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Abstract. The homomorphism and isomorphism theorems traditionally
taught to students in a group theory or linear algebra lecture are by no
means theorems of group theory. They are for a long time seen as general
concepts of universal algebra. This article goes even further and identifies
them as relational properties which to study does not even require the
concept of an algebra. In addition it is shown how the homomorphism
and isomorphism theorems generalize to not necessarily algebraic and
thus relational structures.
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1 Introduction

Relation algebra has received increasing interest during the last years. Many
areas have been reconsidered from the relational point of view, which often pro-
vided additional insight. Here, the classical homomorphism and isomorphism
theorems (see [1], e.g.) are reviewed from a relational perspective, thereby sim-
plifying and slightly generalizing them.

The paper is organized as follows. First we recall the notion of a heterogeneous
relation algebra and some of the very basic rules governing work with relations.
With these, function and equivalence properties may be formulated concisely.
The relational concept of homomorphism is defined as well as the concept of a
congruence which is related with the concept of a multi-covering, which have
connections with topology, complex analysis, and with the equivalence problem
for flow-chart programs. We deal with the relationship between mappings and
equivalence relations. The topics include the so-called substitution property and
the forming of quotients.

Homomorphisms may be used to give universal characterizations of domain
constructions. Starting from sets, further sets may be obtained by construc-
tion, as pair sets (direct product), as variant sets (direct sum), as power sets
(direct power), or as the quotient of a set modulo some equivalence. Another
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construction that is not so easily identified as such is subset extrusion. It serves
to promote a subset of a set, which needs the larger one to exist, to a set of its
own right.

Using the so-called dependent types, quotient set and subset extrusion, we
then formulate the homomorphism and isomorphism theorems and prove them
in a fully algebraic style. The paper ends with hints on coverings with locally
univalent outgoing fans.

2 Homogeneous and Heterogeneous Relation Algebras

A homogeneous relation algebra (R, ∪, ∩, , ;, T) consists of a set R �= ∅,
whose elements are called relations, such that (R, ∪, ∩, ) is a complete, atomic
boolean algebra with zero element , universal element , and ordering ⊆ , that
(R, ; ) is a semigroup with precisely one unit element , and, finally, the Schröder
equivalences Q;R ⊆ S ⇐⇒ QT ;S ⊆ R ⇐⇒ S ;RT ⊆ Q are satisfied.

One may switch to heterogeneous relation algebra, which has been proposed
in, e.g., [2,3]. A heterogeneous relation algebra is a category R consisting of
a set O of objects and sets Mor(A, B) of morphisms, where A, B ∈ O. Composi-
tion is denoted by ; while identities are denoted by A ∈ Mor(A, A). In addition,
there is a totally defined unary operation T

A,B : Mor(A, B) −→ Mor(B, A) be-
tween morphism sets. Every set Mor(A, B) carries the structure of a complete,
atomic boolean algebra with operations ∪, ∩, , zero element A,B, universal el-
ement A,B (the latter two non-equal), and inclusion ordering ⊆ . The Schröder
equivalences—where the definedness of one of the three formulae implies that of
the other two—are postulated to hold.

Most of the indices of elements and operations are usually omitted for brevity
and can easily be reinvented. For the purpose of self-containedness, we recall the
following computational rules; see, e.g., [4,5].

2.1 Proposition.
i) ;R = R; = ;
ii) R ⊆ S =⇒ Q;R ⊆ Q;S, R;Q ⊆ S ;Q;
iii) Q;(R ∩ S) ⊆ Q;R ∩ Q;S, (R ∩ S);Q ⊆ R;Q ∩ S ;Q

Q;(R ∪ S) = Q;R ∪ Q;S, (R ∪ S);Q = R;Q ∪ S ;Q
iv) (RT)T = R;
v) (R;S)T = ST ;RT;
vi) R ⊆ S ⇐⇒ RT ⊆ ST;
vii) R

T
= RT;

viii) (R ∪ S)T = RT ∪ ST;
(R ∩ S)T = RT ∩ ST;

ix) Q;R ∩ S ⊆ (Q ∩ S ;RT);(R ∩ QT;S). (Dedekind rule)

A relation R is called univalent (or a partial function) if RT ; R ⊆ . When
R satisfies ⊆ R ; RT (or equivalently if ⊆ R ; ), then R is said to be
total. If both these requirements are satisfied, i.e., if R resembles a total and
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univalent function, we shall often speak of a mapping. A relation R is called
injective, surjective and bijective, if RT is univalent, total, or both, respectively.
Furthermore

R ⊆ Q, Q univalent, R; ⊇ Q; =⇒ R = Q (*)
The following basic properties are mainly recalled from [4,5].

2.2 Proposition (Row and column masks). The following formulae hold for
arbitrary relations P : V −→ W, Q : U −→ V, R : U −→ W, S : V −→ W ,
provided the constructs are defined.
i) (Q ∩ R; WV );S = Q;S ∩ R; WW ;
ii) (Q ∩ (P ; WU )T);S = Q;(S ∩ P ; WW ).

We now recall a rule which is useful for calculations involving equivalence rela-
tions; it deals with the effect of composition with an equivalence relation with
regard to intersection. For a proof see [4,5].

2.3 Proposition. Let Θ be an equivalence and let A, B be arbitrary relations.

(A;Θ ∩ B);Θ = A;Θ ∩ B ;Θ = (A ∩ B ;Θ);Θ

It is sometimes useful to consider a vector, which is what has at other occasions
been called a right ideal element. It is characterized by U = U ; and thus
corresponds to a subset or a predicate. One may, however, also use a partial
diagonal to characterize a subset. There is a one-to-one correspondence between
the two concepts. Of course, p ⊆ =⇒ p2 = pT = p. The symmetric
quotient has been applied in various applications:

syq(A, B) := AT ;B ∩ A
T
;B

3 Homomorphisms

We recall the concept of homomorphism for relational structures with Fig. 3.1.
Structure and mappings shall commute, however, not as an equality but just as
containment.

Φ

Ψ

R S

Fig. 3.1. Relational homomorphism

3.1 Definition. Given two relations R, S, we call the pair (Φ, Ψ) of relations a
homomorphism from R to S, if Φ, Ψ are mappings satisfying

R;Ψ ⊆ Φ;S.
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The homomorphism condition has four variants
R;Ψ ⊆ Φ;S ⇐⇒ R ⊆ Φ;S ;Ψ T ⇐⇒ ΦT ;R ⊆ S ;Ψ T ⇐⇒ ΦT ;R;Ψ ⊆ S

which may be used interchangeably. This is easily recognized applying the map-
ping properties

ΦT ;Φ ⊆ , ⊆ Φ;ΦT, Ψ T;Ψ ⊆ , ⊆ Ψ ;Ψ T

As usual, also isomorphisms are introduced.

3.2 Definition. We call (Φ, Ψ) an isomorphism between the two relations
R, S, if it is a homomorphism from R to S and if (ΦT, Ψ T) is a homomorphism
from S to R.

The following lemma will sometimes help in identifying an isomorphism.

3.3 Lemma. Let relations R, S be given together with a homomorphism (Φ, Ψ)
from R to S such that

Φ, Ψ are bijective mappings and R;Ψ = Φ;S.
Then (Φ, Ψ) is an isomorphism.

Proof . S ;Ψ T = ΦT ;Φ;S ;Ψ T = ΦT ;R;Ψ ;Ψ T = ΦT ;R.

4 Universal Characterizations

Given a mathematical structure, one is immediately interested in homomor-
phisms, substructures, and congruences. When handling these, there is a char-
acteristic difference between algebraic and relational structures.

Algebraic structures are defined by composition laws such as a binary mul-
tiplication mult: A × A −→ A or the unary operation of forming the inverse
inv: A −→ A. These operations can, of course, be interpreted as relations. The
first example furnishes a “ternary” relation Rmult : (A × A) −→ A, the second,
a binary relation Rinv : A −→ A, and both are univalent and total.

Relational structures are also defined by certain relations, but these need no
longer be univalent or total. Purely relational structures are orders, strictorders,
equivalences, and graphs. Typically, however, mixed structures with both, alge-
braic and relational, features occur, such as ordered fields, for example.

4.1 Standard Domain Constructions

The direct product resembling the pair set construction is given via two generic
relations π, ρ, the left and the right projection, satisfying

πT ;π = , ρT ;ρ = , π;πT ∩ ρ;ρT = , πT ;ρ =
Whenever a second pair π1, ρ1 of relations with these properties should be pre-
sented, one may construct the isomorphism Φ := π;πT

1 ∩ ρ;ρT
1, thus showing that

the direct product is defined uniquely up to isomorphism.
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The direct sum resembling variant set forming (disjoint union) is given via
two generic relations ι, κ, the left and the right injection, satisfying

ι;ιT = , κ;κT = , ιT ;ι ∪ κT;κ = , ι;κT =

Whenever a second pair ι1, κ1 of relations with these properties should be pre-
sented, one may construct the isomorphism Φ := ιT;ι1 ∪ κT;κ1, thus showing that
the direct sum is defined uniquely up to isomorphism.

The direct power resembling powerset construction is given via a generic re-
lation ε, the membership relation, satisfying

syq(ε, ε) ⊆ and that syq(ε, X) is surjective for every relation X

Should a second membership relation ε1 with these properties be presented, one
may construct the isomorphism Φ := syq(ε, ε1), thus showing that the direct
power is defined uniquely up to isomorphism. These constructions are by now
standard; proofs may be found in [4,5].

4.2 Quotient Forming and Subset Extrusion

In addition to these, other domain constructions are possible which are usually
not handled as such. Although relatively simple, they need a bit of care. Known
as dependent types they do not just start with a domain or two, but with an
additional construct, namely an equivalence or a subset.

4.1 Proposition (Quotient set). Given an equivalence Ξ on the set V , one
may generically define the quotient set VΞ together with the natural projection
η : V −→ VΞ postulating both to satisfy

Ξ = η;ηT, ηT ;η = VΞ .

The natural projection η is uniquely determined up to isomorphism: should a
second natural projection η1 be presented, the isomorphism is ( , ηT ;η1).

Proof . Assume two such projections VΞ
η←− V

η1−→ WΞ , for which therefore

Ξ = η1 ;ηT
1, ηT

1 ;η1 = WΞ .

Looking at this setting, the only way to relate VΞ with WΞ is to define Φ := ηT;η1
and proceed showing

ΦT ;Φ = (ηT
1 ;η);(ηT ;η1) by definition of Φ

= ηT
1 ;(η;ηT);η1 associative

= ηT
1 ;Ξ ;η1 as Ξ = η;ηT

= ηT
1 ;(η1 ;ηT

1);η1 as Ξ = η1 ;ηT
1

= (ηT
1 ;η1);(ηT

1 ;η1) associative
= WΞ

; WΞ since ηT
1 ;η1 = WΞ

= WΞ since WΞ
; WΞ = WΞ

Φ;ΦT = VΞ is shown analogously. Furthermore, ( , Φ) satisfies the property of
an isomorphism between η and η1 following Lemma 3.3:

η;Φ = η;ηT ;η1 = Ξ ;η1 = η1 ;ηT
1 ;η1 = η1 ; WΞ = η1
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Not least when working on a computer, one is interested in such quotients as the
quotient set is usually smaller and may be handled more efficiently. The same
reason leads us to consider subset extrusion in a very formal way.

A subset is assumed to exist relatively to some other set so that it is not a
first-class citizen in our realm of domains. With a bit of formalism, however, it
can be managed to convert a subset so as to have it as a set of its own right, a
process which one might call a subset extrusion.

4.2 Proposition (Extruded subset). Given a subset U of some set V , one may
generically define the extruded set DU together with the natural injection χ :
DU −→ V postulating both to satisfy

χ;χT = DU , χT ;χ = V ∩ U ; V,V .
The natural injection χ is uniquely determined up to isomorphism: should a
second natural injection χ1 be presented, the isomorphism is (χ;χT

1, ).

Proof . We have DU
χ−→ V

χ1←−D with the corresponding properties:
χ1 ;χT

1 ⊆ D, χT
1 ;χ1 = V ∩ U ; V,V

and show
ΦT ;Φ = χ1 ;χT ;χ;χT

1 = χ1 ;( V ∩ U ; );χT
1 = χ1 ;χT

1 ;χ1 ;χT
1 = D ; D = D

and analogously also Φ;ΦT = DU . Furthermore, (Φ, ) satisfies the property of
an isomorphism between χ and χ1 using Lemma 3.3:

χ; V = χ = DU
;χ = χ;χT ;χ = χ;( V ∩ U ; ) = χ;χT

1;χ1 = Φ;χ1

A point to mention is that subset extrusion allows to switch from set-theoretic
consideration to an algebraic one. When using a computer and a formula ma-
nipulation system or a theorem prover, this means a considerable restriction in
expressivity which is honored with much better efficiency.

An important application of extrusion is the concept of tabulation introduced
by Roger Maddux. It now turns out to be a composite construction; see [6,7],
e.g. An arbitrary relation R : X −→ Y is said to be tabulated by relations (due
to the following characterization, they turn out to be mappings) P, Q if

P T;Q = R, P T;P = X ∩ R; Y X , QT;Q = Y ∩ RT; XY , P ;P T ∩ Q;QT = X×Y

This may indeed be composed of extruding with χ : DU −→ X × Y the subset
of related pairs out of a direct product

U := (π;R ∩ ρ); Y,X×Y = (π;R ∩ ρ); Y X ;πT = (π;R;ρT ∩ );ρ; Y X ;πT

= (π;R;ρT ∩ ); X×Y,X×Y = (ρ;RT;πT ∩ ); X×Y,X×Y

= (ρ;RT ;πT ∩ );π; XY ;ρT = (ρ;RT ∩ π); XY ;ρT = (ρ;RT ∩ π); X,X×Y

and defining P := χ;π and Q := χ;ρ. This is proved quite easily as follows.
P T ;Q = πT ;χT;χ;ρ = πT ;(π;R;ρT ∩ );ρ

= πT ;(π;R ∩ ρ)
= R ∩ πT ;ρ
= R ∩ = R

P T;P = πT ;χT;χ;π = πT ;( ∩ (π;R ∩ ρ);ρT ;π;πT);π
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= πT ;(π ∩ (π;R ∩ ρ);ρT ;π)
= ∩ πT ;(π;R ∩ ρ);ρT ;π
= ∩ (R ∩ πT ;ρ);ρT ;π = ∩ R; Y X

QT;Q is handled analogously
P ;P T ∩ Q;QT = χ;π;πT ;χT ∩ χ;ρ;ρT ;χT = χ;(π;πT ∩ ρ;ρT);χT = χ; ;χT =

5 Congruences and Multi-coverings

Whenever equivalences behave well with regard to some other structure, we are
accustomed to call them congruences. This is well-known for algebraic structures,
i.e., those defined by mappings on some set. We define it correspondingly for
the non-algebraic case, including heterogeneous relations; i.e., possibly neither
univalent nor total. While the basic idea is known from many application fields,
the following general concepts may be a novel abstraction.

5.1 Definition. Let B be a relation and Ξ, Θ equivalences. The pair (Ξ, Θ) is
called a B-congruence if Ξ ;B ⊆ B ;Θ.

If B were an operation on a given set and we had Ξ = Θ, we would say that B
“has the substitution property with regard to Ξ”. The concept of congruence is
related to the concept of a multi-covering.

5.2 Definition. A homomorphism (Φ, Ψ) from B to B′ is called a multi-
covering, provided the functions are surjective and satisfy Φ ; B′ ⊆ B ; Ψ in
addition to being a homomorphism.

The relationship between congruences and multi-coverings is close and seems not
to have been pointed out yet.

5.3 Theorem.

i) If (Φ, Ψ) is a multi-covering from B to B′, then (Ξ, Θ) := (Φ;ΦT, Ψ ;Ψ T) is a
B-congruence.

ii) If the pair (Ξ, Θ) is a B-congruence, then there exists up to isomorphism at
most one multi-covering (Φ, Ψ) satisfying Ξ = Φ;ΦT and Θ = Ψ ;Ψ T.

Proof . i) Ξ is certainly reflexive and transitive, as Φ is total and univalent. In
the same way, Θ is reflexive and transitive. The relation Ξ = Φ;ΦT is symmetric
by construction and so is Θ. Now we prove

Ξ ;B = Φ;ΦT ;B ⊆ Φ;B′ ;Ψ T ⊆ B ;Ψ ;Ψ T = B ;Θ

applying one after the other the definition of Ξ, one of the four homomorphism
definitions, the multi-covering condition, and the definition of Θ.
ii) Let (Φi, Ψi) be a multi-covering from B to Bi, i = 1, 2. Then

Bi ⊆ ΦT
i
;Φi ;Bi ⊆ ΦT

i
;B ;Ψi ⊆ Bi, and therefore everywhere “=”,
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applying surjectivity, the multi-covering property and one of the homomorphism
conditions. Now we indicate how to prove that (ξ, ϑ) := (ΦT

1 ; Φ2, Ψ
T
1 ; Ψ2) is a

homomorphism from B1 onto B2 — which is then of course also an isomorphism.

ξT ;ξ = ΦT
2 ;Φ1 ;ΦT

1 ;Φ2 = ΦT
2 ;Ξ ;Φ2 = ΦT

2 ;Φ2 ;ΦT
2 ;Φ2 = ; =

B1 ;ϑ = ΦT
1 ;B ;Ψ1;Ψ T

1 ;Ψ2 = ΦT
1 ;B ;Θ;Ψ2 = ΦT

1 ;B ;Ψ2 ;Ψ T
2 ;Ψ2

⊆ ΦT
1 ;Φ2 ;B2 ; = ξ;B2

The multi-covering (Φ, Ψ) for some given congruences Ξ, Θ need not exist in
the given relation algebra. It may, however, be constructed by setting Φ, Ψ to
be the quotient mappings according to the two equivalences Ξ, Θ together with
R′ := ΦT ;R;Ψ .

A multi-covering between relational structures most closely resembles a homo-
morphism on algebraic structures:

5.4 Proposition. A homomorphism between algebraic structures is necessarily
a multi-covering.

Proof . Assume two mappings B, B′ and the homomorphism (Ψ, Φ) from B to
B′, so that B ;Ψ ⊆ Φ; B′. The relation Φ; B′ is univalent, since Φ and B′ are
mappings. The domains B;Ψ ; = = Φ;B′; of B;Ψ and Φ;B′ coincide, because
all the relations are mappings and, therefore, are total. So we may use (*) and
obtain B ;Ψ = Φ;B′.

6 Homomorphism and Isomorphism Theorems

Now we study the homomorphism and isomorphism theorems (see [1], e.g.) tra-
ditionally offered in a course on group theory or on universal algebra from the
relational point of view. In the courses mentioned, R, S are often n-ary mappings
such as addition and multiplication. In Fig. 6.1, we are more general allowing
them to be relations, i.e., not necessarily mappings. The algebraic laws they
satisfy in the algebra are completely irrelevant.

R
S

Ξ

Ξ1

2

ϕ

ϕ

1

2

Θ

Θ

1

2

Fig. 6.1. Basic situation of the homomorphism theorem

6.1 Proposition (Homomorphism Theorem). Let a relation R be given with
an R-congruence (Θ2, Θ1) as well as a relation S together with an S-congruence
(Ξ2, Ξ1). Assume a multi-covering (ϕ2, ϕ1) from R to S such that at the same
time we have Θi = ϕi ;Ξi ;ϕT

i for i = 1, 2; see Fig. 6.1. Introducing the natural
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projections ηi for Θi as well as δi for Ξi, one has that ψi := ηT
i

;ϕi ;δi, i = 1, 2,
establish an isomorphism from R′ := ηT

2 ;R;η1 to S′ := δT
2 ;S ;δ1.

Proof . The equivalences (Θ2, Θ1) satisfy Θ2 ;R ⊆ R;Θ1 while (Ξ2, Ξ1) satisfy
Ξ2 ; S ⊆ S ; Ξ1. Furthermore, we have that (ϕ2, ϕ1) are surjective mappings
satisfying R;ϕ1 ⊆ ϕ2;S for homomorphism and R;ϕ1 ⊇ ϕ2;S for multi-covering.

R
S

Ξ

Ξ1

2

Θ

Θ

1

2

η

η1

2
δ

δ1

2 SR

ψ2

ψ1

ϕ1

ϕ2

Fig. 6.2. Natural projections added to Fig. 6.1

The ψi are bijective mappings, which we prove omitting indices:

ψT ;ψ = (ηT ;ϕ;δ)T ;ηT ;ϕ;δ by definition
= δT ;ϕT ;η;ηT ;ϕ;δ executing transposition
= δT ;ϕT ;Θ;ϕ;δ natural projection η
= δT ;ϕT ;ϕ;Ξ ;δ multi-covering
= δT ;Ξ ;δ as ϕ is surjective and univalent
= δT ;δ;δT ;δ = ; = natural projection δ

and

ψ;ψT = ηT ;ϕ;δ;(ηT ;ϕ;δ)T by definition
= ηT ;ϕ;δ;δT ;ϕT ;η transposing
= ηT ;ϕ;Ξ ;ϕT ;η natural projection δ
= ηT ;Θ;η property of ϕ wrt. Θ, Ξ
= ηT ;η;ηT ;η = ; = natural projection η

Proof of the isomorphism property:

R′;ψ1 = ηT
2 ;R;η1 ;ηT

1 ;ϕ1 ;δ1 by definition
= ηT

2 ;R;Θ1 ;ϕ1 ;δ1 natural projection η1
= ηT

2 ;R;ϕ1 ;Ξ1 ;ϕT
1 ;ϕ1 ;δ1 property of ϕ wrt. Θ, Ξ

= ηT
2 ;R;ϕ1 ;Ξ1 ;δ1 as ϕ1 is surjective and univalent

= ηT
2 ;ϕ2 ;S ;Ξ1 ;δ1 multi-covering

= ηT
2 ;ϕ2 ;Ξ2;S ;Ξ1;δ1 S ;Ξ1 ⊆ Ξ2 ;S ;Ξ1 ⊆ S ;Ξ1;Ξ1 = S ;Ξ1

= ηT
2 ;ϕ2 ;δ2;δT

2;S ;δ1 ;δT
1 ;δ1 natural projections

= ηT
2 ;ϕ2 ;δ2;S′;δT

1 ;δ1 definition of S′

= ηT
2 ;ϕ2 ;δ2;S′ as δ1 is surjective and univalent

= ψ2 ;S′ definition of ψ2

According to Lemma 3.3, this suffices for an isomorphism.
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One should bear in mind that this proposition was in several respects slightly
more general than the classical homomorphism theorem: R, S need not be map-
pings, nor need they be homogeneous relations, Ξ was not confined to be the
identity congruence, and not least does relation algebra admit non-standard
models.

6.2 Proposition (First Isomorphism Theorem). Let a homogeneous relation
R on X together with an equivalence Ξ and a non-empty subset U . Assume
that U is contracted by R and that Ξ is an R-congruence:

RT ;U ⊆ U and Ξ ;R ⊆ R;Ξ.
Now extrude both, U and its Ξ-saturation Ξ;U so as to obtain natural injections

ι : Y −→ X and λ : Z −→ X ,
universally characterized by (see Fig. 6.3)

ιT ;ι = X ∩ U ; , ι;ιT = Y ,
λT ;λ = X ∩ Ξ ;U ; , λ;λT = Z .

On Y and Z, we consider the derived equivalences ΞY := ι;Ξ;ιT and ΞZ := λ;Ξ;λT

and in addition their natural projections η : Y −→ YΞ and δ : Z −→ ZΞ . In a
standard way, restrictions of R may be defined, namely

S := ηT ;ι;R;ιT ;η and T := δT ;λ;R;λT ;δ.
In this setting, ϕ := δT ;λ;ιT ;η gives an isomorphism (ϕ, ϕ) between S and T .

R

S

Ξ

ι λ

η

X

ZY

δ

T

ΞY ΞZ

ϕ

Fig. 6.3. Situation of the First Isomorphism Theorem

Proof . We prove several results in advance, namely

Ξ ;ιT ;ι;Ξ = Ξ ;λT ;λ;Ξ, (1)

proved using rules for composition of equivalences:
Ξ ;ιT ;ι;Ξ = Ξ ;( ∩ U ; );Ξ definition of natural injection ι

= Ξ ;Ξ ;( ∩ U ; ;Ξ);Ξ ;Ξ Ξ surjective and an equivalence
= Ξ ;( ∩ Ξ ;U ; );Ξ several applications of Prop. 2.3
= Ξ ;λT ;λ;Ξ definition of natural injection λ

In a similar way follow

ι;λT ;λ = ι ι;R;ιT ;ι = ι;R (2)
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The left identity is proved with
ι;λT ;λ = ι;ιT ;ι;λT ;λ ι is injective and total

= ι;( ∩ U ; );( ∩ Ξ ;U ; ) definition of natural injections
= ι;( ∩ U ; ∩ Ξ ;U ; ) intersecting partial identities
= ι;( ∩ U ; ) = ι;ιT = ι

The contraction condition RT;U ⊆ U and Ξ;R ⊆ R;Ξ allows to prove the right
one for which “ ⊆ ” is obvious. For “ ⊇ ”, we apply ι;ιT = after having shown

ιT ;ι;R = ( ∩ U ; );R = U ; ; ∩ R according to Prop. 2.2
⊆ (U ; ∩ R;

T);( ∩ (U ; )T ;R) Dedekind
⊆ (R ∩ U ; );( ∩ ;U T) since RT;U ⊆ U
= (R ∩ U ; );( ∩ U ; ) as Q ⊆ implies Q = QT

= ( ∩ U ; );R;( ∩ U ; ) according to Prop. 2.2 again
= ιT ;ι;R;ιT ;ι definition of natural injection

With RT ;Ξ ;U ⊆ Ξ ;RT ;U ⊆ Ξ ;U , we get in a completely similar way

λ;R;λT ;λ = λ;R (3)

We show that ϕ is univalent and surjective:
ϕT ;ϕ = ηT ;ι;λT ;δ;δT ;λ;ιT ;η by definition

= ηT ;ι;λT ;ΞZ ;λ;ιT ;η natural projection
= ηT ;ι;λT ;λ;Ξ ;λT ;λ;ιT ;η definition of ΞZ

= ηT ;ι;Ξ ;ιT ;η as proved initially
= ηT ;ΞY ;η definition of ΞY

= ηT ;η;ηT ;η = ; = natural projection
To show that ϕ is injective and total, we start

δ;ϕ;ϕT ;δT = δ;δT;λ;ιT ;η;ηT ;ι;λT ;δ;δT by definition
= ΞZ ;λ;ιT ;ΞY ;ι;λT ;ΞZ natural projections
= λ;Ξ ;λT ;λ;ιT ;ι;Ξ ;ιT ;ι;λT ;λ;Ξ ;λT by definition of ΞY , ΞZ

= λ;Ξ ;ιT ;ι;Ξ ;ιT ;ι;Ξ ;λT as ι;λT ;λ = ι
= λ;Ξ ;λT ;λ;Ξ ;λT ;λ;Ξ ;λT see above
= ΞZ ;ΞZ ;ΞZ = ΞZ by definition of ΞZ

so that we may go on with
ϕ;ϕT = δT ;δ;ϕ;ϕT ;δT ;δ as δ is univalent and surjective

= δT ;ΞZ ;δ as before
= δT ;δ;δT ;δ = ; = natural projection

The interplay of subset forming and equivalence classes is visualized in Fig. 6.4.

ι λ

η δ

Fig. 6.4. Visualization of the First Isomorphism Theorem
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It turns out that ΞY is an RY -congruence for RY := ι;R;ιT:
ΞY ;RY = ι;Ξ ;ιT ;ι;R;ιT by definition

⊆ ι;Ξ ;R;ιT ι is univalent
⊆ ι;R;Ξ ;ιT congruence
⊆ ι;R;ιT ;ι;Ξ ;ιT (2)
⊆ RY ;ΞY definition of RY , ΞY

The construct α := ι;Ξ ;λT ;δ is a surjective mapping:
αT ;α = δT ;λ;Ξ ;ιT ;ι;Ξ ;λT ;δ by the definition just given

= δT ;λ;Ξ ;λT ;λ;Ξ ;λT ;δ (1)
= δT ;ΞZ ;ΞZ ;δ definition of ΞZ

= δT ;ΞZ ;δ ΞZ is indeed an equivalence
= δT ;δ;δT ;δ = ; = δ is natural projection for ΞZ

α;αT = ι;Ξ ;λT ;δ;δT ;λ;Ξ ;ιT by definition
= ι;Ξ ;λT ;ΞZ ;λ;Ξ ;ιT δ is natural projection for ΞZ

= ι;Ξ ;λT ;λ;Ξ ;λT ;λ;Ξ ;ιT definition of ΞZ

= ι;Ξ ;ιT ;ι;Ξ ;ιT ;ι;Ξ ;ιT (1)
= ΞY ;ΞY ;ΞY = ΞY ⊇ definition of equivalence ΞY

With α, we may express S, T in a shorter way:
αT ;RY ;α = δT ;λ;Ξ ;ιT ;RY ;ι;Ξ ;λT ;δ definition of α

= δT ;λ;Ξ ;ιT;ι;R;ιT;ι;Ξ ;λT;δ definition of RY

= δT ;λ;Ξ ;ιT ;ι;R;Ξ ;λT ;δ (2)
= δT ;λ;Ξ ;ιT ;ι;Ξ ;R;Ξ ;λT ;δ Ξ ;R;Ξ ⊆ R;Ξ ;Ξ = R;Ξ ⊆ Ξ ;R;Ξ
= δT ;λ;Ξ ;λT;λ;Ξ ;R;Ξ ;λT;δ (1)
= δT ;ΞZ ;λ;R;Ξ ;λT ;δ as before, definition of ΞZ

= δT ;ΞZ ;λ;R;λT ;λ;Ξ ;λT ;δ (3)
= δT ;ΞZ ;λ;R;λT ;ΞZ ;δ definition of ΞZ

= δT ;δ;δT ;λ;R;λT ;δ;δT ;δ δ is natural projection for ΞZ

= δT ;λ;R;λT ;δ = T δ is a surjective mapping
ηT ;RY ;η = ηT ;ι;R;ιT ;η definition of RY

= S definition of S

Relations α and ϕ are closely related:
α;ϕ = ι;Ξ ;λT ;δ;δT ;λ;ιT ;η definition of α, ϕ

= ι;Ξ ;λT ;ΞZ ;λ;ιT ;η δ is natural projection for ΞZ

= ι;Ξ ;λT ;λ;Ξ ;λT ;λ;ιT ;η definition of ΞZ

= ι;Ξ ;λT ;λ;Ξ ;ιT ;η (2)
= ι;Ξ ;ιT ;ι;Ξ ;ιT ;η (1)
= ΞY ;ΞY ;η definition of ΞY

= η;ηT ;η;ηT ;η = η η is natural projection for ΞY

αT ;η = αT ;α;ϕ see before
= ϕ α is univalent and surjective

This enables us already to prove the homomorphism condition:
T ;ϕ = αT ;RY ;α;αT ;η above results on T, ϕ

= αT ;RY ;ΞY ;η α;αT = ΞY , see above
= αT ;ΞY ;RY ;ΞY ;η ΞY is an RY -congruence
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= αT ;η;ηT ;RY ;η;ηT ;η η is natural projection for ΞY

= ϕ;ηT ;RY ;η η is univalent and surjective
= ϕ;S see above

This was an equality, so that it suffices according to Lemma 3.3.

It will have become clear, that these proofs completely rely on generic con-
structions and their algebraic laws. When elaborated they seem lengthy. With a
supporting system, however, they reduce considerably to a sequence of rules to
be applied.

R
S

Ξ

Ξ
V

U

Θ

Θ

Y

X

η

ηY

X
δ

δV

U SR

V

U

Y

X

ψ

ϕ

α

β

Fig. 6.5. Situation of the Second Isomorphism Theorem

6.3 Proposition (Second Isomorphism Theorem). Let a multi-covering (ϕ, ψ)
between any two relations R : X −→ Y and S : U −→ V be given as well as an R-
congruence (ΞX , ΞY ) and an S-congruence (ΘU , ΘV ). Let also the equivalences
be related through ϕ, ψ as ΞY = ψ ; ΘV ; ψT and ΞX = ϕ ; ΘU ; ϕT. Given this
situation, introduce the natural projections ηX , ηY , δU , δV for the equivalences
and proceed to relations R′ := ηT

X
;R;ηY and S′ := δT

U
;S ;δV . Then α := ηT

X
;ϕ;δU

and β := ηT
Y

;ψ;δV constitute an isomorphism from R′ to S′ (see Fig. 6.5).

Proof . α is univalent and surjective (β follows completely analogous)

αT ;α = (ηT
X

;ϕ;δU )T ;ηT
X

;ϕ;δU by definition
= δT

U
;ϕT ;ηX ;ηT

X
;ϕ;δU transposing

= δT
U

;ϕT ;ΞX ;ϕ;δU natural projection
= δT

U
;ϕT ;ϕ;ΘU ;ϕT ;ϕ;δU condition on mapping equivalences

= δT
U

;ΘU ;δU as ϕ is a surjective mapping
= δT

U
;δU ;δT

U
;δU natural projection

= ; =

We show that α is total and injective (β follows completely analogous)
α;αT = ηT

X
;ϕ;δU ;(ηT

X
;ϕ;δU )T by definition

= ηT
X

;ϕ;δU ;δT
U

;ϕT ;ηX transposing
= ηT

X
;ϕ;ΘU ;ϕT ;ηX natural projection

= ηT
X

;ΞX ;ηX condition on mapping equivalences
= ηT

X
;ηX ;ηT

X
;ηX natural projection

= ; =
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We show that α, β is a homomorphism:
R′;β = ηT

X
;R;ηY ;ηT

Y
;ψ;δV by definition

= ηT
X

;R;ΞY ;ψ;δV natural projection
= ηT

X
;R;ψ;ΘV ;ψT ;ψ;δV condition on mapping equivalences

= ηT
X

;R;ψ;ΘV ;δV as ψ is surjective and univalent
= ηT

X
;ϕ;S ;ΘV ;δV multi-covering

= ηT
X

;ϕ;ΘU ;S ;ΘV ;δV S ;ΘV ⊆ ΘU ;S ;ΘV ⊆ S ;ΘV ;ΘV = S ;ΘV

= ηT
X

;ϕ;ΘU ;S ;δV ;δT
V

;δV natural projection
= ηT

X
;ϕ;ΘU ;S ;δV as δ is a surjective mapping

= ηT
X

;ϕ;δU ;δT
U

;S ;δV natural projection
= α;S′ by definition

This was an equality, so that it suffices according to Lemma 3.3.

7 Covering of Graphs and Path Equivalence

There is another point to mention here which has gained considerable interest
in an algebraic or topological context, not least for Riemann surfaces.

7.1 Proposition (Lifting property). Let a homogeneous relation B be given
together with a multi-covering (Φ, Φ) on the relation B′. Let furthermore some
rooted graph B0 with root a0, i.e., satisfying and BT

0
∗

;a0 = , be given together
with a homomorphism Φ0 that sends the root a0 to a′ := ΦT

0;a0. If a ⊆ ΦT;a′ is
some point mapped by Φ to a′, there exists always a relation Ψ — not necessarily
a mapping — satisfying the properties

Ψ T ;a0 = a and B0 ;Ψ ⊆ Ψ ;B.

Idea of proof: Define Ψ := inf{X | a0;aT ∪ (BT
0 ;X ;B ∩ Φ0 ;ΦT) ⊆ X}.

The relation Ψ enjoys the homomorphism property but fails to be a mapping in
general. In order to make it a mapping, one will choose one of the following two
possibilities:

– Firstly, one might follow the recursive definition starting from a0 and at
every stage make an arbitrary choice among the relational images offered,
thus choosing a fiber.

– Secondly, one may further restrict the multi-covering condition to “locally
univalent” fans in Φ, requiring BT

0 ;Ψ ;B ∩ Φ0 ;ΦT ⊆ to hold for it, which
leads to a well-developed theory, see [2,3,8].

In both cases, one will find a homomorphism from B0 to B. The effect of a flow
chart diagram is particularly easy to understand when the underlying rooted
graph is also a rooted tree, so that the view is not blocked by nested circuits
which can be traveled several times. When dealing with a rooted graph that
does contain such circuits one has to keep track of the possibly infinite number
of ways in which the graph can be traversed from its root. To this end there
exists a theory of coverings which is based on the notion of homomorphy.
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The idea is to unfold circuits. We want to characterize those homomorphisms
of a graph that preserve to a certain extent the possibilities of traversal. We shall
see that such a homomorphism is surjective and that it carries the successor
relation at any point onto that at the image point.

7.2 Definition. A surjective homomorphism Φ: G −→ G′ is called a covering,
provided that it is a multi-covering satisfying BT ;B ∩ Φ;ΦT ⊆ .

The multi-covering Φ compares two relations between the points of G and of G′

and ensures that for any inverse image point x of some point x′ and successor
y′ of x′ there is at least one successor y of x which is mapped onto y′. The new
condition guarantees that there is at most one such y since it requires that the
relation “have a common predecessor according to B, and have a common image
under Φ” is contained in the identity.

8 Concluding Remark

We have reworked mathematical basics from a relational perspective. First the
step from an algebraic to a relational structure has been made. This is so serious
a generalization, that one would not expect much of the idea of homomorphism
and isomorphism theorems to survive. With the concept of a multi-covering, how-
ever, a new and adequate concept seems to have been found. Prop. 5.4 shows that
it reduces completely to homomorphisms when going back to the algebraic case.
For relational structures, a multi-covering behaves nicely with respect to quotient
forming. This relates to earlier papers (see [2,3,8]) where semantics of programs
(partial correctness, total correctness, and flow equivalence, even for systems of
recursive procedures) has first been given a componentfree relational form.
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