
Linking functional programming and topology

Gunther Schmidt

Fakultät für Informatik, Universität der Bundeswehr München
85577 Neubiberg, Germany
gunther.schmidt@unibw.de

Abstract. In advanced functional programming, researchers have investigated
the existential image, the power transpose, and the power relator, e.g. It will
be shown how the existential image is of use when studying continuous map-
pings between different topologies relationally. Normally, structures are compa-
red using homomorphisms and sometimes isomorphisms. This applies to group
homomorphisms, to graph homomorphisms and many more. The technique of
comparison for topological structures will be shown to be quite different. Ha-
ving in mind the cryptomorphic versions of neighborhood topology, open kernel
topology, open sets topology, etc., this seems important.

Lifting concepts to a relational and, thus, algebraically manipulable and short-
hand form, shows that existential and inverse images must here be used for
structure comparison. Applying the relational language TituRel to such topo-
logical concepts allows to study and also visualize them.

Keywords. relational mathematics, homomorphism, topology, existential image,
continuity.

1 Prerequisites

We will work with heterogeneous relations and provide a general reference to
[Sch11a], but also to the earlier [SS89,SS93]. Our operations are, thus, binary
union “∪”, intersection “∩”, composition “ ; ”, unary negation “ ”, transpo-
sition or conversion “ T ”, together with zero-ary null relations “ ”, universal
relations “ ”, and identities “ ”. A heterogeneous relation algebra

– is a category wrt. composition “; ” and identities ,
– has as morphism sets complete atomic boolean lattices with ∪, ∩, , , ,⊆,
– obeys rules for transposition T in connection with the latter two concepts

that may be stated in either one of the following two ways:

Dedekind rule:
R;S ∩ Q ⊆ (R ∩ Q;ST); (S ∩ RT;Q)

Schröder equivalences:
A;B ⊆ C ⇐⇒ AT;C ⊆ B ⇐⇒ C;BT ⊆ A

The two rules are equivalent in the context mentioned. Many rules follow out of
this setting; not least that mappings f may be shunted, i.e. that A;f ⊆ B ⇐⇒
A ⊆ B;fT.

2 Gunther Schmidt

1.1 Quotient forming

Whoever has a multiplication operation is inclined to ask for division. Division
of relations with common source is indeed possible to the following extent:

R;X = S has a solution X precisely when S ⊆ R;RT;S,

or else when S = R;RT;S. Among all solutions of R;X = S the greatest is RT;S.

Often this is turned into the operation R\S := RT;S of forming the left residuum
— as in division allegories. An illustration of the left residuum is as follows:

S =

J
a
n

F
eb

M
a
r

A
p
r

M
ay

J
u
n

J
u
l

A
u
g

S
ep

O
ct

N
ov

D
ec

US
French

German
British
Spanish




0 0 0 1 0 1 1 1 0 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 1 0 0 0 1
1 1 0 0 0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 0




R =

A K Q J 1
0

9 8 7 6 5 4 3 2
US

French
German
British
Spanish




0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 0
0 1 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 1 0 1




J
a
n

F
eb

M
a
r

A
p
r

M
ay

J
u
n

J
u
l

A
u
g

S
ep

O
ct

N
ov

D
ec

A
K
Q
J
10
9
8
7
6
5
4
3
2




1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 1 1 0 0 0 0
1 1 0 0 1 1 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0




R\S

Left residua show how columns of the relation R below the fraction backslash
are contained in columns of the relation S above, i.e., some sort of subjunction.

As an often used term built upon residua, the symmetric quotient of two relations

with common source has been introduced as syq (R,S) := RT;S ∩ RT
;S. The

illustration of the symmetric quotient is as follows:

R =

A K Q J 1
0

9 8 7 6 5 4 3 2

US
French

German
British
Spanish




0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 0
0 1 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 1 0 1




S =

J
a
n

F
eb

M
a
r

A
p
r

M
ay

J
u
n

J
u
l

A
u
g

S
ep

O
ct

N
ov

D
ec

US
French

German
British
Spanish




0 0 0 1 0 1 1 1 0 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 1 0 0 0 1
1 1 0 0 0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 0




J
a
n

F
eb

M
a
r

A
p
r

M
ay

J
u
n

J
u
l

A
u
g

S
ep

O
ct

N
ov

D
ec

A
K
Q
J
10
9
8
7
6
5
4
3
2




0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




syq (R,S)

Linking functional programming and topology 3

The symmetric quotient shows which columns of the left are equal to columns
of the right relation in syq (R,S), with S conceived as the denominator.

It is extremely helpful that the symmetric quotient enjoys certain cancellation
properties. These are far from being broadly known. Just minor side conditions
have to be observed. In any of the following propositions correct typing is as-
sumed. What is more important is that one may calculate with the symmetric
quotient in a fairly traditional algebraic way. Proofs may be found in [Sch11a].

1.1 Proposition. Arbitrary relations A,B,C satisfy in analogy to a · b
a
= b

i) A;syq (A,B) = B ∩ ;syq (A,B),
ii) syq (A,B) surjective =⇒ A;syq (A,B) = B.

The analogy holds except for the fact that certain columns are “cut out” or are
annihilated when the symmetric quotient fails to be surjective — meaning that
certain columns of the first relation fail to have counterparts in the second.

1.2 Proposition. Arbitrary relations A,B,C satisfy in analogy to b
a
· c
b
= c

a

i) syq (A,B);syq (B,C) = syq (A,C) ∩ syq (A,B);

= syq (A,C) ∩ ;syq (B,C)
ii) If syq (A,B) is total, or if syq (B,C) is surjective, then

syq (A,B);syq (B,C) = syq (A,C).

1.2 Domain construction

The relational language TituRel (see [Sch03,Sch11b]) makes use of characteri-
zations up to isomorphism and bases domain constructions on these. This applies
to the obvious cases of direct products (tuple forming) with projections named
π, ρ and direct sums (variant handling). It then enables the construction of natu-
ral projections to a quotient modulo an equivalence and the extrusion of a subset
out of its domain, so as to have both of them as “first-class citizens” among the
domains considered — not just as “dependent types”.

Along with the direct product, we automatically have the Kronecker product of
any two relations and (when sources coincide) the fork operator for relations,

(R©× S) := π;R;π′T ∩ ρ;S;ρ′
T

and (P ©< Q) := P ;π′T ∩ Q;ρ′
T
.

Here, we include the direct power. Any relation ε satisfying

syq (ε, ε) ⊆ , syq (ε,R) surjective for every relation R starting in X.

is called a membership relation and its codomain the direct power of X.

4 Gunther Schmidt

DirPow x

Member x
2X

ε : X −→ 2X

X

Y

R

ε
P X)(

syq (ε,R)

Above it is indicated how this is represented in the language. One will observe the
1st-order style of the definition — however quantifying over relations. Classically,
the characterisation of the powerset requires 2nd-order.

One will also observe the fractal structure in the following example of a mem-
bership relation, together with an interesting interplay between subsets U , their
ordering Ω := εT;ε, and elements like e in the powerset:

2.1 Standard 15

U = ε;e e = syq(ε, U)

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

a
b
c
d



0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1







0
1
0
1




(0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0) = eT

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{a}
{b}
{a,b}
{c}
{a,c}
{b,c}
{a,b,c}
{d}
{a,d}
{b,d}
{a,b,d}
{c,d}
{a,c,d}
{b,c,d}
{a,b,c,d}




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1







0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0




Subset U and corresponding point e in the powerset via ε,Ω

Then the direct product together with the direct power allow in particular to
define join and meet in the powerset concisely as

M := syq ((ε©< ε) , ε) J := syq ((ε©< ε) , ε)

which then satisfies such nice formulae as

(ε©< ε) ;M = ε
syq (X, (ε©< ε));M = syq (X, (ε©< ε) ;M)

2 Recalling concepts of topology

Now we apply the techniques mentioned for topological structures. Topology may
be defined via open or closed sets, neighborhoods, transition to open kernels, etc.
We show that at least the neighborhood version — in the form given by Felix
Hausdorff — shows an inherently “linear” configuration, which is apt to being
formulated using relations.

Linking functional programming and topology 5

We recall that a set X endowed with a system U(p) of subsets for every p ∈ X
— called neighborhoods — is a topological structure, provided

i) p ∈ U for every neighborhood U ∈ U(p)
ii) If U ∈ U(p) and V ⊇ U , then V ∈ U(p)

iii) If U1, U2 ∈ U(p), then U1 ∩ U2 ∈ U(p) and X ∈ U(p)
iv) For every U ∈ U(p) there is a V ∈ U(p) so that U ∈ U(y) for all y ∈ V .

The same shall now be expressed with membership ε, conceiving U as a relation

ε : X −→ 2X and U : X −→ 2X .

At other occasions, it has been shown that condition (iv), e.g., can semi-formally
be lifted step by step to a relational form:

For every U ∈ U(p) there is a V ∈ U(p) such that U ∈ U(y) for all y ∈ V .

∀p, U : U ∈ U(p) →
(
∃V : V ∈ U(p) ∧

(
∀y : y ∈ V → U ∈ U(y)

))

∀p, U : UpU →
(
∃V : UpV ∧

(
∀y : εyV → UyU

))

∀p, U : UpU →
(
∃V : UpV ∧ ∃y : εyV ∧ UyU

)

∀p, U : UpU →
(
∃V : UpV ∧ εT;UV U

)

∀p, U : UpU →
(
U ;εT;U

)
pU

U ⊆ U ;εT;U

One could see how the lengthy verbose or the predicate logic formula is traced
back to a “lifted” relational version free of quantifiers, that employs a residuum.
Such algebraic versions should be preferred in many respects. They support proof
assisting systems and may be written down in the language TituRel so as to
evaluate terms built with them and, e.g., visualize concepts of this paper. An
example of a neighborhood topology U and the basis of its open sets:

U =

{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b
,d
}

{c
,d
}

{a
,c
,d
}

{b
,c
,d
}

{a
,b
,c
,d
}

a
b
c
d




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1




b d

c

a

This, together with a transfer of the other properties to the relational level,
and using ε derived from the source of U gives rise to the lifting of the initial
Hausdorff definition, thus making it point-free as in:

2.1 Definition. A relation U : X −→ 2X will be called a neighborhood
topology if the following properties are satisfied:

6 Gunther Schmidt

i) U ; = and U ⊆ ε,
ii) U ;Ω ⊆ U ,

iii) (U ©< U) ;M⊆ U ,

iv) U ⊆ U ;εT;U .

Correspondingly, lifting may be executed for various other topology concepts.
We start with the mapping to open kernels, assuming Ω := εT;ε to represent the
powerset ordering.

2.2 Definition. We call a relation K : 2X −→ 2X a mapping-to-open-kernel
topology, if

i) K is a kernel forming, i.e., K ⊆ ΩT, Ω;K ⊆ K;Ω, K;K ⊆ K,
ii) ε;KT is total,

iii) (K©× K) ;M =M;K.

Conditions (i) obviously request that K maps to subsets of the original one,
is isotonic, and is idempotent. Condition (iii) requires K and M to commute:
One may obtain kernels of an arbitrary pair of subsets first and then form their
intersection, or, equivalently, start intersecting these subsets and then getting
the kernel.

2.3 Proposition. The following operations are inverses of one another:

i) Given any neighborhood topology U , the construct K := syq (U , ε) is a
kernel-mapping topology.

ii) Given any kernel-mapping topology K, the construct U := ε;KT results in a
neighborhood topology.

We cannot give the full proof for reasons of space, but indicate a part of it: The
K defined in (i) is certainly a mapping, due to cancellation KT;K ⊆ syq (ε, ε) = ,
and, since forming the symmetric quotient with ε on the right side of syq gives
a total relation by definition of a membership relation.

U(K(U)) = ε; [syq (U , ε)]T = ε;syq (ε,U) = U since syq (ε,X) is surjective

K(U(K)) = syq (ε;KT, ε) = K;syq (ε, ε) = K; = K since K is a mapping

It remains the obligation to prove

Linking functional programming and topology 7

U ; = ,
U ⊆ ε,
U ;Ω ⊆ U ,
(U ©< U) ;M⊆ U ,

U ⊆ U ;εT;U .

⇐⇒

K ⊆ ΩT,
Ω;K ⊆ K;Ω,
K;K ⊆ K,
ε;KT; = ,
(K©× K) ;M =M;K.

A third form of a topology definition runs as follows:

2.4 Definition. A binary vector OV along 2X will be called an open set
topology provided

i) syq (ε,) ⊆ OV syq (ε,) ⊆ OV ,

ii) v ⊆ OV =⇒ syq (ε, ε;v) ⊆ OV for all vectors v ⊆ 2X ,

iii) MT
; (OV ©> OV) ⊆ OV .

With (i), and are declared to be open. The vector v in (ii) determines a
set of open sets conceived as points in the powerset. It is demanded that their
union be open again. According to (iii), intersetion (meet M) applied to two
(i.e., finitely many) open sets must be open.

One may also study the membership restricted to open sets εO := ε ∩ ;OT

V .

All these topology concepts are cryptomorphic — as could be expected. The
transitions below may be written down in TituRel so as to achieve the version
intended. In particular, OV and OD are distinguished, although they are very
similar, namely “diagonal matrix” vs. “column vector” to characterize a subset.

U 7→ K := syq (U , ε) : 2X −→ 2X

K 7→ U := ε;KT : X −→ 2X .

OD 7→ U := ε;OD;Ω

OD 7→ OV := OD;

K,U ,OV 7→ OD := ∩ εT;U = ∩ OV ; = KT;K

One may, thus, obtain the same topology in different forms as it is shown below
for the example given before Definition 2.1:

8 Gunther Schmidt
3.3 Qualifying a topology via its open sets 55

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

a
b
c
d



0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1




{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

a
b
c
d



0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1




{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

a
b
c
d



0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1




{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{a}
{b}
{a,b}
{c}
{a,c}
{b,c}
{a,b,c}
{d}
{a,d}
{b,d}
{a,b,d}
{c,d}
{a,c,d}
{b,c,d}
{a,b,c,d}




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




ε U εO := ε ∩ ;OT
V = ε;K ∩ ε K := syq(U , ε) indicating OD as diagonal

Open sets as membership and open kernel mapping

By the way, there exists also a kernel-forming that doesn’t lead to a topology; it
is not intersection-closed as can be seen from the subsets {a, b} and {b, d} with
intersection {d}:

3.1 General properties of kernel forming 47

(ii) expresses thatK,M commute; slightly modified, however, for a binary and a unary mapping.

K =

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{a}
{b}
{a,b}
{c}
{a,c}
{b,c}
{a,b,c}
{d}
{a,d}
{b,d}
{a,b,d}
{c,d}
{a,c,d}
{b,c,d}
{a,b,c,d}




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




Fig. 3.1.1 Kernel forming, that is only ∩-sub-distributive, i.e., (K©× K) ;M⊆M;K;Ω

We may qualify this as being sub-distributive: When starting from a pair with kernel forming
and intersecting afterwards, one will end above what one reaches when intersecting first and
forming then a kernel.

A first observation is the following counterplay of two relations U ,K, studied before entering
into the topology discussion:

3.1.2 Proposition. Based on an arbitrary membership relation ε : X −→ 2X , we consider a
pair of transitions of the type

U 7→ K := syq(U , ε) : 2X −→ 2X and K 7→ U := ε;KT : X −→ 2X .

i) Such transitions are inverses of one another and K is necessarily a mapping.

ii) The following two equivalences hold:

ε;KT total ⇐⇒ U total

K;K = K ⇐⇒ U = U ;syq(ε,U)

Proof : i) The K defined on the left is certainly a mapping, since KT ;K ⊆ syq(ε, ε) = ,
and, since forming the symmetric quotient with ε on the right side of syq always gives a total
relation.

U(K(U)) = ε; [syq(U , ε)]T = ε;syq(ε,U) = U , since syq(ε,X) is always surjective

K(U(K)) = syq(ε;KT, ε) = K;syq(ε, ε) = K; = K since K is a mapping

ii) The first statement is trivial in view of the definitions. For “=⇒” of the second state-
ment, we show using the definition of U and idempotency U ;syq(ε,U) = ε;KT;KT = ε;KT = U .

“⇐=”: K;K = K;syq(U , ε) = syq(U ;KT, ε) = syq(U ;syq(ε,U), ε) = syq(U , ε) = K

3 Continuity

For a mathematical structure, one routinely defines its structure-preserving map-
pings. Traditionally, this is handled under the name of a homomorphism; it may

Linking functional programming and topology 9

be defined for relational structures as well as for algebraic ones (i.e., those where
structure is described by mappings as for groups, e.g.) in more or less the sa-
me standard way; it is available for a homogeneous as well as a heterogeneous
structure.

One might naively be tempted to study also the comparison of topologies with
the concept of homomorphism; however, this doesn’t work.

The continuity condition turns out to be a mixture of going forward and back-
wards as we will see. We recall the standard definition of continuity.

X

X
2

f
X´

X´
2

´

ϑ
f T

U U

For two given neighborhood topologies U ,U ′ on sets X,X ′, one calls a mapping
f : X −→ X ′

f continuous :⇐⇒ For every point p ∈ X and every U ′ ∈ U ′(f(p)),
there exists a U ∈ U(p) such that f(U) ⊆ U ′.

A first example of a continuous mapping shows two open set bases, arranged as
columns of matrices R1, R2, and the mapping f :

R1 =

a
lp
h
a

b
et
a

g
a
m
m
a

d
el
ta

1
2
3
4
5




1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
0 0 1 0


 f =

a b c d e

1
2
3
4
5




0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
0 0 1 0 0


 R2 =

a
lp
h
a
2

b
et
a
2

g
a
m
m
a
2

a
b
c
d
e




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1




1

3 4

2 5

b

d e

a c

10 Gunther Schmidt

The following is another example of a continuous mapping. Again two open set
bases are arranged as columns of matrices R1, R2 and shown together with the
mapping f :

R1 =

a
lp
h
a

b
et
a

g
a
m
m
a

d
el
ta

ep
si
lo
n

1
2
3
4
5




1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1


 f =

a b c d e

1
2
3
4
5




0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1


 R2 =

a
lp
h
a
2

b
et
a
2

g
a
m
m
a
2

d
el
ta
2

ep
si
lo
n
2

et
a
2

a
b
c
d
e




0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 1




1 3

4

2

5

b

de

a c

Now follows a third example of a continuous mapping, using the same style.

R1 =

a
lp
h
a

b
et
a

g
a
m
m
a

d
el
ta

ep
si
lo
n

1
2
3
4
5




0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 1 1 0 0
0 1 0 0 0


 f =

a b c d

1
2
3
4
5




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0


 R2 =

a
lp
h
a
2

b
et
a
2

g
a
m
m
a
2

d
el
ta
2

a
b
c
d




1 0 0 0
0 0 0 1
0 0 1 0
0 1 1 0




1

3 4

2 5

b

d

a c

According to our general policy, we should try to lift the continuity definition to
a point-free relational level. However, one soon sees that this requires that we
need the concept of an existential and of an inverse image.

Linking functional programming and topology 11

3.1 Existential and inverse image

The lifting of a relation R to a corresponding relation ϑR on the powerset level
has been called its existential image; cf. [Bd96]. (There exist also the power
transpose ΛR and the power relator ζR.)

R

´ε εΛ

ζ

ϑ

X Y

2
X

2
Y

Assuming an arbitrary relation R : X −→ Y with membership relations ε :
X −→ 2X and ε′ : Y −→ 2Y on either side one calls

ϑ := ϑ
R

:= syq (RT;ε, ε′) = εT;R;ε′ ∩ εT;R;ε′,

its existential image. The inverse image is obtained when taking the exi-
stential image of the transposed relation.

It turns out, according to [Bd96,Sch11a], that ϑ is

– (lattice-)continuous wrt. the powerset orders Ω = εT;ε,

– multiplicative: ϑ
Q;R

= ϑ
Q

;ϑ
R

,

– preserves identities: ϑ
X

= 2X ,

– R may be re-obtained from ϑR as R = ε;ϑR;ε′
T
.

It also satisfies, according to [dRE98,Sch11a], the following simulation property.
R and its existential image as well as its inverse image simulate each other via
ε, ε′:

εT;R = ϑ
R

;ε′
T

ε′
T
;RT = ϑ

RT
;εT.

2.2 Power operations 17

X

ε

X
2

R
X´

X´
2

ε´

ϑ
R

ϑ
RT

Ω Ω´

ζ

R =

a b c d

1
2
3
4
5




0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 1
1 0 1 0




ϑR =

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{1}
{2}
{1,2}
{3}
{1,3}
{2,3}
{1,2,3}
{4}
{1,4}
{2,4}
{1,2,4}
{3,4}
{1,3,4}
{2,3,4}
{1,2,3,4}

{5}
{1,5}
{2,5}
{1,2,5}
{3,5}
{1,3,5}
{2,3,5}
{1,2,3,5}
{4,5}
{1,4,5}
{2,4,5}
{1,2,4,5}
{3,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




ϑRT =

{} {1
}

{2
}

{1
,2
}

{3
}
{1

,3
}

{2
,3
}

{1
,2

,3
}

{4
}

{1
,4
}

{2
,4
}

{1
,2

,4
}

{3
,4
}

{1
,3

,4
}

{2
,3

,4
}

{1
,2

,3
,4
}

{5
}
{1

,5
}

{2
,5
}

{1
,2

,5
}

{3
,5
}

{1
,3

,5
}

{2
,3

,5
}

{1
,2

,3
,5
}

{4
,5
}

{1
,4

,5
}

{2
,4

,5
}

{1
,2

,4
,5
}

{3
,4

,5
}

{1
,3

,4
,5
}

{2
,3

,4
,5
}

{1
,2

,3
,4

,5
}

{}
{a}
{b}
{a,b}
{c}
{a,c}
{b,c}
{a,b,c}
{d}
{a,d}
{b,d}
{a,b,d}
{c,d}
{a,c,d}
{b,c,d}
{a,b,c,d}




1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0
0 1 0 0
0 1
0 1 0 0
0 1




Fig. 2.2.1 Existential and inverse images

12 Gunther Schmidt

2.2 Power operations 17

X

ε

X
2

R
X´

X´
2

ε´

ϑ
R

ϑ
RT

Ω Ω´

ζ

R =

a b c d

1
2
3
4
5




0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 1
1 0 1 0




ϑR =

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{1}
{2}
{1,2}
{3}
{1,3}
{2,3}
{1,2,3}
{4}
{1,4}
{2,4}
{1,2,4}
{3,4}
{1,3,4}
{2,3,4}
{1,2,3,4}

{5}
{1,5}
{2,5}
{1,2,5}
{3,5}
{1,3,5}
{2,3,5}
{1,2,3,5}
{4,5}
{1,4,5}
{2,4,5}
{1,2,4,5}
{3,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




ϑRT =

{} {1
}

{2
}

{1
,2
}

{3
}
{1

,3
}

{2
,3
}

{1
,2

,3
}

{4
}

{1
,4
}

{2
,4
}

{1
,2

,4
}

{3
,4
}

{1
,3

,4
}

{2
,3

,4
}

{1
,2

,3
,4
}

{5
}
{1

,5
}

{2
,5
}

{1
,2

,5
}

{3
,5
}

{1
,3

,5
}

{2
,3

,5
}

{1
,2

,3
,5
}

{4
,5
}

{1
,4

,5
}

{2
,4

,5
}

{1
,2

,4
,5
}

{3
,4

,5
}

{1
,3

,4
,5
}

{2
,3

,4
,5
}

{1
,2

,3
,4

,5
}

{}
{a}
{b}
{a,b}
{c}
{a,c}
{b,c}
{a,b,c}
{d}
{a,d}
{b,d}
{a,b,d}
{c,d}
{a,c,d}
{b,c,d}
{a,b,c,d}




1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0
0 1 0 0
0 1
0 1 0 0
0 1




Fig. 2.2.1 Existential and inverse images

2.2 Power operations 17

ϑR =

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{1}
{2}
{1,2}
{3}
{1,3}
{2,3}
{1,2,3}
{4}
{1,4}
{2,4}
{1,2,4}
{3,4}
{1,3,4}
{2,3,4}
{1,2,3,4}

{5}
{1,5}
{2,5}
{1,2,5}
{3,5}
{1,3,5}
{2,3,5}
{1,2,3,5}
{4,5}
{1,4,5}
{2,4,5}
{1,2,4,5}
{3,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




The inverse image is obviously not the transpose of the existential image.

2.2 Power operations 17

X

ε

X
2

R
X´

X´
2

ε´

ϑ
R

ϑ
RT

Ω Ω´

ζ

R =

a b c d

1
2
3
4
5




0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 1
1 0 1 0




ϑR =

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{1}
{2}
{1,2}
{3}
{1,3}
{2,3}
{1,2,3}
{4}
{1,4}
{2,4}
{1,2,4}
{3,4}
{1,3,4}
{2,3,4}
{1,2,3,4}

{5}
{1,5}
{2,5}
{1,2,5}
{3,5}
{1,3,5}
{2,3,5}
{1,2,3,5}
{4,5}
{1,4,5}
{2,4,5}
{1,2,4,5}
{3,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




ϑRT =

{} {1
}

{2
}

{1
,2
}

{3
}
{1

,3
}

{2
,3
}

{1
,2

,3
}

{4
}

{1
,4
}

{2
,4
}

{1
,2

,4
}

{3
,4
}

{1
,3

,4
}

{2
,3

,4
}

{1
,2

,3
,4
}

{5
}
{1

,5
}

{2
,5
}

{1
,2

,5
}

{3
,5
}

{1
,3

,5
}

{2
,3

,5
}

{1
,2

,3
,5
}

{4
,5
}

{1
,4

,5
}

{2
,4

,5
}

{1
,2

,4
,5
}

{3
,4

,5
}

{1
,3

,4
,5
}

{2
,3

,4
,5
}

{1
,2

,3
,4

,5
}

{}
{a}
{b}
{a,b}
{c}
{a,c}
{b,c}
{a,b,c}
{d}
{a,d}
{b,d}
{a,b,d}
{c,d}
{a,c,d}
{b,c,d}
{a,b,c,d}




1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0
0 1 0 0
0 1
0 1 0 0
0 1




Fig. 2.2.1 Existential and inverse imagesThe existential image and the inverse image also satisfy formulae with respect
to the powerset orderings:

i) Ω′;ϑfT ⊆ ϑfT ;Ω if f is a mapping,

ii) Ω;ϑ
T

fT = ϑ
f

;Ω′ if f is a mapping.

The proof cannot be given in the present limited environment.

Linking functional programming and topology 13

3.2 Lifting the continuity condition

With the inverse image, we will manage to lift the continuity definition to a
point-free relational level.

3.1 Definition. Consider two neighborhood topologies U : X −→ 2X and
U ′ : X ′ −→ 2X′

as well as a mapping f : X −→ X ′. We call

f U-continuous :⇐⇒ f ;U ′;ϑfT ⊆ U

The semi-formal development of the point-free version out of the predicate-logic
form is rather tricky — and too long to be included here in full length. It is
interesting to observe that one must not quantify over subsets U, V . One should
always restrict to quantify over elements in the powerset u, v.

For every p ∈ X, every V ∈ U ′(f(p)), there is a U ∈ U(p) so that f(U) ⊆ V .

∀p ∈ X : ∀V ∈ U ′(f(p)) : ∃U ∈ U(p) : f(U) ⊆ V
∀p ∈ X : ∀v ∈ 2X′

: U ′
f(p),v −→

(
∃u : Up,u ∧ fT;ε;u ⊆ ε′;v

)

. . .

∀p : ∀u :
(
∃q : ∃v : fp,q ∧ U ′

q,v ∧ [ϑfT]v,u
)
−→ Up,u

∀p : ∀u : [f ;U ′;ϑfT]p,u −→ Up,u
f ;U ′;ϑfT ⊆ U

The equivalent version f ;U ′ ⊆ U ;ϑT

fT is obtained by shunting the mapping ϑfT .

3.3 Remark on comparison of structures in general

Comparison of structures via homomorphisms or structure-preserving mappings
is omnipresent in mathematics and theoretical computer science, be it for groups,
lattices, modules, graphs, or others. Most of these follow a general schema.

Φ

Ψ

1R

1Y

1X 2X

2Y

2R

Two “structures” of whatever kind shall be given by a relation R1 : X1 −→ Y1
and a relation R2 : X2 −→ Y2. With mappings Φ : X1 −→ X2 and Ψ : Y1 −→ Y2
they shall be compared, and we may ask whether these mappings transfer the
first structure “sufficiently nice” into the second one.

14 Gunther Schmidt

The standard mechanism is to call the pair Φ, Ψ a homomorphism from R1 to
R2, if R1;Ψ ⊆ Φ;R2. The two Φ, Ψ constitute an isomorphism, if Φ, Ψ as well
as ΦT, Ψ T are homomorphisms.

If any two elements x, y are related by R1, so are their images Φ(x), Ψ(y) by R2:

∀x ∈ X1 : ∀y ∈ Y1 : (x, y) ∈ R1 → (Φ(x), Ψ(y)) ∈ R2.

This concept is also suitable for relational structures; it works in particular for
a graph homomorphism Φ,Φ — meaning X1 = X2, e.g. — as in the following
example of a graph homomorphism, i.e., a homomorphism of a non-algebraic
structure.

a

b

c

d

e

w

x

y

z

R1 =




a b c d e

a 1 0 0 0 1
b 0 0 0 1 0
c 0 0 0 1 0
d 0 0 0 0 0
e 0 0 1 1 0


 Φ =




w x y z

a 0 1 0 0
b 0 0 1 0
c 0 0 0 1
d 0 0 0 1
e 0 0 1 0


 R2 =




w x y z

w 0 0 1 0
x 0 1 1 1
y 0 0 0 1
z 0 0 0 1




We recall the rolling of homomorphisms when Φ, Ψ are mappings as in

R1;Ψ ⊆ Φ;R2 ⇐⇒ R1 ⊆ Φ;R2;Ψ T ⇐⇒ ΦT;R1 ⊆ R2;Ψ T ⇐⇒ ΦT;R1;Ψ ⊆ R2

If relations Φ, Ψ are not mappings, one cannot fully execute this rolling; there
remain different forms of (bi-)simulations as explicated in [dRE98].

This is where the continuity condition fails. One cannot “roll” in this way and
has just the two forms given above.

3.4 Cryptomorphy of the continuity conditions

Once we have the lifted relation-algebraic form for a neighborhood topology
that uses the inverse image, we will imediately extend it to the other topology
versions.

3.2 Definition. Given sets X,X ′ with topologies, we consider a mapping f :
X −→ X ′ together with its inverse image ϑfT : 2X′ −→ 2X . Then we say that
f is

Linking functional programming and topology 15

i) K-continuous :⇐⇒ KT
2
;ϑfT ⊆ ε2T;fT;ε1;KT

1,
ii) ODcontinuous :⇐⇒ OD2;ϑfT ⊆ ϑfT ;OD1,

iii) OV -continuous :⇐⇒ ϑT

fT
;O′

V ⊆ OV ,

iv) εO-continuous :⇐⇒ f ;εO2
;ϑfT ⊆ εO1 .

The easiest access is to the open sets version: Inverse images of open sets have to
be open again. Continuity with regard to kernel mapping is an ugly condition.

All these versions of continuity can be shown to be equivalent, so that there is
an obligation to prove f is U-continuous ⇐⇒

f is K-continuous ⇐⇒ f is OD-continuous ⇐⇒
f is OV -continuous ⇐⇒ f is εO-continuous

For economy of proof, we formulate this slightly differently. Then an immediate
equivalence is proved, followed by a long cyclic proof.

3.3 Proposition. The various continuity conditions mean essentially the same:

i) U-continuous ⇐⇒ K-continuous
ii) U-continuous =⇒ OD-continuous

iii) OD-continuous =⇒ OV -continuous
iv) OV -continuous =⇒ εO-continuous
v) εO-continuous =⇒ U-continuous

Proof : i) f ;U2;ϑfT ⊆ U1 = ε1;KT
1 assumption and expansion of U1

⇐⇒ f ;ε2;KT
2
;ϑfT ;K1 ⊆ ε1 expanding U2 and shunting

⇐⇒ ε2
T;fT;ε1 ⊆ KT

2
;ϑfT ;K1 Schröder rule

⇐⇒ KT
2
;ϑfT ;K1 ⊆ ε2T;fT;ε1 negated

⇐⇒ KT
2
;ϑfT ⊆ ε2T;fT;ε1;KT

1 shunting again

ii) εT2;U2 ⊆ εT2;fT;f ;U2 = εT2;fT;f ;U2 = ϑfT ;εT1;f ;U2
⊆ ϑfT ;εT1;U1;ϑT

fT = ϑfT ;εT1;U1;ϑT

fT

=⇒ OD2 = ∩ εT2;U2 ⊆ ϑfT ;ϑT

fT ∩ ϑfT ;εT1;U1;ϑT

fT

= ϑfT(∩ εT1;U1);ϑT

fT = ϑfTOD1;ϑT

fT

iii) ϑT

fT
;OV2

= ϑT

fT
;OD2; = ϑT

fT
;OD

T

2
; ⊆ OD

T

1
;ϑT

fT
; = OD1;ϑ

T

fT
; ⊆ OD1; = OV1

iv) f ;εO2
;ϑfT = f ; (ε2 ∩ ;OT

V2
);ϑfT = (f ;ε2 ∩ f ; ;OT

V2
);ϑfT

= (ε1;ϑT

fT ∩ ;OT

V2
);ϑfT

= ε1 ∩ ;OT

V2
;ϑfT [Sch11a, Prop. 5.4]

16 Gunther Schmidt

⊆ ε1 ∩ ;OT

V1
= εO1

v) f ;U2;ϑfT = f ;εO2
;Ω2;ϑfT

⊆ f ;εO2
;ϑfT ;Ω1

⊆ εO1
;Ω1 assumption

= U1

4 Conclusion

This article is part of a more extended ongoing research concerning relational
methods in topology and in programming. Other attempts are directed towards
simplicial complexes, e.g., for pretzels with several holes, the projective plane, or
knot decompositions. An important question is whether it is possible to decide
orientability, e.g., of a manifold without working on it globally. Compare this with
the classic philosophers problem. Modelling the actions of the dining philosophers
is readily available. One will be able to work on the state space based on 10
philosophers or 15. However, this doesn’t scale up, so that local work is necessary.
This work is intended to enhance such studies concerning communication and
protocols.

Acknowledgement. The author gratefully acknowledges fruitful email discus-
sions with Michael Winter.

Literatur

Bd96. Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall
International, 1996.

dRE98. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-
Oriented Proof Methods and their Comparison. Number 47 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

Sch03. Gunther Schmidt. Relational Language. Technical Report 2003-05, Fakultät
für Informatik, Universität der Bundeswehr München, 2003. 101 pages, http:
//mucob.dyndns.org:30531/~gs/Papers/LanguageProposal.html.

Sch11a. Gunther Schmidt. Relational Mathematics, volume 132 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2011. ISBN
978-0-521-76268-7, 584 pages.

Sch11b. Gunther Schmidt. TituRel: Sprache für die Relationale Mathematik. Techni-
cal Report 132, Arbeitsberichte des Instituts für Wirtschaftsinformatik, Uni-
versität Münster, 2011. 11 pages, http://mucob.dyndns.org:30531/~gs/

Papers/Raesfeld2011ExtendedAbstract.pdf.
SS89. Gunther Schmidt and Thomas Ströhlein. Relationen und Graphen. Mathe-

matik für Informatiker. Springer-Verlag, 1989. ISBN 3-540-50304-8, ISBN
0-387-50304-8.

SS93. Gunther Schmidt and Thomas Ströhlein. Relations and Graphs — Discrete
Mathematics for Computer Scientists. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1993. ISBN 3-540-56254-0, ISBN 0-387-
56254-0.

http://mucob.dyndns.org:30531/~gs/Papers/LanguageProposal.html
http://mucob.dyndns.org:30531/~gs/Papers/LanguageProposal.html
http://mucob.dyndns.org:30531/~gs/Papers/Raesfeld2011ExtendedAbstract.pdf
http://mucob.dyndns.org:30531/~gs/Papers/Raesfeld2011ExtendedAbstract.pdf

	toLinking functional programming and topology

