattices, clustering methods, and measuring, to mention just a few
seemingly unrelated ones. In most cases, rectangles are treated in the respec-
tive application environment, i.e., together with certain additional properties,
so that their status as rectangles is not clearly recognized, and consequently the
corresponding algebraic properties are not applied or not fully exposed.
3 There are variant notations. In the context of bipartitioned graphs, a rectangle inside

a relation is called a block; see, e.g. [3]. [4] speaks of cross vectors.



We now consider rectangles inside a relation that cannot be enlarged.

3.2 Definition. The rectangle u, v inside R is said to be maximal4 if for any
rectangle u′, v′ inside R with u ⊆ u′ and v ⊆ v′, it follows that u = u′ and
v = v′.

The property of being maximal has an elegant algebraic characterisation.

3.3 Proposition. Let u, v define a rectangle inside the relation5 R. Precisely
when both, R; v ⊇ u and R

T
;u ⊇ v, are also satisfied, there will not exist a

strictly greater rectangle u′, v′ inside R.

Proof : Let us assume a rectangle that does not satisfy, e.g., the first inclusion:
u ⊃6=R;v, so that there will exist a point p ⊆ u ∩R;v. Then u′ := u ∪ p 6= u and
v′ := v is a strictly greater rectangle because p;vT ⊆ R.

Consider for the opposite direction a rectangle u, v inside R satisfying the two
inclusions together with a rectangle u′, v′ inside R such that u ⊆ u′ and v ⊆ v′.
Then we may conclude with monotony and an application of the Schröder rule
that v′ ⊇ R

T
; u′ ⊇ R

T
; u ⊇ v. This results in v′ = v. In a similar way it is

shown that u = u′. To sum up, u′, v′ can not be strictly greater than u, v.

In other words, u, v constitute a maximal rectangle inside R if and only if both,
R; v = u and R

T
;u = v, are satisfied. A reformulation of these conditions using

residuals is u = R/vT and vT = u\R. Consider a pair of elements (x, y) related
by some relation R, i.e., x;yT ⊆ R or, equivalently, x ⊆ R;y. The relation RT;x
is the set of all elements of the codomain side related with x. Since we started
with (x, y) ∈ R, it is nonempty, i.e., 6= y ⊆ RT ;x.

For reasons we will accept shortly, it is advisable to use the identity RT;x = R
T
;x

which holds because negation commutes with multiplying a point from the right
side. We then see that a whole rectangle — may be only a one-element relation
— is contained in R. Some preference has just been given to x, so that we expect
something similar to hold when starting from y.

3.4 Proposition. Every point x;yT ⊆ R in a relation R gives rise to
i) the maximal rectangle inside R started horizontally

ux := R;R
T
;x = R;RT ;x ⊇ x, vx := R

T
;x = RT ;x ⊇ y

ii) the maximal rectangle inside R started vertically

uy := R;y = R;y ⊇ x, vy := R
T
;R;y = R

T
;R;y ⊇ y

Proof : Indeed, ux, vx as well as uy, vy are maximal rectangles inside R since
they both satisfy Prop. 3.3.
4 In case, R is a homogeneous relation, it is also called a diclique, preferably with

u 6= as well as v 6= to exclude trivialities; [3].
5 We assume a finite representable relation algebra satisfying the point axiom.



These two may coincide, a case to be handled soon. One will find out that —
although R has again not been defined as an ordering — the construct is similar
to those defining upper bound sets and lower bound sets of upper bound sets.

Fig. 1 Points contained in maximal rectangles

In Fig. 1, let the left relation R in question be the “non-white” area, inside
which we consider an arbitrary pair (x, y) of elements related by R. To illustrate
the pair (ux, vx), let the point (x, y) first slide inside R horizontally over the
maximum distance vx, limited as indicated by →←. Then move the full subset
vx as far as possible inside R vertically, obtaining ux, and thus, the light-shaded
rectangle. Symbols like indicate where the light grey-shaded rectangle cannot
be enlarged in vertical direction.

In much the same way, slide the point (x, y) on column y as far as possible
inside R, obtaining uy, limited by ↓ and ↑. This vertical interval is then moved
horizontally inside R as far as possible resulting in vy and in the dark-shaded
rectangle, confined by .

Observe, that the maximal rectangles need not be coherent in the general case;
nor need there be just two. The example on the right of Fig. 1, where the relation
considered is assumed to be precisely the union of all rectangles, shows a point
contained in five maximal rectangles. What will also become clear is that with
those obtained by looking for the maximum horizontal or vertical extensions
first, one gets extreme cases.

As already announced, we now study the circumstances under which a point
(x, y) is contained in exactly one maximal rectangle.

3.5 Proposition. A pair (x, y) of points related by R is contained in exactly

one maximal rectangle inside R precisely when x;yT ⊆ R ∩ R;R
T
;R.

Proof : If there is just one maximal rectangle for x ; yT ⊆ R, the extremal

rectangles according to Prop. 3.4.i,ii will coincide. The proof then uses

R;R
T
;x ⊇ R;y ⇐⇒ x;yT ⊆ R;R

T
;R



Important concepts concerning relations depend heavily on rectangles. For exam-
ple, a decomposition into a set of maximal rectangles, or even dicliques, provides
an efficient way of storing information in a database; see, e.g., [3].

3.6 Proposition. Given any relation R, the following constructs determine the
set of all maximal rectangles — including the trivial ones with one side empty
and the other side full. Let ε be the membership relation starting from the
domain side and ε′ the corresponding one from the codomain side. Let Ω,Ω′ be
the corresponding powerset orderings. The construct

Λ := syq (ε,R;ε′) ∩ syq (R
T
;ε, ε′) or, equivalently,

Λ := syq (ε, lbdR(ε′)) ∩ syq (ubdR(ε′), ε′)
serves to relate 1 : 1 the row sets to the column sets of the maximal rectangles.

Proof : Using ε, ε′, apply the condition Prop. 3.3 for a maximal rectangle simul-
taneously to all rows, or columns, respectively.

It is easy to convince oneself that Λ is a matching, i.e., satisfies ΛT ;Λ ⊆ and
Λ;ΛT ⊆ . We show one of the cases using cancellation of the symmetric quotient
together with the characterization of the membership relation ε′:

ΛT ;Λ =
(
syq (ε,R;ε′) ∩ syq (R

T
;ε, ε′)

)T
;

(
syq (ε,R;ε′) ∩ syq (R

T
;ε, ε′)

)
⊆ syq (ε′, R

T
;ε);syq (R

T
;ε, ε′) ⊆ syq (ε′, ε′) = syq (ε′, ε′) =

Now we consider those rows/columns that participate in a maximal rectangle
and extrude the respective rows/columns with ι to inject the subset described
by the vector Λ; and ι′ to inject the subset described by the vector ΛT; . This
allows us to define the two versions of the concept lattice based on the powerset
orderings

left concept lattice := ι;Ω ; ιT right concept lattice := ι′ ;Ω′ ; ι′
T.

The two, sometimes referred to as lattice of extent, or intent resp., are 1 : 1
related by the matching λ := ι;Λ; ι′

T.

4 Fringes

The points contained in just one maximal rectangle inside a relation R play an
important rôle, so that we introduce a notation for them.

4.1 Definition. For arbitrary R we define its fringe(R) := R ∩R;R
T
;R.

A first inspection shows that fringe(RT) = [fringe(R)]T. The concept of a
fringe has unexpectedly many applications. We announce already here that every
fringe will turn out to be difunctional, and thus enjoys a powerful “geometric
characterization as a (possibly partial) block-diagonal”. As a first example for
this, we mention that the fringe of an ordering E is the identity, since

fringe(E) = E ∩ E ;E
T
;E = E ∩ ET

;E = E ∩ E
T

= E ∩ ET = .



We are accustomed to use the identity . For heterogeneous relations there is
none; often in such cases, the fringe takes over and may be made similar use of.

The fringe of the strict order C is always contained in its Hasse relation H :=
C∩C2 since C is irreflexive. The existence of a non-empty fringe heavily depends
on finiteness or at least discreteness. The following resembles a result of Michael
Winter [10]. Let us for a moment call C a dense relation if it satisfies C;C = C.
An example is obviously the relation “<” on the real numbers. This strict order
is transitive C ;C ⊆ C, but satisfies also C ⊆ C ;C, meaning that whatever
element relationship one chooses, e.g., 3.7 < 3.8, one will find an element in
between, 3.7 < 3.75 < 3.8. To be a dense relation implies that the Hasse relation
will be empty. A dense linear strict ordering has an empty fringe. We show in
the subsequent sections that the fringe of a relation is central for difunctional,
Ferrers, and block-transitive relations.

Now we present a plexus of formulae that are heavily interrelated. The fringe
gives rise to “partial equivalences” or symmetric idempotents, closely resembling
row and column equivalence Ξ(R) := syq (RT, RT) = syq (R;RT

T

, R;RT
T

) and

Ψ(R) := syq (R,R) = syq (R
T
;R

T

, R
T
;R

T

).

4.2 Definition. For an arbitrary relation R and its fringe f := fringe(R) =

R ∩ R;R
T
;R, we define

i) ΞF (R) := f ;fT, the fringe-partial row equivalence

ii) ΨF (R) := fT ;f , the fringe-partial column equivalence

We recall that the fringe collects those entries of a relation R that are contained
in precisely one maximal rectangle. The fringe may also be obtained with the
symmetric quotient from the row-contains-preorder and the relation in question:

4.3 Proposition. For an arbitrary relation R, the fringe and the row-contains-
preorder R(R), satisfy

fringe(R) = syq (R(R), R)

Proof : We expand fringe, syq, R(R), and apply trivial operations to obtain

R ∩ R;R
T
;R = R;R

T
;R ∩ R;R

T
;R

It remains, thus, to finally apply that R = R;R
T
;R.

Thus, we are allowed to make use of cancellation formulae from Sect. 2 for
the symmetric quotient. We show that to a certain extent the row equivalence
Ξ(R) may be substituted by ΞF (R); both coincide as long as the fringe is total.
They may be different, but only in the way that a square diagonal block of the
fringe-partial row equivalence is either equal to the one in Ξ(R), or empty.

4.4 Proposition. For an arbitrary relation R and its fringe f := fringe(R)
the fringe-partial row resp. column equivalences satisfy the following:



i) ΞF (R) = Ξ(R) ∩ f ;

ii) Ξ(R);f = ΞF (R);f = f ;fT ;f = f f = f ;fT ;f = f ;ΨF (R) = f ;Ψ(R)
iii) fT ;Ξ(R);f ⊆ Ψ(R)
iv) ΞF (R);R ⊆ R;fT ;R ⊆ R and R;ΨF (R) ⊆ R;fT ;R ⊆ R.

Proof : i) ΞF (R) = f ;fT Def. 4.2

= syq (R;RT, R);syq (R,R;RT) Prop. 4.3
= syq (R;RT, R;RT) ∩ syq (R;RT, R); cancellation property
= Ξ(R) ∩ f ; = Ξ(R) ∩ f ; definition of Ξ(R)

ii) The definition of Ξ(R) together with Prop. 4.3 show that

Ξ(R);f = Ξ(R);f = syq (R;RT, R;RT);syq (R;RT, R) ⊆ syq (R;RT, R) = f,

applying cancellation again. Then we may proceed with f ;fT ;f = ΞF (R);f ⊆
⊆ Ξ(R);f according to (i)
⊆ f see above
⊆ f ;fT ;f A ⊆ A;AT ;A for every A

obtaining equality everywhere in between.
iii) fT ;Ξ(R);f ⊆ fT ;f see above

= ΨF (R) by Def. 4.2
⊆ Ψ(R) applying (i) to RT.

iv) R;fT ;R

= R; [syq (R;RT, R)]T ;R Prop. 4.3
= R;syq (R,R;RT);R transposing a symmetric quotient
⊆ R;RT ;R cancelling the symmetric quotient
⊆ R which holds for every relation

The rest is then simple because ΞF (R) = f ;fT ⊆ R;fT.

Anticipating Def. 5.1, we may say that fT is always a subinverse of R. We
have already seen in (i) that ΞF (R) is nearly an equivalence. When in (iv)
equality holds, ΞF (R) ;R = R, we may expect important consequences, since
then something as a congruence is established.

The following proposition relates the fringe of the row-contains-preorder with
the row equivalence.

4.5 Proposition. We have for every relation R, that

fringe(R(R)) = fringe(R;RT) = syq (RT, RT) = Ξ(R),

fringe(C(R)) = fringe(R
T
;R) = syq (R,R) = Ψ(R).

Proof : In both cases, only the equality in the middle is important because the
rest is just expansion of definitions. Thus reduced, the first identity, e.g., requires
to prove that

R;RT ∩ R;RT ;R;R
T
;R;RT = R;RT ∩ R;R

T

.



The first term on the left equals the first on the right. In addition, the second
terms are equal, which is not seen so easily, but also trivial.

The fringe may indeed be important because it is intimately related with difunc-
tionality: For arbitrary R, the construct fringe(R) is difunctional and a relation
R is difunctional precisely when R = fringe(R). Also: Forming the fringe turns
out to be an idempotent operation, i.e., fringe(fringe(R)) = fringe(R).

5 Inverses

Fringes and difunctionality are related to the following concepts of inverses.
Inverses are defined for real-valued matrices in linear algebra or for numerical
problems. We introduce here similar definitions for relations using the same
names. They will provide deeper insight into the structure of a difunctional
relation.

5.1 Definition. Let some relation A be given. The relation G is called

i) a sub-inverse of A if
A;G;A ⊆ A.

ii) a generalized inverse of A if
A;G;A = A.

iii) a Thierrin-Vagner inverse of A if the following two conditions hold
A;G;A = A, G;A;G = G.

iv) a Moore-Penrose inverse of A if the following four conditions hold
A;G;A = A, G;A;G = G, (A;G)T = A;G, (G;A)T = G;A.

The relation R is called regular, if it has a generalized inverse. Due to the
symmetric situation in case of a Thierrin-Vagner inverse G of A, the two relations
A,G are also simply called inverses of each other.

In a number of situations semigroup theory is applicable to relations. Some of
these ideas stem from [4] and are here reconsidered from the relational side. A
sub-inverse will always exist since satisfies the requirement. With two sub-
inverses G,G′ also their union G ∪G′ is obviously a sub-inverse so that one will
ask which is the greatest.

5.2 Proposition. R;R
T
;R

T

is the greatest subinverse of R.

Proof : Assuming an arbitrary sub-inverse X of R, it satisfies by definition
R;X ;R ⊆ R, which is equivalent with

⇐⇒ XT;RT;R ⊆ R ⇐⇒ R;R
T
;R ⊆ X

T ⇐⇒ X ⊆ R;R
T
;R

T

A generalized inverse is not uniquely determined: As an example assume a ho-
mogeneous . It has at least the generalized inverses and . With generalized
inverses G1, G2 also G1 ∪ G2 is a generalized inverse. There will, thus, exist a



greatest one — if any. Regular relations, i.e., those with existing generalized in-
verse, may precisely be characterized by the following containment which is in
fact an equation:

5.3 Proposition. R regular ⇐⇒ R ⊆ R;R;R
T
;R

T

;R.

Proof : If R is regular, there exists an X with R;X ;R = R. It is, therefore, a

sub-inverse and so X ⊆ R;R
T
;R

T

according to Prop. 5.2. Then

R = R;X ;R ⊆ R;R;R
T
;R

T

;R.

Specializing X := R;R
T
;R

T

in the proof of Prop. 5.2, we have already seen that

R;R;R
T
;R

T

;R ⊆ R for arbitrary R.

We will learn in Def. 7.1, that every block-transitive relation is regular in this
sense; see Prop. 7.3.

5.4 Proposition. If R is a regular relation, its maximum Thierrin-Vagner in-

verse is R;R
T
;R

T

;R;R;R
T
;R

T

=: TV .

Proof : Evaluation of TV ; R ; TV = TV and R ; TV ; R = R using Prop. 5.3
with equality shows that TV is indeed a Thierrin-Vagner inverse. Any Thierrin-

Vagner inverse G is in particular a sub-inverse, so that G ⊆ R;R
T
;R

T

which
implies G = G;R;G ⊆ TV .

A well-known result on Moore-Penrose inverses shall be recalled:

5.5 Theorem. Moore-Penrose inverses are uniquely determined if they exist.

Proof : Assume two Moore-Penrose inverses G,H of A to be given. Then we
may proceed as follows: G = G ;A ;G = G ;GT ;AT = G ;GT ;AT ;HT ;AT = G ;

GT ; AT ; A ; H = G ; A ; G ; A ; H = G ; A ; H = G ; A ; H ; A ; H = G ; A ; AT ; HT ; H
= AT ;GT ;AT ;HT ;H = AT ;HT ;H = H ;A;H = H.

These concepts will now be related with permutations and difunctionality.

5.6 Theorem. For a relation A, the following are equivalent:

i) A has a Moore-Penrose inverse.
ii) A has AT as its Moore-Penrose inverse.

iii) A is difunctional.
iv) Any two rows (or columns) of A are either disjoint or identical.
v) There exist permutations P,Q such that P;A;Q has block-diagonal form with

(not necessarily square) diagonal entries Bi = .

Proof : of the key step (i)=⇒(ii): G = G;A;G ⊆ G;A;AT;A;G = AT;GT;AT;A;G =
(A;G;A)T;A;G = AT;A;G = AT;GT;AT = (A;G;A)T = AT and, deduced symmetrically,
A ⊆ GT.



6 Ferrers Relations

We have seen that a difunctional relation corresponds to a partial block diago-
nal relation. So the question arose as to whether there was a counterpart of a
linear order with rectangular block-shaped matrices. In this context, the Ferrers
property of a relation is studied.

6.1 Definition. We say that a relation A is Ferrers if A;A
T
;A ⊆ A.

The meaning of the algebraic condition has often been visualized and interpreted.
It is at first sight not at all clear that the matrix representing A may — due to
Ferrers property — be written in staircase (or echelon) block form after suitably
rearranging rows and columns independently.

If R is Ferrers, then so are RT, R, R
T

;R, R ;RT, and R ;R
T

;R. A relation R is
Ferrers precisely when R(R) is connex or when C(R) is connex6:

R;R
T
;R ⊆ R ⇐⇒ R;RT ;R ⊆ R ⇐⇒ R;R

T ⊆ R;RT

We now prove several properties of a Ferrers relation that make it attractive for
purposes of modeling preferences etc. An important contribution to this comes
from a detailed study of the behaviour of the fringe7.

6.2 Proposition. For a finite Ferrers relation R, the following statements hold,
in which we abbreviate f := fringe(R):

i) The construct R;R
T

is a progressively bounded semi-connex strict order.
ii) There exists a natural number k ≥ 0 that gives rise to a strictly increasing

exhaustion as
= (R;R

T

)k ⊂6= (R;R
T

)k−1 ⊂6= . . . ⊂6=R;R
T
;R;R

T ⊂6=R;R
T

iii) R;R
T

= f ;R
T

, R
T
;R = R

T
;f, R;R

T
;R = f ;R

T
;f

iv) R allows a disjoint decomposition as

R = fringe(R)∪ fringe(R;R
T
;R)∪ . . .∪ fringe((R;R

T

)k;R) for some k ≥ 0
v) R allows a disjoint decomposition as

R = fringe(R) ∪ fringe(f ;R
T
;f) ∪ . . . ∪ fringe((f ;R

T

)k;f) for some k ≥ 0

vi) R allows a disjoint decomposition as R = f ∪ f ;R
T
;f

vii) R allows an exhaustion as

= (f ;R
T

)k ;f ⊂6= (f ;R
T

)k−1 ;f ⊂6= . . . ⊂6= f ;R
T
;f ;R

T
;f ⊂6= f ;R

T
;f ⊂6=R

Proof : i) and ii) We start the following chain of inclusions from the right ap-
plying recursively that R is Ferrers:

= (R;R
T

)k ⊆ (R;R
T

)k−1 ⊆ . . . ⊆ R;R
T
;R;R

T ⊆ R;R
T

6 A relation A is connex if = A ∪ AT; it is semi-connex if ⊆ A ∪ AT.
7 By the way: [6] and a whole chapter of [7] are devoted to the “holes” or “hollows”

and “noses” that show up in this context; see Fig. 2.



Finiteness guarantees that it will eventually be stationary, i.e., (R ;R
T

)k+1 =
(R;R

T

)k. This means in particular that the condition Y ⊆ (R;R
T

);Y holds for
Y := (R ;R

T

)k. The construct R ;R
T

is obviously transitive and irreflexive, so
that it is in combination with finiteness also progressively finite. According to
Sect. 6.3 of [8, 9], this means that Y = (R;R

T

)k = .

iii) R;R
T

= ((R ∩ R;R
T
;R) ∪ (R ∩ R;R

T
;R));R

T

= (f ∪ R;R
T
;R);R

T

since R is Ferrers
= f ;R

T ∪ R;R
T
;R;R

T

= f ;R
T ∪ (f ;R

T ∪ R;R
T
;R;R

T

);R;R
T

applied recursively
= f ;R

T ∪ f ;R
T
;R;R

T ∪ R;R
T
;R;R

T
;R;R

T

= f ;R
T ∪ R;R

T
;R;R

T
;R;R

T

since also R
T

is Ferrers
= . . . = f ;R

T ∪ see (ii)

The other proofs are left to the reader.

It is mainly this effect which enables us to arrive at the results that follow. First,
we observe how successively discarding fringes leaves a decreasing sequence of
relations; strictly decreasing when finite or at least not dense. Ferrers relations
may, although possibly heterogeneous, in many respects be considered as similar
to a linear (strict)ordering.

The following proposition is a classic (with a very slight generalization concerning
surjectivity not being demanded); it may not least be found in [2] and also with
a completely different point-free proof in [9]. The idea of the proof presented
here is a constructive one, which means that one may write the constructs down
in the language TITUREL and immediately run this as a program. The reason
is that the constructs are generic ones that are uniquely characterized, so that
a standard realization for interpretation is possible.

6.3 Proposition. Let R : X −→ Y be a finite relation.

R Ferrers ⇐⇒ There exist mappings f, g and a linear
strict order C such that R = f ;C ;gT.

Proof : “⇐=” follows relatively easily using several times that mappings may
slip below a negation from the left without affecting the result, and that C is
Ferrers.

“=⇒” Let R be Ferrers. There may exist empty rows or columns in R or not. To
care for this in a general form, we enlarge the domain to X+1l and the codomain
to 1l + Y and consider the relation R′ := ιTX ;R;κY . In R′, there will definitely
exist at least one empty row and at least one empty column. It is intuitively
clear — and easy to demonstrate — that also R′ is Ferrers.

The relation R′ has been constructed so that R′ is both, total and surjective.
Observe, that R in the upper right sub-rectangle of Fig. 2 would not have been
surjective. As in general R = f ∪f;R

T
;f according to Prop. 6.2.vi, also fringe(R′)

is necessarily total and surjective. As fringes are always difunctional, fringe(R′)



is a block diagonal, which will — after quotient forming — provide us with the
matching λ.

Fig. 2 Constructing a Ferrers decomposition

We introduce row equivalence Ξ(R′) := syq (R′T, R′T) as well as column equiv-
alence Ψ(R′) := syq (R′, R′) of R′ together with the corresponding natural pro-
jections which we call ηΞ , ηΨ . We define
λ := ηT

Ξ
;fringe(R′);ηΨ

f := ιX ;ηΞ ;λ

g := κY ;ηΨ

C := λT ;ηT

Ξ
;R′ ;ηΨ

Now a proof is achievable requiring no case distinctions which are impossible
prior to having interpreted the relation in question “with a matrix”.

7 Block-Transitive Relations

Concepts that we already know for an order or a strict order shall now be
studied generalized to a heterogeneous environment in which also multiple rows
or columns may occur. The starting point is a Ferrers relation. We have seen how
it can in many respects be compared with a linear (strict)order. Is it possible to
obtain in such a generalized case similar results for a not necessarily linear strict
order? Proceeding strictly algebraically, this will indeed be found.

7.1 Definition. A relation R is called block-transitive if either one of the
following equivalent conditions holds, expressed via its fringe f := fringe(R)

i) R ⊆ f ; and R ⊆ ;f ,

ii) R ⊆ f ; ;f ,

iii) R = ΞF ;R;ΨF .

The proof of the equivalence of the variants is left to the reader. Being block-
transitive is mainly a question of how big the fringe is. The fringe must be big
enough so as to “span” the given relation R with its rectangular closure.



For this concept, Michael Winter had originally, see [10], coined the property to
be of order-shape. We do not use this word here because it may cause misun-
derstanding: We had always been careful to distinguish an order from a strict
order; they have different definitions, that both overlap in being transitive. In
what follows, we will see that — in a less consistent way — definitions may share
the property of being block-transitive.

The following shows the most specialized examples of a block-transitive relation:

7.2 Proposition. A difunctional relation R as well as a finite Ferrers relation
R are necessarily block-transitive.

Proof : The first result is trivial since R;RT;R ⊆ R⇐⇒ R;R
T
;R ⊆ R, so that

R = fringe(R). For the second, we abbreviate f := fringe(R). According to
Prop. 6.2.iv, we have R = f ∪ f;R

T
;f , so that R ⊆ f; as well as R ⊆ ;f .

This is in contrast to IR, < which is Ferrers but not block-transitive, simply since
its fringe has already been shown to be empty.

7.3 Proposition. For an arbitrary block-transitive relation R we again abbre-
viate f := fringe(R) and prove:
i) R;fT ;R = R, i.e., fT is a generalized inverse of R
ii) R;fT and fT ;R are transitive

Proof : i) From R ⊆ f ; , we deduce with row equivalence Ξ and Prop. 4.4.i
R = R ∩ f ; = Ξ ;R ∩ f ; = (Ξ ∩ f ; );R = ΞF ;R = f ;fT ;R ⊆ R;fT ;R

The reverse direction is satisfied for every relation according to Prop. 4.4.iv.

ii) R;fT ;R;fT = R;fT using (i)

We now introduce block-transitive kernels and Ferrers closures.

7.4 Definition. For a relation R, we define using its fringe f the block-
transitive kernel as

btk(R) := R ∩ f ; ∩ ;f = f ;fT ;R;fT ;f .

7.5 Proposition. For every relation R, the fringe does not change when reduc-
ing R to its block-transitive kernel; i.e.,

f = fringe(R ∩ f ; ∩ ;f) for f := fringe(R)

The proof of this statement is too lengthy and ugly to be presented. It employs
hardly more than Boolean algebra, but with terms running in opposite directions,
so that it is probably not easy for the reader to find it for himself.

7.6 Proposition. Every finite block-transitive relation R has a Ferrers clo-
sure, i.e., a Ferrers relation F ⊇ R but still satisfying fringe(F ) = fringe(R).

Proof : The idea for this proof is rather immediate; its execution, though, is
technically complicated: Do the quotient forming according to the fringe-partial



equivalences throwing rows and columns with empty row/column of f together
in one class. Divide these congruences out and apply afterwards what is called
the Szpilrajn-extension or topological sorting.

For block-transitive relations, also a factorization result similar to Prop. 6.3 may
be proved, which cannot be presented for reasons of space.

8 Concluding Remark

We have tried to base known and new concepts on maximal rectangles inside
a relation. The elegant relational characterization of these together with the
intuitive interpretation of a fringe facilitated access to semigroup concepts, e.g.,
and also allowed to generalize some. Block-transitive relations constitute a novel
concept that may turn out to be the method of choice in preference modeling.
They are more general than semiorders or interval orders, but still allow an
algebraic treatment.
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B. Möller, and G. Struth, Eds., no. 3051 in Lect. Notes in Comput. Sci., Springer-
Verlag, pp. 261–272.


