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Abstract

We show that the basic operations of the relational calculus on a “contact relation” generate at least
25 relations in any model of the Region Connection Calculus [33], and we show how to interpret
these relations in the collection of regular open sets in the two-dimensional Euclidean plane.

1 Introduction

Mereotopology is an area of qualitative spatial reasoning (QSR) which aims to develop formalisms
for reasoning about spatial entities [1, 12, 30, 31]. The structures used in mereotopology consist of
three parts:

1. Arelational (or mereological) part,
2. An algebraic part,

3. Atopological part.

The algebraic part is often an atomless Boolean algebra, or, more generally, an orthocomplemented
lattice, both without smallest element.

Due to the presence of the binary relations “part-of” and “contact” in the relational part of mereotopol-
ogy, composition based reasoning with binary relations has been of interest to the QSR community,
and the expressive power, consistency and complexity of relational reasoning has become an object



of study [2—4, 33]. The first time that the relational calculus has been mentioned in (modern) spatial
reasoning was in the interpretation of the 4-intersection matrix in [19], see also [37].

It has been known for some time, that the expressiveness of reasoning with basic operations on binary
relations is equal to the expressive power of the three variable fragment of first order logic [see 41,
and the references therein]. Thus, it seems worthwhile to use methods of relation algebras, initiated
by Tarski [40], to study contact relations in their own right, and then explore their expressive power
with respect to topological domains.

The Region Connection Calculus (RCC) wasaniinced as a formal structure to reason about spatial
entities and the relationships among them [33]. Its models are basically atomless Boolean algebras
with an additional contact relation which satisfies certain axioms. A standard model of the RCC is the
Boolean algebra of regular open sets of a regular connected topological space, where two such sets
are in contact, if their boundaries intersect. However, these are not the only RCC models.

Gotts [22] explores how much topology can be defined by using the full first order RCC formalism.
Our aim is similar: We are interested which relations can be defined with relation algebra logic (i.e.
the three variable fragment of first order logic) in the algebraic setting oRME, interpreted in a
topological context.

2 Relation algebras

The calculus of relations has been an important component of the development of logic and algebra
since the middle of the nineteenth century. Since the mid-1970’s it has become clear that the calculus
of relations is also a fundamental conceptual and methodological tool in computer science. Some
examples are program semantics [7, 34, 42], program specification [5] and derivation [6], and last but
not least qualitative spatial reasoning. For a detailed overview we invite the reader to consult [9].

Let U be a nonempty set. We denote the set of all binary relatiorig,or., the powerset df’ x U,
by Rel(U). We usually indicate the fagt:, y) € R for R € Rel(U) by z Ry. Furthermore, we define
for R, S € Rel(U)

(2.1) RoS%¥ {{z,yy: (Fz € U)zRzSy}, Composition

(2.2) R {{z,y) : yRa}, Converse

(2.3) +RY {y : xRy}, Image ofr underR

(2.4) Ry def {z : zRy}. Inverse image of underR

We also letl’ be the identity relation ofy, andV = U x U be the universal relation. THell algebra
of binary relations orl is the algebra of typé2, 2,1, 0,0, 2, 1, 0)

(Rel(U),N,U,—,0,V, 0,7 1.



We shall usually identify algebras with their base set. Every subalgelitel 0F) is called aralgebra
of binary relationgdBRA). If {R; : i € I} C Rel(U), we let({{R; : ¢ € I}) be the BRA generated by
{R;:i€1I}.

If an RA A is complete and atomic — in particular, Af is finite —, then each nonzero element is a
sum of atoms, and relational composition can be described by a matrix, whose rows and columns are
labelled by the atoms and an enty, ) is the set of atoms contained ino Q. If A is integral, we

omit column and rowt’.

If R = {R; : ¢ € [} is a partition of\" such thatR is closed under converse, and eitligrC 1’ or
R;N 1" = {foralli € I, we define thaveak compositionf R as the mapping,, : R x R — 2%

such that foralk, j € I
(2.5) S € Riow R} <L SN (RioR;) % 0.

Just as in the case of we can determine composition tables égr. Note thatR; o R; C R; o,, R;;
if equality holds everywhere, i.e. when= o,,, we call the weak composition taldstensional

An abstract relation algebra (RA) is a structure
(A, +,,—,0,1,0,%1")
of type(2,2,1,0,0,2, 1,0) which satisfies for al, b, c € A,
1. (A, +,-,—,0,1)is a Boolean algebra (BA). Its induced ordering is denote& by
2. (A, 0,7, 1') is an involuted monoid, i.e.
(@) (A, o, 1) is a semigroup with identity’,
(b) a”=a, (acb)’=boa"
3. The following conditions are equivalent:

(2.6) (aob)-c=0, (aoc)-b=0, (cob)-a=0.

The properties (2.6) are sometimes called toenplement-free Schrdder-equivalencékhey are
equivalent to the Schréder-equivalences introduced by Schroder in [36]

(2.7) aob<c¢ <= ado-b<-¢c <+ —cob < —a.

Each BRA is an RA with the obvious operations, but not vice versa [28].

The logic of RAs is a fragment of first order logic, and the following fundamental result is due to A.
Tarski [41]:

Theorem 2.1. If {R; : ¢ € I} C Rel(U), then({R; : ¢ € I}) is the set of all binary relations on
U which are definable in the (language of the) relational struct{ife{ R; : ¢ € I}) by first order
formulas using at most three variables.



If «, b are elements of a RA, we define theight residual ofa andb by
(2.8) a\bE —(a”0-b).

a\_b is the largest relation such that o ¢ < b.

Analogously, we define thieft residuale b of « andb as
(2.9) a/ b —(—boa).

a / bis the largest relatiod such thatd o « < b. The symmetric quotientyq(a, b) of a andb is
defined by

(2.10) sya(a,b) = (a\b) - (" / @) = —(a”0 —b) - —(—a"o b).

In a BRA the residuals and the symmetric quotienBodind.S can be characterised by

(2.11) RN\ S = {{z,y) : Rz C Sy},
(2.12) RS ={{z,y):yS C xR},
(2.13) syq(R, ) = {(z,y) : Rz = Sy}.

The following properties of the residual will be needed later:

Lemma 2.2. [14, 32] In every RA the following holds:

1. e\ cis reflexive and transitive.

2. If cis reflexive and symmetric, théa ¢) o (¢ \ ¢) < c.

In a BRA there is an elegant way to characterize a subset of the univeiBethis end, associate the
relation

md:ef{<w,y>:$€V,y€M}

with the subsedd C U. Itis easy to see that is characterized by: = V om whereV is the greatest
relation over the universé. Such a relation is calledwaector. Analogously, a one-element subset or
an element of/ may be described by a vector which is univaletito m C 1’. These relations are
calledpoints

Given an ordering®, i.e., a reflexive, transitive and antisymmetric relation, one may be interested
in lower bounddbp (m) of subset characterized by a vector This vector is given bybp(m) def
—(mo—FP) =m'\ P = (P m)". Analogouslyubp(m) e —(mo—P) = m \ P isthe

vector of upper bounds of. Last but not least, the relatiogk p (m) & Ibp(m)Nubp(lbp(m))and
lubp(m) et ubp(m)Nlbp(ubp(m)) are either empty or a point, describing the greatest lower bound
and the least upper bound, if they exist, respectively. More details about the relational description of

orderings, extremal elements and their properties can be found in [35].

For properties of relation algebras not mentioned here, we refer the reader to [10, 24, 35], and for
Boolean algebras to [25].



3 Mereology

Mereology, the study of “part-of” relations, was given a formal framework bgni@vski [26, 27]

as part of his programme to establish a paradox-free foundation of Mathematics. Clarke [11] has
generalised Lehiewski’s classical mereology by taking a “contact” relatiomas the basic structural
element. The axioms whiah needs to fulfil are

(3.1) C'is reflexive and symmetric,

(3.2) Cz = Cyimpliesz = y.

It was shown in [14] that the extensionality axiom (3.2) may beaegd by

(3.3) C' N\ C'is antisymmetric
ie.
(3.4) syq(C,C) C 1.

The term “mereology” has nowadays become (almost) synonymous with the study of “part-of” and
“contact” relations in QSR.

If C'is a contact relation we set
(3.5) P N C, part of

(3.6) pPpn_v. proper part of

Lemma 2.2 and (3.3) tell us that is a partial order which we shall call thgart of relation(of C).
We also writer < y instead oft Py. PP is called theproper part ofrelation.

We now define the additional relations

def

(3.7) O = FPoP overlap

(3.8) ro*on —(PUPFP) partial overlap

(3.9) pc¥cn-o external contact

(3.10) rrr ¥ ppn (EC o EC) tangential proper part
(3.11) NTPP ¥ pPn-TPP non—-tangential proper part
(3.12) pc¥ ¢ disconnected

(3.13) DR o discrete

Given a contact relatiof’, we will use the definitions (3.5) — (3.13) of the relations throughout the
remainder of the paper.



Mereological structures also have an algebraic part' I§ a contact relation otV and} # X C
U,z € U, thenz is called thefusion of X', written as) | X, if

(3.14) (Vy € U)[zCy < (Fz € X)yCz].

A model of mereologig a structurél, C', > "), whereC' is a contact relation, and the fusidn exists
for all nonemptyX C U. If

(3.15) C=0,

then(U, C,>") is a model of classical mereology, since “contactis definable by “part of’P as
C=PFPoP.

Note that the definition of a model of mereology is not first ordenesk model of mereolodgy a
structure{U, C', +), whereC' is a contact relation, and for all y € U, the fusionz + y exists.

Given a model of mereologyl/, C, >}, one can define additional operationsiéms follows [11]:

(3.16) 1= {w:a2Ca} Universal element
(3.17) =) {y:y(-C)x} Complement
(3.18) [[xX=> {z:2Puforaliz € X} Product

Observe that and]] are partial operations, and that they require completeness of fusion. Biacino
& Gerla [8] have shown that the models of mereology are exactly the complete orthocomplemented
lattices with thed element removed, and

2Cy<=az £ —y

Models of classical mereology arise from complete Boolean algagbragh the 0 element removed
as shown in [39]; her# is the Boolean order.

4 The Region Connection Calculus

The Region Connection Calculus (RCC) wasantced in [33] as a tool for reasoning about spatial
phenomena, and has since received some prominence. It uses a contactélatiah fulfils the
conditions (3.1) and (3.2).

A model for the RCC consists of a base 6et= R U N, whereR, N are disjoint, a distinguished
1 € R, aunary operatiof : Ry — Ry, whereR, ef g \ {1}, a binary operatior- : R x R — R,
another binary operation: R x R — R U N, and a binary relatiod’ on E. In order to avoid

trivialities, we assume that/| > 2.

The RCC axioms are as follows:



RCC 1. (Vz € R)2Cx
RCC 2. (Vz,y € R)[«Cy = yC'z]
RCC 3. (Vz € R)2(C'1
RCC4. (Vx € R,y € Ro),
(@) xCy* <= - aNTPPy
(b) 20y* <= —zPy
RCC5. (Va,y,z € R)[2Cy+ z < aCyoraCz
RCC6. (Vz,y,z € R)[2Cy -z < (Jw € R)(wPy andwPz andzCw)]
RCC7. (Vz,y € R)[z -y € R < z0y]
RCC 8. Ifz Py andy Pz, thenz = .

We shall in the sequel assume without loss of generality dhat {0}. Axioms RCC 1, RCC 2,

RCC 5 and RCC 8 show thaf:, C', +) is a weak model of mereology. It is, however, not a model

of mereology in the sense of Section 3, since it has a different definition of complement: In the RCC
models, each proper regianis connected to its complement, which is impossible in models of
mereology. It was shown in [15] and [38] that the algebraic part of an RCC model is a Boolean
algebra. Each atomless Boolean algebra can be made into an RCC model by defining an appropriate
contact relation [13].

Notice, that some of the axioms above may be written in a relation algebraic manner as follows:

RCC1l.1'CC
RCC2.C"CC
RCC 8. syq(C,C) C 1.

In the original RCC, the relations
(4.1) V', TPP, TPP", NTPP, NTPP", PO, EC, DC

were considered base relations in a system called RCC8. Somewhat earlighptege Franzosa

[16] arrive at a similar set of relations by purely topological considerations. Seeing that the largest
elementl is RA —definable front, it was noted in [14] that investigation of the RCC can be restricted

to the sel/ = RN —{1}, and that='’C' and PO split into the disjoint non—empty relations

def

(4.2) ECDY _(PPoPP'UPP o PP),

(4.3) ECN Y pon-ECD,

(4.4) PON ¥ 0 (PP o PP) N (PP o PP),
(4.5) POD ¥ 40 (PP o PP) N —(PPo PP,



where# = — (P U P”) is the incomparability relation. It is not hard to see that

tECDy << x = y~,

tECNy <= zFCyandx +y # 1,
tPONy < z#y, 2 -y #0, v +y # 1,
tPODy <= a#y, - y#0, 2 +y=1,

In the sequel, we shall regard
(4.6) \', TPP, TPP°, NTPP, NTPP", PON, POD, ECN, ECD, DC

as defined above as the basic relations in terms of which other relations will be defined below. The
weak composition of these relations is given in Table 1; it is worth to point out that the table does
not have an extensional interpretation, i.e. there is no RA whose composition is given by Table 1.
Nevertheless, the base relations are the atoms of a semi-associative relation algebra in the sense of
Maddux [29].

Using the relation”C' D, another RCC axiom can be written in algebraic form as follows:

RCC4'. (@)CoECD=—-NTPP
(b) Oo ECD = —P

Let V' be the greatest relation ov&r Notice, that the property
(47) lub(c\c) (R) oV=RoV

forces the algebraic part of a RCC model o¥&to be a complete BA without a least element since
for every nonempty vectom the least upper bountibc\ ¢y (m) is also nonempty. Under this
assumption, the greatest elemernis characterized by the relatibab o\ ¢ (V). Furthermore, if we
require

(4.8) lub(cn ¢y (R) o C'= R o C for all relationsk

then the relation algebraic counterparts of the remaining axioms RCC 3, RCC 5, RCC 6 and RCC 7
are provable.

Lemma 4.1. For all nonempty vectors: we have the following:

RCC 3 lub(c\c) (V), c=V,
RCC5" lubiengy(m)oC=moC,
RCC 6" glb(en ¢y(m) o C' = Iben cy(m) o O,

RCC 7 glbiency(m) # 0 < Ibency(m) # 0.



Table 1: The RCC 10 weak composition table

ow || TPP TPP NTPP NTPP | PON POD ECN ECD DC
TPP [ TPP,NTPP 1, TPP, TPP, | NTPP TPP, NTPP, [ TPP,  NTPR[ TPP,  NTPP,| ECN,DC ECN DC
PON, ECN, DC PON, ECN, DC | PON, ECN,DC | PON,  POD,
ECN, ECD
TPP || 1, TPP, TPP, | TPP,NTPP TPP,  NTPP,| NTPP TPP, NTPP, | POD TPP, NTPP, | POD TPP, NTPP,
PON, POD PON, POD PON, POD PON,  POD, PON, ECN, DC
ECN, ECD
NTPP || NTPP TPP,  NTPP,| NTPP T, TPP, TPP, [ TPP,  NTPPR,[ TPP,  NTPP,| DC DC DC
PON, ECN, DC NTPP, NTPP, | PON, ECN,DC | PON,  POD,
PON, ECN, DC ECN, ECD, DC
NTPP || TPP,  NTPP, | NTPP 1, TPP, TPP, | NTPP TPP, NTPP, | POD TPP, NTPP, | POD TPP, NTPP,
PON, POD NTPP, NTPP PON, POD PON, POD PON,  POD,
PON, POD ECN, ECD, DC
PON [[ TPP,  NTPR[ TPP, NTPP, | TPP,  NTPPR| TPP, NTPP, | 1, TPP, TPP, | TPP,  NTPP,| TPP, NTPP, | PON TPP, NTPP,
PON, POD PON, ECN, DC | PON, POD PON, ECN,DC | NTPP, NTPP, | PON, POD PON, ECN, DC PON, ECN, DC
PON,  POD,
ECN, ECD, DC
POD || POD TPP, NTPP, | POD TPP, NTPP, | TPP, NTPP, | 1, TPP, TPP, | TPP, NTPP TPP,NTPP NTPP
PON,  POD, PON,  POD,| PON, POD NTPP, NTPP,
ECN, ECD ECN, ECD, DC PON, POD
ECN || TPP,  NTPP,| ECN,DC TPP,  NTPP,| DC TPP,  NTPP,| TPP,NTPP I, TPP, TPP, [ TPP TPP, NTPP,
PON,  POD, PON, POD PON, ECN, DC PON, ECN, DC PON, ECN, DC
ECN, ECD
ECD || POD ECN POD DC PON TPP, NTPP TPP v NTPP
DC TPP,  NTPP,| DC TPP,  NTPP,| DC TPP,  NTPP,| NTPP TPP,  NTPP,| NTPP 1, TPP, TPP,
PON, ECN, DC PON,  POD, PON, ECN, DC PON, ECN, DC NTPP, NTPP
ECN, ECD, DC PON, ECN, C




Proof. RCC 3’ and RCC 5’ follow from 4.8. Notice, that we have

() glbien oy (m) = lubien oy (Ib(en o) (M)

A proof may be found in [35]. RCC 6’ and RCC 7’ follow frofr) and 4.8 resp. 4.7. O

Notice, that the inclusioD in 4.8 can be proven.

5 Basic relational properties

In this section, we shall collect some properties of the relations listed in (4.6), which follow from the

RCC axioms. These will be used in the next Section for the definition of the relation algebra.

commence with several basic connections which were already proved in [14].

Lemmab5.1. 1.1'C NTPP o NTPP,i.e.forallz thereissome witha NTPP:.

2.

3.

4.

5.

ECN =TPPo ECD,ie.cECNz<+= 2TPPz*.
If : DC'z, thenzTPP(z + z).
¢NTPPz andyNT PPz < (z + y)NTPPx.

If e NT PPz, thenz* - 2T PPz.

Our second lemma deals with compositiongbC, T PP andNT PP.

Lemmab.2. 1. DCo P"C DCie.aDCyandz < yimplyzDC'z.

2.

3.

NTPP=FCDoNTPP oFECD,i.e.e NTPPy < y*NTPPz*.
PoNTPP < NTPP,ie.x <yandyNTPPzimplyaNTPPz.
NTPPoTPP = NTPP.

NTPPoP=NTPP.

TPPoNTPP=NTPP.

1< NTPPo NTPF i.e.forallz there is some witha NTPPz.

Proof. 1. Consider the following computation:

DCoP CDC <« —Co—(—C"0(C)C-C by definition of DC' and P
— —(C"oC C—-C"oC. by 2.7

10
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2. Consider the following computation:

NTPP = —(C o ECD) by RCC 4'a
=LECDo—(ECDo(C)o ECD sinceEC'D is a bijection
=FCDo—(CoFECD) o ECD sinceC' and EC'D are symmetric
=FECDo NTPP o ECD. by RCC 4’a

3. Leta PyNTPPz, and assume that : NT PPz. Then we have:C'z* and—- yC'z* by RCC 4a. It
follows thatzC'z* DC'y holds, i.e.z (C”o —C')y and hence-z Py by the definition ofP. But thisis a
contradiction.

4.“C" We prove the stronger assumption
(¥) NTPPoP CNTPP.

Letz NT PPyPz and assume that: NT PPz. Then we have(C'z* by RCC 4a. On the other hand,
s NTPPy impliesz DCy*. Sincey < z and therefore* < y* holds we conclude DC'z* by 1, a
contradiction.

“D" Let a NTPPz. With 5.1(1) choose someNT PPz* - z, and seyy = w* - z. Then we have

wNTPPz" -z = wNTPPx~" by (x)
— s NTPPw” by 5.2(2)
= zDCw by RCC 4a
= 2 DCw andaz DC'z* by 2 NTPPzand RCC 4a
= 2z DC(w+ 27) by RCC5
= e NTPP(w+ z")" by RCC 4a
— «NTPPy. Definition of y

Furthermorew NT PPz* - z implieswNT PPz, and by 5.1(5) we gef = w* - 2T PPz.
5. “C” was already shown in 4«) and “D” follows from 4.

6. “C": This follows from 3.

“D" Leta NTPPz. With5.1(1) choose somegNT PPxz*-z. 5. givesugygNT PPz andyNTT Px*.
Using 5.1(4) and RCC 4a we get+ yNT PPz andyDC=z. Together we concludeT PPx +
yNTPPz by 5.1(2).

7. Letz € U. By Lemma 5.11, there is some € U such thatyNT PPz*, and by 2 above,
sNTPPy*. O

Our next lemma exhibits some new arithmetical properties involving the algebraic operations.

Lemmab.3. 1. «NTPPyandaNTPPz<— xNTPPy-z.

11



N

ECDoDC =NTPF | ie.2*DCz < zNTPPz.

PON o ECD = PON,i.e.a PONz <= ¢ PONz*.

W

TPP o ECD = PODN —(ECDo NTPP).

o,

tECNoTPPz < xECNx* - 2TPPz.

6. 2TPP oTPPz <= xTPP%x-:T'PPx.

7. Ifz-z#0thenz — (TPP oTPP)z <= z-zNTPPzorz-zNTPPz.
8. tTPPoTPPz < 2TPP(x + 2)TPFPz.

9. IfyNTPP(z + z) andyDC'z thenyNT PPz.

Proof. 1. This follows from 5.1(4) and 5.2(2).

2. Consider the following computation:

2(ECDo DC)z <= 2"DCxz

— zDCz” by RCC 2
<— zNTPPzx. by RCC 4a
< s NTPP7z.

3. “==": Supposer PON z. Then the definition oPO N implies

(5.1) x £z,
(5.2) z £,
(5.3) x-z#0,
(5.4) x4z # 1.

We have to prove (5.1)-(5.4) far instead of:. Consider the following computation:
<y = x+2z>z"+z=1, contradicting (5.4)
r <= 2. -2< 2" 2=0, contradicting (5.3)
x -2 =0= z < 2z, contradicting (5.1)
x+z" = 1= z <z, contradicting (5.2)
“«<="is shown analogously.

4.C”": First, we showl'PP"o EC'D C POD. Suppose*T PPz. The we have

x £z, sincex < z impliesz* < z*, a contradiction
z L, sincez < z is a contradiction

x-z2#£0, sincez - z = () impliesz < z*, a contradiction
r+z=1, sincez™ < z

12



and hence: PO Dz. Furthermore, consider the following computation:

TPP o ECDNECDo NTPP

= TPP o ECDNECDoECDo NTPP o ECD by 5.2(2)
=(T'PP"NNTPF)o ECD sinceEZC'D is a bijection
=0,

which showsl'PP~" o ECD C —(ECD o NTPP).

“2" Supposer PODz andz* — NTPPz. Then we conclude* < z sincez + z = 1 andz - z # ).
Furthermore, we have*T PPz because*NT PPz impliesz*NT PPz by 5.2(2), a contradiction.

5. We only have to show==". Let x FC' NyT PPz. First we have

2 lCNy<—= yICNz symmetry of EC'N
< yT'PPz" by 5.1(2)
= y<at-z. sinceyT PPz

Assumex NT PPz + z*. Then we conclude

eNTPPx + 2" < aDCz" - 2 by RCC 4a
— zDCy by 5.2(1)
< s NTPPy". by RCC 4a

Butz FC Nygives useT PPy™ by 5.1(2), a contradiction. Sinee< z+ z* we conlude:T PPz + z*
and using 5.1(2) againKFC' Nz* - z. Assumez* - zNTPPz. Then we aim ayNT PPz by 5.2(3),
contradictingy” PPz. Sincez™ - z < z we getz* - 2T PPz.

6. Again, we only have to show==". Let 2TPPyTPPz. Then we have; < z - z. Assume
x - zNTPPz. We concludeyNT P Px by 5.2(3), a contradiction.

7."=": Letz -z > 0. Suppose w.l.0.g that- y7'P Pz holds. The hypothesis— (I'PP o TPP)z
implies that for ally,

yI'PPr —= y — TPPz.

Thus,z - (=T PP)z and hence: - zNT PPz sincez - z < z.

“«<=": Suppose w.l.o.g. that - zNT PPz holds. Furthermore, assume that we ha¥&” P"yT PPz
for somey € U. Thenwe gey < z - z and by 5.2(3yNT PPz, a contradiction.

8. Similarly to 6.

13



9. Consider the following computation:

yNTPP(z 4 z) andyDCz < z* - 2" NTPPy* andzNTPPy" by5.2(2) and RCC 4a

— (¢"-y"+ 2)NTPPy" by 5.1(4)
< yNTPP(z" - (2 + 2)) by 5.2(2)
<— yNTPPz" -
= yNT PPz, by 5.2(5)
which finishes the proof. O

The last lemma deals with some new relation algebraic properties of the relations listed in (4.6).
Lemmab54. 1. FCNoTPPoFECD=TPPoTPF".

2. (ECNoTPP)Y o ECD=TPP oTPP.

3. TPPoTPP o ECD=FECNoTPP.

4. TPP oTPPo ECD = (FCNoTPP).

5. —(ECN o TPP)o ECD = —(TPPoTPF).

6. —(ECN oTPP) o ECD = —(TPP oTPP).

7. -(TPPoTPP) o ECD = —(ECN o TPP).

8. —(TPP o TPP)o ECD = —(ECN o TPP)".

Proof. 1. Consider the following computation:

ECNoTPPoECD=TPPoFECDoECN by 5.1(2)
=TPPo (ECN o ECD)” sinceEC'N and EC'D are symmetric
=TPPo(TPPoECDo ECD)” by5.1(2)
=TPPo(TPF. sinceEZC'D is a bijection

2. Consider the following computation:

(ECNoTPPy o ECD=TPP o ECNo ECD sinceFC'N is symmetric
=TPP oTPPo ECDo ECD by 5.1(2)
=TPP oTPP. sinceF’C' D is a bijection
3.-8. Follow from 1. and 2. sincEC'D is a bijection. O
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Table 2: Atoms ofl

1/

TPPA  =TPPN(ECN oTPP)

TPPA" =TPP'N(ECN oTPP)

TPPB  =TPPN—(ECN oTPP)

TPPB° =TPP'N—(ECN oTPP)

NTPP

NTPP

PONXA1 = PON N (ECN o TPP)N (ECN o TPP)"N(TPPoTPP)N(TPP oTPP)
PONXA2 = PON N (ECN o TPP)N (ECN o TPP)"N(TPPoTPP)N—(TPP oTPP)
PONXB1 = PON N (ECN o TPP)N (ECN o TPP)"N—(TPPoTPP)N (TPP oTPP)
PONXB2 = PON N (ECN o TPP)N (ECN o TPP)"N—(TPPoTPP)N—(TPP oTPP)
PONY Al = PON N —(ECN o TPP)N (ECN o TPP YN (TPP o TPP)

(

N N (TPPoTPP”
PONY A2 = PONN—(ECN oTPPYN(ECNoTPP)"N(TPPoTPP)N—(TPP oTPP)
PONYAl"=PONN(ECNoTPP)N—(ECNoTPP)"N(TPPoTPP)N(TPP oTPP)
)N
)N
)N

b S

—(
PONY A2 = PON N (ECN o TPP)N—(ECN o TPP)N (T'PP o TPP)N—(TPP o TPP)
PONYB =PONN—(ECN oTPP)N(ECN oTPP)"N—(TPPoTPP)

PONYB =PONN(ECN oTPP)N—(ECN o TPP

PONZ =PONN—(ECN oTPP)N—(ECN oTPP)

—(TPPoTPP)

PODYA =PODN—(ECDoNTPP)N(TPP oTPP)
PODYB =PODN—(ECDoNTPP)N—(TPP oTPP)
PODZ  =ECDoNTPP

ECNA  =ECNN(TPPoTPP)

ECNB =ECNN—(TPPoTPP)

ECD

DC

6 A necessary relation algebra

We are now ready to describe the relation algerahich is a subalgebra of every BRA generated

by the contact relation of any RCC model. The relations we are going to consider are shown in Table
2. The definitions of the relationlBONY B, PON 7 andPO D7 give rise to some simple questions
answered by the next lemma.

Lemma6.l. 1. PONZ CTPPoTPP.
2. PONYB C TPP o TPP.
3. PONZ C TPP o TPP.
4. PODZ C POD.

5. PODZ CTPFP oTPP.
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Proof. 1. Let2 PON 7z and assume (—(T PP o TPP"))z. By 5.3(8) this is equivalent te —
TPP(x+z)orz—TPP(xz+ z). Assume w.l.0.g. that — T'PP(x + z) holds. Sincer < =+ 2z we
concludesNT PP(z + z). Furthermore, we have

eNTPP(z + 2) = 2DC(z + 2)” by RCC 4a
= 2T PPz + 2" 2") by 5.1(3)
< 2TPP(z +27)
= 2 FCNz" -z, by 5.1(2)

contradicting: (— (FC'N o TPP))z by 5.3(5).

2. We will show tha{ PONY BN—(T PP oTPP))o EC'D = (). ThisimpliesPONY BN—(TPP"o
TPP) = { sinceEC'D is a bijection, and finallyPONY B C T PP o T PP. The property above is
proved by
(PONY BN —(TPP oTPP))o ECD

= PONYBo ECDN—(TPP oTPP)o ECD sinceC'D is a bijection

= PONYBo ECDN—(ECN o TPPY by 5.4(8)

= PON o ECDN(ECN o TPP) o ECD

N—(ECNoTPP)o ECDN—(TPPoTPP)oECD

N—(ECNoTPP) sinceEC'D is a bijection
= PON N (TPP o TPP)N—(TPP oTPP)

N—(ECN oTPP)N—(ECN oTPP)” by 5.4(5)- (7) and 5.3(7)
= PONZN (TPP o TPP)N —(TPPoTPP)
= 0. by 1

3. Similarly to 2., we shoWPONZ N —(TPP o TPFP")) o EC'D = (. This property is proved by

(PONZ N —(TPPoTPP))o ECD

=PONZo ECDN—(TPPoTPFP)o ECD sinceEZC'D is a bijection
= PONZ o ECDN —(ECN o TPP) by 5.4(7)
= PON o ECDN—(ECN o TPP)o ECD

N—(ECNoTPP) o ECDN—(ECN oTPP) sinceEC'D is a bijection
= PON N —(TPPoTPP)N—(ECN o TPP)

N—(TPP o TPP) by 5.4(5),(2) and 5.3(7)
C PONYBN —(TPP o TPP)
= 0. by 2

4. Suppose*NT PPz which impliesz* < z. Obviously, we have

Lz, zde, x-z#£0, r4z=1,
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and hence POD:z.

5. Again, suppose*NT PPz which impliesz -z # 0. Now, assume -z NT PPx. Thenwe conclude

z-zNTPPx < 2"NTPPz* + 2~ by 5.2(2)
< *NTPPx~, by 5.3(9) since* DC'z* <— 2*NT PPz

a contradiction. Analogously, it follows that = N'T'P Pz is impossible. Together we hawd PPz -
zT PPz and hence?ODZ C TPP o TPP. U

We now state our main result.

Theorem 6.2. The setR of relations given in Table 2 is the set of atoms of a relation alg&€bra
Proof. We have to show following [23]:

1. The relations are pairwise disjoint, their uniois< U.
2. R is closed under taking converses, and eitRer 1’ orRN1' = P forall R € R.
3. Each relation is non-empty.

4. The composition of any two of them is a union of element®& of

1. Lemma 6.1 gives us

TPPA, TPPB isapartitionof TPP,

ECNA, EFCNB is apartition of FCN,
PONXA1-PONZ, isa partitionof PON,
PODY A, PODY B, PODZ s apartitionof POD,

which proves 1.
2. This is obvious from the definitions.

3. We shall indicate elements 6f which are in the relations of Table 4.6. Notice, that we have the
following.

(@) TPPAo ECD = ECNA.
(b) TPPB o ECD = ECNB.
(c) TPPA” o ECD = PODY A.
(d) TPPB o ECD = PODY B.

(e) PONX Al o ECD = PONX Al
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() PONXA20 ECD = PONY A1,

(g9) PONXBlo ECD = PONY Al.

(h) PONXB2o ECD = PONZ.

(i) PONY Alo KFCD = PONX Bl.

() PONY A20 KFCD = PONY F".
These equalities are a consequence of 5.1(2), 5.3(3),(4) and 5.4. Therefore, it is sufficient to show
that therelation$’ PPA, TPPB, PON X A1, PON X A2, PON X B1, PON X B2, PONY Al and
PONY A2 are non-empty. To this end, we will use a configuration given by the Figure 1; this is only

an indication in a familiar model. First of all, we want to show that this configuration emerges in every
model of RCC withlJ # (. Note, that by 5.1(1) each such model must be infinite.

Let1 # s € U be given. Furthermore, using 5.1(1) t&7'PPs* andwNT PP(s 4 t)*. Then we
have

sDC't, by RCC 4a
sDCw, by RCC 4a and 5.2(1)
tDC'w, by RCC 4a and 5.2(1)
s+t4+w< 1. since(s+t) +w=1= w > (s+1¢)", acontradiction

Again, using 5.1(1) lee NT PPs, bNTPPa,dNT PPt andeNT PPa*-s. Sincea™ - s < s we have
¢NTPPs by 5.2(5). FurthermoresNT PPa* - s impliescDC'a + s*, and hence DC'a by 5.2(1).

The required elements and their properties are listed in Table 3 on the following page. Proofs are
straightforward and left to the reader. Using 5.3(6),(7) and (9), we conclude our assumption.

4. We have generated a composition table, and have checked that Table 4 on page 20 represents a
relation algebra. Both was done with a program written in the functional language GOFER. To end
up with a compact description, we have coded the sets of atoms by &matrix given below. The

table should be read as follows. The weak compositioRGDY B ff§ and PODY A [ is (@8,

i.e. equal to union of the relations

TPPA,TPPB,TPPB’,PONX Al, PONXB1, PONYAl, PONY Al",
PONY B, PONYB", PONZ, PODZ.

1 TPPA TPPA” TPFPB TPPB”
NTPP NTPFP | PONXAl| PONXA2 | PONXDBI1
PONXB2 | PONY Al | PONY A2 | PONY A1l" | PONY A2
PONYB | PONYB | PONZ PODY A | PODYB
PODZ ECNA ECNB ECD DC

This completes the proof.
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Figure 1:sDCt, sDCw, tDCw, s+t +w < 1, aNTPPs, bNTPPa, cNTPPs, cDCa, ANTPPt

S
a
. C: : t

Relation z z | -z | 4z | z* .z | z . z*
TPPA a* s s+t a4+t
. TPPB s s+t t
Table 3: Elements PONX A1 a+t d+s a+d s+t a*.s d* -t
PONX A2 a* s a4+ c+t c s+t a4+t a* . c*.
PONXB1 | a*-s+5b a4 c b4+ ¢ 5 b* . a ac*.s
PONXB?2 a* s a4 c c 5 a a* . c*.
PONY A1 s+t a* s+w | a*-s5 | s+t+w w c+t
PONY A2 5 a+t a s+t t a* . s

Relation zTPPr4+ 2 | o« +2TPPz2 | 2TPPz -z | #-2TPPz | tECNz* .2 | z*-2TPPz | zECNzx - z* z-2*TPPx

TPPA + +

TPPB - +
PONX A1 + + + + + + + +
PONX A2 + + - + + + + +
PONXBI1 + - + + + + + +
PONXB2 + - - + + + + +
PONY Al + + + + - + + +
PONY A2 + + - + - + + +




S e s e e e

Table 4: The composition table f

e 5 (D R B R N R R R B R R A

P O IR P N N N
P PR U O N
O T O T T
o R T D T D
EE I P R O O
O R O D
LA P P
o
LR Y P R L P
N
P
o
B N
o
o
B N
B
cod) W S O O e O R R
R O e O D DD
o) R D O D D R
K N O O T R T
NN N O O T R
e e e e e
R O N O O R

Topological properties

Suppose thatX, 7) is a topological space. lf C X, we denote the closure afby ci(z), and its
interior byint(z). Thefringeor boundaryF'r(z) of  is the set/(z) N —int(z). = is calledregular
open, ifx = int(cl(z)). Itis well known that the collectio®RO (X') of regular open sets is a complete
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Boolean algebra under set inclusion wheredpw € RO(X),

(6.1) v 4w =int(cl(vUw)),
(6_2) vew=vnNuw,
(6.3) v* = int(—v).

The spac€ X, ) is calledregular or T space, if points can be separated by disjoint open sets, and
if for eacha € X and each closed setnot containing:, there are disjoint open sets v such that
a € w, x Cv. (X, ) is calledconnectedf the only open-closed (clopen) sets dfeand.

For properties of topological spaces not mentioned here, we invite the reader to consult [20].
As shown in [21], a standard RCC model is the complete Boolean algebieX') of regular open
sets of a connected regular topological spa€er), where forz,y € RO(X)

(6.4) 2Cy &L c(z)nel(y) # 0.

Theorem 6.3 gives the topological properties of the base relations and the building blocks of the others,
from which the properties of the atoms can easily be derived.

Theorem 6.3. Let B be an atomless subalgebraB (X ) andC' be the connection relation q6.4)
defined o/ = BN —{@, X }. Furthermore, let:, y, z € U, = # y. Then,

(6.5) tTPPy<= x Cy Fr(z)NFr(y) #0

(6.6) tNTPPy <= cl(z) Cy

(6.7) tPONy<—= €y yZx,zNyZ 0 cz)Uc(y) #X
(6.8) tPODy<—= s ZyyZz,zNy#0,c(z)Ucl(y) =X
(6.9) tECNy<=znNy="0c(z)Nnecl(y) #0,c(x)Ucl(y) # X
(6.10) tECDy <= azNy=0,cl(x)Ncl(y) #0,cl(x)Ucl(y) =X
(6.11) xDCy <= cl(z)Ncl(y) =0

(6.12) zFECNoTPPy<= Fr(z)NFr(—zNz)#£ 0, Friz)NFr(—zNz) #0,cd(z) Ud(y) # X
(6.13) T PPoTPPy< Fr(z)N Fr(int(cl(zUz))) £ 0, Fr(z) N Friint(cd(zUz))) #0
(6.14) TPPoTPPy< Fr(z)NFr(zNz)£0, Friz)NFr(zNz) £

(6.15) zECDo NTPPy<=zUy=X.

Proof. All equivalences are straightforward applications of the definitions of the Boolean operations
givenin (6.1) — (6.3) on page 21, and the properties of the relations given in Lemma 5.1. O

We would like to close this Section with an RCC model which has different properties than the one
on the full algebra?O(.X). Let K be the collection of sets of the form

eER?:a<|p|<b), if0#a,
K(ab) = {r a < |p| < b} #a
{p e Ri|p| < b}, if ¢ = 0.
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wherea € R,b € RU {oc}, and|p| is the Euclidian distance of € R? to (0,0)). We also extend
the ordering ofR and setz < oo for all « € R. Let B be the set of all finite unions of elements of
K including. ThenB is a subalgebra oRO(R?), generated by the open disks with centre at the
origin; by a result of [13]{ B, ') is a model of the RCC, wher& is defined by (6.4).

Now, consider: = K (0, 1). We want to show that there is poc U = B \ {R? 0} with 2T PP Ay.
Every elemeny of U with 27 PPy is of the formz U {K (a,b) : 1 < a}. Since—z -y = {K(a,b) :

1 < a} and{K(a,b) : 1 < a} is disconnected te, we conclude that7 PPBy. It follows that the
BRA generated by on this domain is not integral. On the other hand, it is not hard to see that in
RO(R), 1" CTPPAoTPPA", so this situation cannot happen there.

7 Summary and Outlook

We have shown that each relation algebra generated by the contact relation of an RCC model contains
an integral algebrél with 25 atoms as a subalgebra. Thus, the expressiveness of the RCC axioms in
the 3-variable fragment of first order logic is much greater than the original eight RCC base relations
(which are, basically, the possible relations of a pair of circles) might suggest. We have also given a
topological interpretation of the atoms f

We have not yet found a representatior®gfand the problem is open as to whether there is an RCC
model with2l as its associated BRA. In particular, we do not know} ifs the BRA generated by’
on a standard modétO (X).

All RCC models that we know fulfil
(7.1) NTPP C NTPPoNTPP,

and the question remains, whether this is always true.

It seems also worthwhile to compare the expressivity of RA logic with that of the 9-intersection model
of Egenhofer & Herring [17], which is based only on topological properties.

Another promising area of research is to consider the expressive power of relational structures more
general than BRAs, for example, those, in which the associativity of the composition is relaxed [29].
Egenhofer & Rodriguez [18] have given a spatial interpretation of such a structure.
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