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Abstract

A highly expressive multilevel relational reference language is proposed
that covers most possibilities to use relations in practical applications.
The language is designed to describe work in a heterogeneous setting. It
originated from a Haskell-based system announced in [Sch02], fore-
runners of which were [HBS94,Hat97].

This language is intended to serve a variety of purposes. First, it shall
allow to formulate all of the problems that have so far been tackled us-
ing relational methods providing full syntax- and type-control. Trans-
formation of relational terms and formulae in the broadest sense shall
be possible as well as interpretation in many forms. In the most simple
way, boolean matrices will serve as an interpretation, but also non-
representable models as with the Rath-system may be used. Proofs of
relational formulae in the style of Ralf or in Rasiowa-Sikorski style
are aimed at.

Cooperation and communication around this research was partly spon-
sored by the European Cost Action 274: Tarski (Theory and Appli-
cations of Relational Structures as Knowledge Instruments), which is
gratefully acknowledged.



1 Introduction

When an engineer is about to design an artefact and has to apply
Linear Algebra methods (such as solving systems of linear equations
or determining eigenvalues and eigenvectors), he will approach the
respective computing center and most certainly get the necessary
software. When the matrices considered become boolean matrices,
i.e., relations, the situation changes dramatically. Neither will one
find persons competent in that, nor will there exist commonly ac-
cepted high-quality software. Even formulation of the ideas is often
bound to the respective scientists personal habits of denotation.

A commonly accepted language that covers at least the broad
majority of the topics handled with relational means is not yet avail-
able. It is this situation which is addressed by the present article. As
far as relational research is reported on games, satisfiability, domain
construction, e.g., this is not new — new is the exposition of how to
formulate all this so as to separate it from its interpretation. Other
activities, such as handling elementary graph theory relationally, or
presenting elementary combinatorics to students, made it even more
desirable to arrive at such a language.

Recollecting [HBS94,Hat97,KS00,Sch02,BSW03,Sch03b], a multile-
vel relational reference language should serve a variety of purposes.

– It shall allow to formulate all of the problems that have so far
been tackled using relational methods, thereby offering syntax-
and type-control to reduce the likelihood of running into errors.

– It shall allow to transform relational terms and formulae in order
to optimize these for handling them later efficiently with the help
of some system. In particular, a distinction is made between the
matchable denotation of an operation and its execution.

– There shall exist the possibility to interpret the relational lan-
guage. For this mainly three ways are conceivable. In the most
simple way, one shall be able to attach boolean matrices to the
terms and evaluate them. In a second more sophisticated form,
one shall be enabled to interpret using the RelView system,
thus dealing very efficiently with relations of considerable size
[BvKU96,BBMS98,BBH+99,BH01,BHLM03,Win03]. In a third
variant, interpretation shall be possible using the Rath-system,
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a Haskell-based tool with which also nonrepresentable relation
algebras may be studied.

– It is also intended to be able to prove relational formulae. Again,
several forms shall be possible. In a first variant, a system will
allow proofs in the style of Ralf, a former interactive proof as-
sistent for executing relational proofs [Hat97]. Already now, how-
ever, a variant has been initiated that allows proofs in Rasiowa-
Sikorski style [OS04].

– In order to support people in their work with relations, it shall be
possible to translate relational formulae into TEX-representation
or into some pure Ascii-form. Opposed to these external transla-
tions, also internal ones shall be supported, namely those trans-
lating a relational formula in componentfree form into a form of
first-order predicate logic.

– Finally, additional studies on partialities shall be possible. At-
tempts have been made to embed relation algebras into others,
and thus handle the strict/non-continuous as well as the non-
strict/continuous case in a common framework. This means in
particular to concentrate on the language used and to scrupu-
lously distinguish which operation to apply.

With regard to all these aspects several studies have shown consid-
erable progress, not least concerning system control. All this cannot
be presented in one single article. For the background, we refer to
the underlying reports [KS00,Sch03a].

These underlying reports are written in literate style; they are thus
not just scientific texts but also programs and have been used to thor-
oughly test many of the concepts presented here. For this, we have
used Haskell [HJW+92] as the programming language. Haskell
is by far the language best suited for such structural and transfor-
mational experiments. It is purely functional and now widely ac-
cepted in research and university teaching. For more information
about Haskell see the Haskell WWW site at

URL: http://www.haskell.org/

For solely studying the language to be developed here, we might have
chosen to present it in some grammar. We have, however, supported
our study by many programs to investigate the interdependencies



4

and to check our decisions from various points of view with programs
in Haskell. As notation in Haskell rather closely resembles the
grammar structures, we decided to use it also for presentation pur-
poses.

We are fully aware that many people may not be versed enough in
Haskell. So our plan is to later care for appropriate parser elements
which shall then be bound together using parser combinators to allow
whatever a (reasonably precise) relation syntax is desired.

The article is organized as follows. After this introduction in Ch. 1,
we define the multilevel (elements, vectors, relations) language in
Ch. 2 together with all the syntactic additions such as collection of
syntactic material etc. Finally, theories are introduced as Haskell
data structures. Typing, well-formedness, and the most general types
are studied in Ch. 3. Several ways of translation of terms, not least
to TEX are presented in Ch. 4. Chapter 5 contains the definition
of models as Haskell data structures, followed by all the func-
tions necessary for interpretation in such a model. Chapters 6 and 7
contain various case studies of using the language: Generic construc-
tions, Rasiowa-Sikorski rules. The report ends with an outlook and
some acknowledgments.

2 The Multilevel Language in Haskell

A multilevel relational reference language shall allow to express el-
ements, vectors or subsets of elements, and relations in a heteroge-
neous setting. All syntactic means for this are collected here, includ-
ing the formulation of theories. We refer to the end of this report,
where examples will illustrate the usefulness of some of the con-
structs now to be introduced.

2.1 The Heterogeneous Setting

From the very beginning, we work in a typed or heterogeneous set-
ting. We admit direct products, sums, and powers to be formed
generically. Such typing means that we have to provide for a lan-
guage to formulate basics of a category. This may seem a difficult
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step to start with; it is, however, outweighed by a big advantage: Fi-
nite models are not excluded as they would be in the homogeneous
case.

What one should bear in mind when reading the following data type
definitions is that capital first letters such as in CstO, Elem, Rela

indicate socalled constructors and that the respective data may be
matched one against the other. In the case of infix-notated operators,
the corresponding is indicated with encapsulation in colons, as in
“:***:”.

data CatObjCst = CstO String

data CatObjVar = VarO String | IndexedVarO String Int

data CatObject = OC CatObjCst | OV CatObjVar | DirPow CatObject |

DirPro CatObject CatObject | QuotMod RelaTerm |

DirSum CatObject CatObject | InjFrom VectTerm | UnitOb

Normally, we will be able to give names to the category objects.
When formulating proof rules, we will also need variables for cate-
gory objects. Here and in later cases, we provide for two forms of
variable denotations. The first is just a name while the indexed vari-
able name offers more easily an ever expanding set of variable names.
The categorical standard constructions of forming the direct prod-
uct, direct sum, direct power, as well as the unit object are provided
for. In addition, we generate dependent types when a “subset” is
given of when a quotient is formed. They will require to obey typing
discipline.

2.2 Constants and Variables

When working in first-order predicate logic, one will usually need
denotations for individual variables and constants. In the present
multilevel setting, this applies to all three levels. Therefore, element
constants and element variables as well as predicate constants and
predicate variables will be given and finally relation constants and
relation variables. In our setting, we always bind these together with
their typing. We restrict ourselves to unary predicates represented
by vectors and binary predicates, i.e., relations.
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This will, of course, lead to difficult borderline situations: We are at
the same time working in a first-order predicate logic for the elements
and will via vectors and relations, with the possibility to quantify
over these, open the door to second-order logic a tiny bit.

data ElemConst = Elem String CatObject

data VectConst = Vect String CatObject

data RelaConst = Rela String CatObject CatObject

data FuncConst = Func String CatObject CatObject

data ElemVari = VarE String CatObject | IndexedVarE String Int CatObject

data VectVari = VarV String CatObject | IndexedVarV String Int CatObject

data RelaVari = VarR String CatObject CatObject |

IndexedVarR String Int CatObject CatObject

The function constant may not really be necessary as we have rela-
tion constants. A relational constant is nothing else than a name, the
string, together with the types/objects between which the relation
is supposed to hold. They are, however, not concretely given as we
stay — so far — on the syntactical side. Again, the possibility of
defining indexed variable names is given.

2.3 Terms

All this allows to build first-order predicate logic introducing terms
and formulae on either one of the three levels. According to our nota-
tion, vectors are best conceived as column vectors. From the begin-
ning, we distinguish element terms, vector terms, and relation terms.
Null, universal, and identity relation constants will be given gener-
ically. The generic transitions between the three levels considered
will later need care. VectToElem, e.g., provides the transition from a
vector to the corresponding element in the powerset, while RelaToVect

converts a relation to the corresponding vector in the direct product.

data ElemTerm =

EV ElemVari | EC ElemConst | Pair ElemTerm ElemTerm |

Inj1 ElemTerm CatObject | Inj2 CatObject ElemTerm |

ThatV VectTerm | SomeV VectTerm | ThatR RelaTerm | SomeR RelaTerm |

FuncAppl FuncConst ElemTerm | VectToElem VectTerm |

EFctAppl ElemFct ElemTerm

data VectTerm =

VC VectConst | VV VectVari | RelaTerm :****: VectTerm |
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VectTerm :||||: VectTerm | VectTerm :&&&&: VectTerm |

NegaV VectTerm | NullV CatObject | UnivV CatObject |

SupVect VectSET | InfVect VectSET | PointVect ElemTerm |

Syq RelaTerm VectTerm | RelaToVect RelaTerm |

PowElemToVect ElemTerm | VFctAppl VectFct VectTerm

data RelaTerm =

RC RelaConst | RV RelaVari | RelaTerm :***: RelaTerm |

RelaTerm :|||: RelaTerm | RelaTerm :&&&: RelaTerm |

NegaR RelaTerm | Ident CatObject | NullR CatObject CatObject |

UnivR CatObject CatObject | Convs RelaTerm |

VectTerm :||--: VectTerm | SupRela RelaSET | InfRela RelaSET |

RelaTerm :*: RelaTerm | RelaTerm :\/: RelaTerm |

Pi CatObject CatObject | Rho CatObject CatObject |

Iota CatObject CatObject | Kappa CatObject CatObject |

CASE RelaTerm RelaTerm | Project RelaTerm |

Epsi CatObject | PointDiag ElemTerm | SyQ RelaTerm RelaTerm |

RFctAppl RelaFct RelaTerm

Constructs such as :||||:, :|||:, :&&&&:, :&&&:, :***:, Convs, NegaV,

NegaR don’t need detailed explanation; they resemble union, intersec-
tion, composition, conversion, and negation of vector and relational
terms, resp. The element terms constructed via SomeV, SomeR, ThatV,

ThatR, however, deserve explanation. They are correctly defined only
if, e.g., the vector term vt in ThatV vt denotes a point. In SomeR rt,
the relational term rt must denote a nonempty part of the identity.
Later, typically a proof obligation will be issued to guarantee such
properties.

Further transitions lead from the element level to the others by
PointVect, PointDiag. Given an element term one may generate the cor-
responding “singleton set” vector or diagonal relation “with just one
single element” in the diagonal. The function applications EFctAppl,

VFctAppl, RFctAppl refer to the function definitions to be defined in the
next subsection.

The construct RelaTerm :****: VectTerm is intended to model the Peirce
product. (In our favourite model relations are always boolean ma-
trices [[Bool]], while vectors are lists [Bool] as opposed to one-
column matrices. So we need a different symbol for the mixed prod-
uct.) With Pi, Rho, Pair, generic denotations for projections from a
direct product are introduced; in the same way Iota, Kappa, CASE pro-
vide generic denotations for the injections into a direct sum. For
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these generic constructs see our later Sect. 6. Finally, Epsi gener-
ically denotes the relationship between a set and its powerset. A
(column) vector multiplied via :||--: with a (row) vector will deliver
a relation. Project converts an equivalence to the mapping onto the
quotient.

The operations :\/: and :*: are defined using the other operations.
The first resembles the often discussed fork operator ∇, while the
second expresses the corresponding parallel propagation. Also the
two symmetric quotients Syq, SyQ are defined using other operations.
As we have included them here, one may later match them. When
using such defined constructs, an expansion will always take place
as a first step via expandDefine ...

2.4 Functions

The following are necessary when, e.g., introducing a transitive clo-
sure of a relation by the classical infimum definition. Here it may be
discussed whether also variables for such functions should be intro-
duced.

data ElemFct = EFCT ElemVari ElemTerm

data VectFct = VFCT VectVari VectTerm

data RelaFct = RFCT RelaVari RelaTerm

Often a relation is given descriptively, e.g., saying that it is the least
fixedpoint of some functional. While it is usually not a good idea to
use a purely descriptive definition to compute the relation, it may
well be the starting point for proving that a given algorithm really
works. Using the facility just introduced, it is possible to define the
two example functionals for transitive and difunctional closure. The
function supply gives an appropriate number of indexed variables in-
troducing the necessary category object variables with a sufficiently
high index starting (here) from 99.

transFctl, difuFctl :: RelaTerm -> RelaFct

transFctl r =

let ([],[],[],[rv],[]) = supply 99 0 0 0 1 0

rt = RV rv

in generalTypeOfRelaFct $ RFCT rv (r :|||: (rt :***: rt))
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difuFctl r =

let ([],[],[],[rv],[]) = supply 99 0 0 0 1 0

rt = RV rv

in generalTypeOfRelaFct $

RFCT rv (r :|||: (rt :***: (Convs rt) :***: rt))

When instantiated with R for r, these are translated into TEX as
〈\X −→ R ∪ X ;X〉 〈\XO1,O1 −→ RO1,O1 ∪ XO1,O1

;XO1,O1〉
〈\X −→ R ∪ X ;XT;X〉 〈\XO1,O2 −→ RO1,O2 ∪ XO1,O2

;XO1,O2
T;XO1,O2〉

2.5 Sets of Elements, Vectors, and Relations

In order to be able to write down formulae on least upper bounds,
e.g., also sets of elements, vectors, and relations shall be formed.
They are provided in one of two possible forms.

data ElemSET = VarES String CatObject |

ES ElemVari [Formula] | EX [ElemTerm] CatObject

data VectSET = VarVS String CatObject |

VS VectVari [Formula] | VX [VectTerm] CatObject

data RelaSET = VarRS String CatObject CatObject |

RS RelaVari [Formula] | RX [RelaTerm] CatObject CatObject

Either sets are given by some condition or as an explicit set. For the
explicit sets also the type is provided, a measure which is relevant
only in case the set is void, i.e., in constructs such as RX [] O1 O2.

Using the relation set facility, one may formulate the least fixedpoint
operation.

leastFixedPoint fctl =

let ([],[],[],[rv],[]) = supply 999 0 0 0 1 0

rt = RV rv

relaSet = RS rv [RF $ RFctAppl fctl rt :<==: rt]

in InfRela relaSet

Here the functional is a parameter that we now instantiate in two
ways in order to obtain two definitions for the transitive as well as
for the difunctional closure.
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transClosure = leastFixedPoint transFctl

difuClosure = leastFixedPoint difuFctl

It had obviously been necessary to use formulae which we introduce
next.

2.6 Formulae

Four sorts of formulae are distinguished in order to maintain type
control as long as possible. Only when negation, e.g., is applied to a
formula f = Disjunct g h, it will be handled as a formula: Negated
f. Until that point, i.e. as long as negation is something like A ⊆/ B,
the type is a convenient way of correctness control. In addition, it
allows pattern matching.

data UnivOrExist = Univ | Exis

data ElemForm =

Equation ElemTerm ElemTerm | NegaEqua ElemTerm ElemTerm |

QuantElemForm UnivOrExist ElemVari [Formula]

data VectForm =

VectTerm :<===: VectTerm | VectTerm :>===: VectTerm |

VectTerm :====: VectTerm | VectTerm :<=/=: VectTerm |

VectTerm :==/=: VectTerm | VectTerm :>=/=: VectTerm |

VE VectTerm ElemTerm | VectInSet VectTerm VectSET |

QuantVectForm UnivOrExist VectVari [Formula]

data RelaForm =

RelaTerm :<==: RelaTerm | RelaTerm :>==: RelaTerm |

RelaTerm :===: RelaTerm | RelaTerm :<=/: RelaTerm |

RelaTerm :=/=: RelaTerm | RelaTerm :>=/: RelaTerm |

RelaInSet RelaTerm RelaSET | REE RelaTerm ElemTerm ElemTerm |

QuantRelaForm UnivOrExist RelaVari [Formula]

Element terms may just be equal or unequal, while vector or relation
terms may in addition be compared with regard to containment.

The basic multilevel connection shows up in VE vt et meaning et ∈
vt, i.e., that the element designated by the element term et is con-
tained in the vector designated by the vector term vt, and REE rt

et1 et2 meaning (et1, et2) ∈ rt, or that the element pair (et1,

et2) is in relation rt. Quantification over vectors as unary predi-
cates and relations as binary predicates moderately opens the door
to second-order predicate logic.
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The result type is in all cases intended to be Bool; we have, however,
tried to benefit from typing of vectors and relations as long as possi-
ble. Only now, we bind these three variants of formulae together as
follows.

data FormVari = VarF String | IndexedVarF String Int

data Formula = FV FormVari | EF ElemForm | VF VectForm | RF RelaForm |

Verum | Falsum | Negated Formula |

Implies Formula Formula | SemEqu Formula Formula |

Disjunct Formula Formula | Conjunct Formula Formula

2.7 Theories

We are now in a position to formulate theory presentations.

data Theory =

TH String -- name of the theory

[CatObject] -- carrier set denotations encountered in the theory

[ElemConst] -- element denotations encountered in the theory

[VectConst] -- subset denotations encountered in the theory

[RelaConst] -- relation denotations encountered in the theory

[FuncConst] -- function denotations encountered in the theory

[VectFct] -- vector functions encountered in the theory

[RelaFct] -- relation functions encountered in the theory

[Formula] -- formulae demanded to hold

We have decided to not include an ElemFct as these may easily be
simulated by relations. There exist several auxiliary functions to test
whether a theory is formulated in a correct way. Later one may check
whether some proposed model is indeed a model of the theory.

Over these definitions the usual recursive algorithms are defined. The
syntactical material may be collected with syntMatUsed, accumulat-
ing them as a tuple (category object variables, category object con-
stants, element variables, element constants, vector variables, vector
constants, relation variables, and relation constants). Free and bound
variables may, of course, also be determined.

3 Typing

Every term is supposed to have category objects assigned for typing
purposes. Such a type may be given explicitly. It may, however, also
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be deduced from the construction of the term in question. So we will
often obtain types by reasoning.

3.1 Typing Discipline

As we intend to define a language supporting work with polymor-
phically typed heterogeneous relations, we have to provide for such
reasoning about typing. A corresponding type inference system has
already been proposed in [HK92], mainly based on [Bar92,AG92].

We start determining domain and range of a construct. Collect-
ing this in a type class definition, one may henceforth simply write
dom,cod,typeOf. The typical checks are provided for well-formed-
ness using isWellFormed.

class Typed a where

dom :: a -> CatObject

cod :: a -> CatObject

typeOf :: a -> (CatObject,CatObject)

isWellFormed :: a -> Bool

syntMat :: a -> ([CatObjVar],[CatObjCst],[ElemVari],[ElemConst],

[VectVari], [VectConst],[RelaVari],[RelaConst],

[FuncConst],[FormVari])

freeVars :: a -> ([CatObjVar],[ElemVari],[VectVari],[RelaVari])

Collecting type restrictions starts from, e.g., A; B, from which we
infer that cod A = dom B. When a set of terms and/or formulae is
given, we first collect all such type restrictions. When comparing
category objects in this way, one may find out that they cannot be
made equal, in which case Nothing is returned. If they are equal,
Just [] is returned. In other cases, Just is returned with a list of
category object pairs that need to be unified to make them equal.

3.2 Most General Typing

In a transformation environment one is usually interested in a most
general typing, which may be reached in building terms first with
ever new domains and codomains and afterwards unifying these.
The unification algorithm we apply is an adaptation and implemen-
tation of the article of Krzysztof Apt in the Handbook of Theoretical
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Computer Science, vol. B, [Apt90], so it does not need additional
comments. Once one has found all the type restrictions necessary to
have the terms and formulae well-formed, and has unified them, one
will wish to impose the resulting substitutions. Thereby the not yet
well-formed formulae will be typed in the most general form.

Our approach for writing down a rule will later be as follows. In
the course of writing, we do not check for well-formedness at every
stage. Once the terms are written in total, however, we look for
the necessary restrictions induced by the (set of) terms, or (set of)
formulae, respectively. Only these shall afterwards be imposed to the
formulae involved. This guarantees the most general typing to the
rules.

generalType collectFct imposeFct t =

let tyRe = collectFct t

tyReUnif = case tyRe of

Just x -> unifyCatObjPairsAPT x

Nothing -> Nothing

in case tyReUnif of

Just x -> imposeFct x t

Nothing -> t

4 Translation of Formula

Once terms and/or formulae are built and well-formed, one will im-
mediately start transforming them in one way or the other so as to
achieve certain goals. A main example is transformation within some
proof system. But also transformation to TEX-text or Ascii-text is
some sort of a translation.

4.1 Translation into TEX

To make the type-carrying language proposed here more readable,
we provide for a translation into TEX. In order to facilitate all this
we have defined a type class

class TeX a where

tEX :: Bool -> a -> String
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with tEX allowing to transfer constructs automatically to TEX-nota-
tion. All examples in this article have been generated in this way.
The boolean switch is available in order to switch from a long and
detailed form to a shorter one without typing information.

4.2 Translation to First-Order Form

If in an environment first-order formulae are supposed to be pro-
vided, one often feels that it has been rather cumbersome and error-
prone to write them down. In such cases, one will often formulate in
a higher relational language and afterwards translate to first-order
form — again a translation.

Translation of relational or vector formulae to the element form
means in particular to introduce all the individual variables neces-
sary as well as quantifications which are hidden in the more complex
relational form, e.g.,

A ⊆ B as opposed to ∀x, y : (x, y) ∈ A → (x, y) ∈ B

In our multilevel approach both are legitimate forms. In some sense
one will say that both forms express the same. However, this is true
only for representable relation algebras. But there exist also non-
representable ones. Translation from one form to the other is possible
and is included in the language definition. As we have to generate
the variable names x, y in the course of the translation, we should
take care, that they don’t interfere with already existing ones. We
have, therefore, introduced some accounting on the variables already
used.

For the translation between the levels, there exists a difficult bor-
derline separating first-order logic and relational logic in the form
explained here. When quantifying over vectors, we use subsets and
thereby enter the realm of second-order logic. Nonetheless, these
vectors are handled much in the same way as elements. So it is in-
teresting to observe, where the differences between first-order and
second-order logic actually show up. We simply cannot translate all
of our relational language into the element-oriented form. In partic-
ular, quantifications over vectors or relations cannot be formulated.
Expressivity of the relational logic is, thus, above that of first-order
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logic. On the other hand side, the relational language is burdened
with the existence of non-standard models.

5 Semantics

While we have so far only been concerned with syntax, we will now
offer the opportunity to interpret the language, and the theories we
have defined, in a model. Here a difference arises between the element
layer on one side and the vector and relational layer on the other.
While the element layer may be interpreted in just one way, the
relational and the vector layer sometimes admit two.

Relation algebras may be non-representable ones. These can of-
ten be interpreted using the Rath system. To this end one had to
program code bridging the gap between the two systems, what has
not yet been done.

For a representable relation algebra it is in addition possible, to
use the translation into first-order formulation and then interprete
this resulting in matrices conceived as binary predicates. Two forms
of such an interpretation are possible, from which the first will later
work via emitting a string with which the Relview system may
be triggered. The second uses the following standard mechanisms.
It will, however, not be possible to interprete a non-representable
relation algebra in this standard way.

5.1 The Standard Model

Our standard model is available for a representable relation algebra.
Via an interpretation, the objects get assigned sets in the model,
however, we just mention the cardinalities of the sets as they are
intended to later correspond to row and column entries. Also vector
and relation denotations are assigned concrete versions by the model,
a boolean vector or matrix respectively. The element constant gets
assigned the number of the entry, i.e., an integer.

data InterpretObjs = Carrier CatObject Int

data InterpretCons = InterCon ElemConst Int

data InterpretVect = InterVec VectConst [Bool]

data InterpretRela = InterRel RelaConst [[Bool]]

data InterpretFunc = InterFct FuncConst [Int]

data InterpretVFct = InterVFc VectFct ([Bool] -> [Bool])

data InterpretRFct = InterRFc RelaFct ([[Bool]] -> [[Bool]])
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Only in rare cases as, e.g., studying rooted graphs with the root
distinguished, will we have individual constants. We later provide
an automatic interpretation for null relations, universal relations,
and identity relations. Putting this together, a model is defined as
follows:

data Model = RATHModel String |

RELVIEWModel String |

MO String -- name of the model

[InterpretObjs] -- cardinalities of carrier sets

[InterpretCons] -- numbers of corresponding elements

[InterpretVect] -- subset-interpreting boolean vectors

[InterpretRela] -- relation-interpreting matrices

[InterpretFunc] -- function-interpreting functions

[InterpretVFct] -- interpreted vector functions

[InterpretRFct] | -- interpreted relation functions

The first two variants are just indications where to embed possible
future models extending the present ideas. All the interpreting func-
tions should then respect these variants by introducing the respective
case analyses.

We provide some mechanisms on the model side to check, whether
the sets in question are assigned to objects consistently by the in-
terpretations. Lots of technicalities are necessary to ensure that this
works as it is supposed to, but we do not explain this here.

5.2 Interpretation in the Standard Model

Smaller problems should be investigated without crossing the border-
line to other systems such as RelView. In these cases, the following
interpretation may be taken. Before the interpretation is possible, we
need valuations of the individual variables.

type ValuateElemVari = (ElemVari, Int)

type ValuateVectVari = (VectVari, [Bool])

type ValuateRelaVari = (RelaVari, [[Bool]])

type ElemValuations = [ValuateElemVari]

type VectValuations = [ValuateVectVari]

type RelaValuations = [ValuateRelaVari]

type Env = (ElemValuations,VectValuations,RelaValuations)
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Now we can start interpreting items of the language. We show types
of these functions only, omitting the function bodies which may be
found in the report.

interpretElemConst :: Model -> ElemConst -> Int

interpretVectConst :: Model -> VectConst -> [Bool]

interpretRelaConst :: Model -> RelaConst -> [[Bool]]

Based on these interpretations of constants, interpretation proceeds
as on would expect.

interpretElemTerm :: Model -> Env -> ElemTerm -> Int

interpretVectTerm :: Model -> Env -> VectTerm -> [Bool]

interpretRelaTerm :: Model -> Env -> RelaTerm -> [[Bool]]

interpretVectFct :: Model -> Env -> VectFct -> [Bool] -> [Bool]

interpretRelaFct :: Model -> Env -> RelaFct -> [[Bool]] -> [[Bool]]

interpretVectSET :: Model -> Env -> VectSET -> [[Bool]]

interpretRelaSET :: Model -> Env -> RelaSET -> [ [[Bool]] ]

interpretElemForm :: Model -> Env -> ElemForm -> Bool

interpretVectForm :: Model -> Env -> VectForm -> Bool

interpretRelaForm :: Model -> Env -> RelaForm -> Bool

interpretFormula :: Model -> Env -> Formula -> Bool

One may have observed that generic constructs such as Pi, Rho,

Iota, Kappa, Epsi have not been mentioned here. Interpretations
for these are again generated automatically by the system as shown
by the following example.

obj1 = OC $ CstO "Obj1" -- definition of 2 category objects

obj2 = OC $ CstO "Obj2"

rel1 = Rela "R" obj1 obj1 -- definition of 2 relation constants

rel2 = Rela "S" obj2 obj2

mat1 = [[True, False,True ], -- interpreting boolean matrices

[False,False,False],

[True, False,True ]]

mat2 = [[True, False,False,True ],

[False,True, True, False],

[False,True, True, False],

[True, False,False,True ]]

thTEST = TH "Sparse Test Theory" -- theory definition

[obj1, obj2] [] []

[rel1, rel2] [] [] [] []

moTEST = MO "Simple Test Model" -- model definition

[Carrier obj1 3, Carrier obj2 4] [] []

[InterRel rel1 mat1, InterRel rel2 mat2] [] [] []
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One may now proceed and define π = Pi obj1 obj2, ρ = Rho obj1

obj2 as well as R:*:S = (RC rel1) :*: (RC rel2). With

interpretRelaTerm moTEST ([],[],[]) . . .

all three may be interpreted in an “empty” environment giving as
TEX-output

π =




1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1




R : ∗ : S =




1 0 0 1 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 1
0 1 1 0 0 0 0 0 0 1 1 0
0 1 1 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 0 1 0 0 1




ρ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




6 Generic Constructs as a Running Example

As a running example exhibiting the usefulness of the language pro-
posed, we use the following generic constructs. This will also clarify
them. With these generic constructions, we in addition demonstrate
transition to the TEX-form. In all three cases we start with a math-
ematical explanation in TEX-form. This form, however, is the result
of applying tEX to the characterizing formulae formulated in the
language proposed here.

6.1 Characterisation of Direct Sums

The direct sum in its simplest form resembles a disjoint union of
two sets. When in addition some algebraic structure is present, by
mathematical folklore a “universal characterisation” is given saying
that the sum structure is uniquely characterized up to isomorphism.
Such a universal characterisation ranges over all sets C carrying
the structure in question and all mappings R, S. Some sort of a
preordering of (C, R, S) via the possibility of factorising is introduced
and the definition asserts that some sort of an infimum (A + B, ι, κ)
will be obtained.
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ι

κ

R

S

Φ

Α

Β

Α+Β C

Universal characterisation of the direct sum

This method is, thus, purely descriptional. Even if a sum candidate
is presented, it cannot be tested along this definition: Quantifica-
tion runs over all sets carrying the structure and over all mappings
leading to A, B; the characterisation is not even first-order. So it
is important that, when working with heterogeneous relations, one
may also give an equational definition instead.

Over a long period of time, relation algebraists were accustomed to
work homogeneously; see not least [TG87]. This made concepts diffi-
cult, as the well-established typing mechanisms a computer scientist
applies routinely had to be replaced developing ad hoc mathematics.

It seems that homomorphisms of heterogeneous structures (graphs,
programs, e.g.) have first been formalised relationally during the
Winter term 1974/75 at Technische Universität München in the lec-
tures on Graphentheorie by Gunther Schmidt. The notes [SS75] of
these have been printed as an internal report of the Institut für In-
formatik. This was then used in [Sch76,Sch77,Sch81a,Sch81b].

Once homomorphisms had been formalised, the characterising for-
mulae for direct sums, direct products, and direct powers were for-
mulated and could further be investigated in diploma theses at the
Technische Universität München. Initiated by Gunther Schmidt to-
gether with Rudolf Berghammer, such theses were carried out in
[Taf82,Car82,Zie83] by Ingrid Taferner, Rodrigo Cardoso, and Hans
Zierer.

The first publication of the equational characterisations seems to
have been presented with the series of publications [BSZ86,TS87] and
[SBZ87,SS89,BSZ90,SS93], and not least [BZ86,Zie88,Zie91,Gri96],
which followed the diploma theses mentioned.
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The sum-characterising formulae — in a short and in a long version
with type information — are as follows.

ι; ιT = ,

κ; κT = ,

ι; κT ⊆ ,

ιT; ι ∪ κT; κ =

ιO1,O1+O2
; ιT

O1,O1+O2
= O1 ,

κO2,O1+O2
; κT

O2,O1+O2
= O2 ,

ιO1,O1+O2
; κT

O2,O1+O2
⊆ O1O2 ,

ιT
O1,O1+O2

; ιO1,O1+O2 ∪ κT
O2,O1+O2

; κO2,O1+O2

= O1+O2

It is also possible to first translate to first-order form and then to
TEX, making formulae much clumsier:

〈∀x : 〈∀y : 〈∃u : (x, u) ∈ ι ∧ (y, u) ∈ ι〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (x, v) ∈ ι〉〉,

〈∀x : 〈∀y : 〈∃u : (x, u) ∈ κ ∧ (y, u) ∈ κ〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (x, v) ∈ κ〉〉,

〈∀x : 〈∀y : ¬ (〈∃u : (x, u) ∈ ι ∧ (y, u) ∈ κ〉)〉〉,

〈∀x : 〈∀y : 〈∃u : (u, x) ∈ ι ∧ (u, y) ∈ ι〉 ∨
〈∃u : (u, x) ∈ κ ∧ (u, y) ∈ κ〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (v, x) ∈ ι〉 ∨ 〈∃v : (v, x) ∈ κ〉〉

In our language an equational universal characterisation may be for-
mulated. Two category objects are bound together using two injec-
tive mappings ι, κ satisfying the following formulae

sumCharacterizingFormulae o1 o2 =

let iota = Iota o1 o2

kappa = Kappa o1 o2

iotaT = Convs iota

kappaT = Convs kappa

iiT = iota :***: iotaT

kkT = kappa :***: kappaT

iTi = iotaT :***: iota

kTk = kappaT :***: kappa

ikT = iota :***: kappaT

in [RF $ iiT :===: Ident o1,

RF $ kkT :===: Ident o2,

RF $ ikT :<==: NullR o1 o2,

RF $ iTi :|||: kTk :===: Ident (DirSum o1 o2)]
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sumTheory o1 o2 = TH "Sum-Theory" [o1,o2] [] [] [] [] [] []

(sumCharacterizingFormulae o1 o2)

6.2 Characterization of Direct Products

In a closely related form also direct products may be formed. To
this end two surjective mappings π, ρ are used satisfying in a long
or short form

π

ρ

R

S

Φ

Α

Β

ΑxΒ C

Universal characterisation of the direct product

πT; π = ,

ρT; ρ = ,

⊆ πT; ρ,

π; πT ∩ ρ; ρT =

πT
O1×O2,O1

; πO1×O2,O1 = O1 ,

ρT
O1×O2,O2

; ρO1×O2,O2 = O2 ,

O1O2 ⊆ πT
O1×O2,O1

; ρO1×O2,O2 ,

πO1×O2,O1
; πT

O1×O2,O1
∩ ρO1×O2,O2

; ρT
O1×O2,O2

= O1×O2

The same formulae are now first translated to first-order form and
then automatically to TEX.

〈∀x : 〈∀y : 〈∃u : (u, x) ∈ π ∧ (u, y) ∈ π〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (v, x) ∈ π〉〉,

〈∀x : 〈∀y : 〈∃u : (u, x) ∈ ρ ∧ (u, y) ∈ ρ〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (v, x) ∈ ρ〉〉,

〈∀x : 〈∀y : 〈∃u : (u, x) ∈ π ∧ (u, y) ∈ ρ〉〉〉,

〈∀x : 〈∀y : 〈∃u : (x, u) ∈ π ∧ (y, u) ∈ π〉 ∧
〈∃u : (x, u) ∈ ρ ∧ (y, u) ∈ ρ〉 =⇒ x = y〉〉 ∧
〈∀x : 〈∃v : (x, v) ∈ π〉 ∧ 〈∃v : (x, v) ∈ ρ〉〉
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prodCharacterizingFormulae o1 o2 =

let ppi = Pi o1 o2

rho = Rho o1 o2

ppiT = Convs ppi

rhoT = Convs rho

ppiTppi = ppiT :***: ppi

rhoTrho = rhoT :***: rho

ppippiT = ppi :***: ppiT

rhorhoT = rho :***: rhoT

in [RF $ ppiTppi :===: Ident o1,

RF $ rhoTrho :===: Ident o2,

RF $ UnivR o1 o2 :<==: (ppiT :***: rho),

RF $ ppippiT :&&&: rhorhoT :===: Ident (DirPro o1 o2)]

prodTheory o1 o2 = TH "Prod-Theory" [o1,o2] [] [] [] [] [] []

(prodCharacterizingFormulae o1 o2)

6.3 Characterization of Direct Powers

Yet another universally characterized construct is the direct power.
It models the is element of relation between a set O and its powerset
P(O). We model this with a relation ε satisfying in short resp. long
form

syq(ε, ε) ⊆ , syq(εO, εO) ⊆ P(O)

∀v : 〈 ⊆ ;syq(ε, v)〉, 〈∀vO ⊆ O : 1I ⊆ 1IP(O)
;syq(εO, vO)〉

O

XR

syQ(   ,R)ε

(O)P
ε

Universal characterisation of the direct power

powerCharacterizingFormulae o1 =

let epsi = Epsi o1

vvv = VarV "v" o1

al = UnivR UnitOb (DirPow o1)

syQEpsiEpsi = SyQ epsi epsi

syQv vv = Syq epsi vv

in [RF (syQEpsiEpsi :<==: (Ident (DirPow o1))),

VF (UnivQuantVectForm vvv

[VF (UnivV UnitOb :<===: (al :****: (syQv (VV vvv))))])]

powerTheory o1 = TH "Power-Theory" [o1] []

[] [] [] [] [] (powerCharacterizingFormulae o1)
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7 Further Applications

Further examples shall demonstrate that quite an area of applica-
tions may be covered. To this end we first formulate the Dedekind
and Schröder rules. Then hints are given to Rasiowa-Sikorski style
proofs.

7.1 Dedekind and Schröder Formulae

As an example we consider the Dedekind formula. It is first built
without care on typing, i.e., at every point a new type is assumed.
Then we correct these types according to the restrictions the ar-
chitecture of the Dedekind construct imposes and get the correctly
typed version.

First, however, we provide for an automatic object, variable, and
constant supply. It is indispensable in order to avoid interference
between variables in rules and in the items one is going to apply the
rules to. By determining the maximum index used in the item and
then putting all the rule variables above that start index, one will
avoid such problems.

dedekindForm sI =

let ([],[],[],[pv,qv,rv],_) = supply sI 0 0 0 3 0

[p,q,r] = map RV [pv,qv,rv]

in (p :***: q :&&&: r) :<==:

((p :&&&: (r :***: (Convs q)) :***: (q :&&&: (Convs p :***: r))))

correctDedekindRelaForm = generalTypeOfRelaForm $ dedekindForm 15

Printing dedekindForm 1 without determining the general type first
shows that ever new category object variables are taken and the
result is not well-formed.

Ao2,o5
;Bo3,o6∩Co4,o7 ⊆ (Ao2,o5∩Co4,o7

;Bo3,o6

T);(Bo3,o6∩Ao2,o5

T
;Co4,o7)

In contrast the correctDedekindRelaForm is printed in short as well
as in long form as follows:

A; B ∩ C ⊆ (A ∩ C ; BT); (B ∩ AT; C)
AO1,O2

; BO2,O3 ∩ CO1,O3

⊆ (AO1,O2∩CO1,O3
;BO2,O3

T);(BO2,O3∩AO1,O2

T
;CO1,O3)

As a corresponding example we now show the Schröder rules.
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schroederAFormula sI =

let [a,b,c] = map RV $ take 3 $ aRVS sI

ab = a :***: b

aTcBar = Convs a :***: (NegaR c)

in generalTypeOfFormula $

SemEqu (RF (ab :<==: c)) (RF (aTcBar :<==: (NegaR b)))

schroederBFormula sI =

let [a,b,c] = map RV $take 3 $ aRVS sI

ab = a :***: b

cBarbT = NegaR c :***: (Convs b)

in generalTypeOfFormula $

SemEqu (RF (ab :<==: c)) (RF (cBarbT :<==: (NegaR a)))

Their TEX-representations with and without typing are

A; B ⊆ C ←→ AT; C ⊆ B
AO1,O2; BO2,O3 ⊆ CO1,O3 ←→ AO1,O2

T
; CO1,O3 ⊆ BO2,O3

A; B ⊆ C ←→ C ; BT ⊆ A
AO1,O2; BO2,O3 ⊆ CO1,O3 ←→ CO1,O3; BO2,O3

T ⊆ AO1,O2

7.2 Proofs in Rasiowa-Sikorski Style

There is a Polish tradition of proving relational formulae in Rasiowa-
Sikorski style. To this end one uses rules such as

∪ xP ∪ Qy

xPy, xQy

;
xP ; Qy

xPp, xP ; Qy | pQy, xP ; Qy

where p is an arbitrary variable

which are applied in an expanding direction so as to obtain Rasiowa-
Sikorski trees. In these trees one will observe whether all subtrees are
“closed”. A leaf is closed when it is obviously true since a relational
expression together with its negative is available. A non-leaf trees is
closed if all its subtrees are.
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DC = C

DC ⊆ C

xDCy, xCy

| C ⊆ DC

One will easily recognize that the vertical bar between the subtrees
means and. The variables x, y which appear when switching from
the relational to the elementwise consideration are universally quan-
tified where comma-separation means or. Such a Rasiowa-Sikorski
proof system heavily needs a language together with a system as
proposed here to support rule application as well as to present trees
in a comprehendable form.

8 Outlook

Over the years there has been a considerable interest of the author
to be able to use relations as boolean matrices in the same way as
real or complex matrices in tasks such as solving a linear equation
or determining an eigenvalue are used by an engineer. This lead my
group to initiate several studies as student work, diploma theses, or
as byproducts of doctoral theses. During the last two years, when
I was member of the Tarski group (the European Cost Action
274: Theory and Applications of Relational Structures as Knowledge
Instruments) my impression that such techniques should be devel-
oped grew even further. I learned that in many application fields —
as well as distributed over many locations — considerable but still
incoherent work was in progress.

It is this situation which is addressed by the present proposal.
The relational language is intended to be some sort of a reference
language. Colleagues are expressly invited to use it, discuss it, and
contribute to it. It is still open for discussion, not least regarding
the notation chosen here. The proposal is still incomplete as some
cases are not yet programmed. The multitude of case decompositions
is far from having been tested thoroughly. On the other hand, the
Haskell side of this literate program is heavily used in a diversity of
environments — at least by the author. So it will gradually improve.
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Several future developments are conceivable, some of which have al-
ready been studied to a certain extent. First, a paper on a Rasiowa-
Sikorski style proof system for relational theories is close to being
finished. It will use the language developed here. Secondly, it should
be studied whether it is a good idea to bind the language together
with the well-known Isabelle system to have even superior pos-
sibilities in theorem proving. Thirdly, there will be some student
paper to reengineer the former Ralf system according to these new
standards. As a fourth point, we aim at triggering the RelView ma-
chine out of this language using its Kure interface. As a fifth point
connection to the Rath system will be made so as to be able to in-
terpret the language in completely different models such as interval
algebras, compass algebras, to mention just a few.

We anticipate that there may be objections against the language
Haskell, which is developing rapidly but not yet commonly ac-
cepted. It is on the other hand side the one best suited for the en-
deavour presented here. To resolve the obvious conflict, we aim at
the following procedure. We will try to make the Haskell system
a stand-alone application. It will come equipped with a front end
enabling a user to introduce his or her own favourite notation — as-
sumed to be reasonably expressive — which then will automatically
be translated to the language proposed here and handled using it.
For the results a similar retranslation will be available.
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