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Abstract. In this paper we present two systems for dealing with rela-
tions, the RelView and the Rath system. After a short introduction to
both systems we exhibit their usual domain of application by presenting
some typical examples.

1 Introduction

In the area of logical reasoning, people began soon to look for subsets easier to
handle than, for example, full predicate logic. This attempt resulted not least in
relational reasoning. Already as early as 1915, Leopold Löwenheim postulated
that one should resort to reasoning with relations in the “Gebietekalkul”, and
should “Schröderize” all of mathematics. This approach is certainly burdened
with a loss in expressiveness. Nevertheless, such a loss has been accepted in
the past by many scientists, as everything looks much simpler and it does not
deteriorate expressiveness too much.

When working with relations today, one usually asks for additional computer
aid. Three systems with quite different approaches have been proposed from our
groups the last years. First, there may be just a specialized support in formula
manipulation as in Ralf (see [7, 8]), amended even by some automated features.
A second approach is completely “on the model side” as with RelView. Here,
instead of working with binary predicates that may result in true or false, one
works with boolean matrices. This is a paradigm shift allowing to incorporate
techniques known from linear algebra. In the RelView system this has been
elaborated in great detail to the extent that now something is available which
might be compared to a “numerics package” — this time however for relational
algebra. Thirdly, one may remain on the syntactic side, still avoiding to work
in a model. This means concentrating solely on the algebraic rules valid in the
relational fragment. This characterizes the Rath approach. Logical reasoning is
facilitated since the Rath system offers precise type control. Negation, e.g., need
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not be avoided, as due to the type restriction no unacceptably large result will
show up. Rath also works if some of the rules of relation algebra are abandoned
focusing on Dedekind categories, division allegories, etc. All the common aspects
are handled simultaneously.

Considered in the context of the newly founded COST action 274: TARSKI,
all systems seem extremely well-suited to fostering mechanization. Given the
observation that many people keep inventing ideas to cope with relational struc-
tures arising around real-world phenomena, there is always the task to study
whether these ideas are really helpful — whether they really work. The systems
offer detailed computer help in different directions. Here, we exhibit in which
way they may be used. Since Ralf is currently not maintained, we concentrate
on RelView and Rath.

2 Relation-algebraic Preliminaries

In this section, we briefly introduce the basic concepts of relation algebra, some
special relations, and some relation-algebraic constructions. For more details
concerning the algebraic theory of relations, see e.g., [4, 13].

Given non-empty sets X and Y , the set of all (set-theoretic or concrete)
relations with domain X and range Y is denoted by [X ↔Y ] and we write
R : X ↔Y instead of R ∈ [X ↔Y ]. If X and Y are finite and of cardinality m
and n, respectively, then we may consider R as a Boolean matrix with m rows
and n columns. This matrix interpretation is well-suited for many purposes.
Therefore, in this paper we frequently will use matrix concepts and notations
also for relations. Especially, we will speak of rows and columns, and we will
denote membership by Rxy instead of (x, y) ∈ R.

We assume the reader to be familiar with the basic operations on relations,
viz. RT (transposition), R (negation), R ∪ S (union), R ∩ S (intersection), RS
(composition), R ⊆ S (inclusion, subrelation test), and the special relations O
(empty relation), L (universal relation), and I (identity relation). With the set-
theoretic operations , ∪, ∩, ⊆ and the constants O, L such relations respectively
Boolean matrices form a complete Boolean lattice. Further well-known laws for
operations on relations are, for instance:

RTT
= R Q(R ∩ S) ⊆ QR ∩ QS (RS)T = STRT

The theoretical framework for such laws to hold is that of a relation algebra.
First, such an algebraic structure is a category. I.e., there is a class of objects;
for every pair A, B of objects there is a class RAB of morphisms, and for all triples
RAB , RBC , RAC there is a composition from RAB × RBC to RAC such that
associativity holds and for all RAB there exists precisely one left identity from
RAA and one right identity from RBB . The morphisms are called (abstract)
relations and for their composition and the identity relations we use here the
same notation as for concrete relations. However, this category is extended by
a transposition operation mapping relations from RAB to RBA, where we use



again the notation of the concrete case. Furthermore, the following properties
are demanded to hold:

1. Every class RAB is a complete Boolean lattice with the usual operations
, ∪, ∩, the ordering ⊆, and the least (empty) relation O and greatest

(universal) relation L.
2. For all relations Q ∈ RAB , R ∈ RBC , and S ∈ RAC the following so-called

Schröder equivalences hold:

QTS ⊆ R ⇐⇒ QR ⊆ S ⇐⇒ SRT ⊆ Q (1)

Often, in particular within the RelView system, the following so-called
Tarski rule is required as a further axiom; it is strongly connected to a gen-
eralization of the notion of simplicity known from universal algebra:

LRL = L ⇐⇒ R �= O (2)

Note that for R ∈ RBC in the equality of (2) there occur three possible different
universal relations, viz. from RAB and RCD on the left-hand side and from RAD

on the right-hand, which all are denoted by the same symbol.
Let R be a (concrete or abstract) relation. Then R is called univalent (or

functional respectively a partial mapping) if RTR ⊆ I, and total if RL = L. As
usual, a mapping is a univalent and total relation. Relation R is called injective
if RT is univalent and surjective if RT is total. A bijective relation is an injective
and surjective relation.

Now, let R additionally be homogeneous, i.e., a relation for which the specific
product RR exists. (In the abstract case this is equivalent to R ∈ RAA and in
the concrete case this is equivalent to R : X ↔X.) Then R is called reflexive if
I ⊆ R, transitive if RR ⊆ R, and antisymmetric if R ∩ RT ⊆ I. A partial order
is a reflexive, antisymmetric, and transitive relation. The transitive closure of R
is defined as R+ =

⋃
i>0 Ri, where R0 = I and Ri+1 = RRi for all i ∈ N . Using

R+, the reflexive-transitive closure R∗ of R may be defined through R∗ = I∪R+.
If R+ ⊆ I, then R is said to be acyclic.

A relation v with v = vL is called a (row-) vector. In the case of a concrete
relation v : X ↔Y this condition means that an element from X is either in
relation to none of the elements or to all elements of Y . Hence, v equals a
Cartesian product X ′ × Y , where X ′ is a subset of X. As for a concrete vector
the range is without relevance, we consider in the following frequently vectors
v : X ↔1 with a singleton set 1 = {⊥} as range and write then vx instead of
vx⊥, i.e., suppress the second index. Such a vector v may be considered as a
Boolean matrix with exactly one column, i.e., as a Boolean column vector. It
describes the set X ′ = {x ∈ X | vx}.

Sets may also be described via embedding mappings. Given an injective map-
ping ı : X ′ ↔X, we may regard X ′ as a subset of X. Then the vector ıTL : X ↔1
describes X ′ in the above sense. A transition in the other direction, i.e., the con-
struction of an injective mapping inj(v) : X ′ ↔X from a given non-empty vector
v : X ↔1 describing X ′ in such a way that inj(v)yx if and only if y = x, is also



possible. Using matrix terminology, one only has to remove from the identity
matrix those rows which don’t correspond to an element of X ′. We call inj(v)
the injective mapping generated by v. A relation-algebraic axiomatization of this
construction can be found in [2].

The left residual of S over R is defined by S / R = SRT and the right residual
of S over R is defined by R \S = RTS. One also considers relations which share
properties of left and right residuals simultaneously, viz. symmetric quotients.
This construction is defined by syq(R, S) = (R \S) ∩ (RT / ST). In the case of
concrete relations we have that (S / R)xy if and only if Ryz implies Sxz for all
z, that (R \S)xy if and only if Rzx implies Szy for all z, and that syq(R, S)xy if
and only if Rzx is equivalent to Szy for all z.

3 A Short Introduction to the Systems

In this section, we want to give an impression of two computer systems, called
RelView and Rath. Applications will be presented in Section 4. More details
and advanced applications can e.g., be found in [2, 3, 9, 10].

3.1 The RelView-System

RelView is an interactive and graphic-oriented computer system for calculating
with relations and relational programing. In it all data are represented as rela-
tions which the system visualizes in two different ways. First, for homogeneous
relations it offers a representation as directed graphs, including sophisticated
algorithms for drawing them nicely. Alternatively, arbitrary relations may be
depicted as Boolean matrices. This second representation is very useful for vi-
sually editing and also for discovering various structural properties that are not
evident from a representation of relations as directed graphs. Because RelView
computations frequently use very large relations, for instance, membership, in-
clusion, and size comparison on powersets, the system uses a very efficient im-
plementation of relations via reduced ordered binary decision diagrams. See [10]
for its detailed description.

The RelView system can manage as many relations simultaneously as mem-
ory allows and the user can manipulate and analyse them by pre-defined oper-
ations, tests and user-defined relational functions and relational programs. The
pre-defined operations on relations include e.g., ^, -, |, &, and * for transposition,
negation, union, intersection, and composition; the relational tests include e.g.,
incl, eq, and empty for testing inclusion, equality, and emptiness of relations.
All that can be accessed through command buttons and simple mouse-clicks.
But the usual way is to use the pre-defined operations and tests to construct
relational functions and relational programs.

A declaration of a relational function in the programming language of the
RelView system is done as usual in mathematics. Hence, it has the form
f(R1, . . . , Rn) = E, where f is the name of the function, the Ri, 1 ≤ i ≤ n,
are the formal parameters (standing for relations), and E is a relation-algebraic



expression over the relations of the workspace of the RelView system that can
additionally contain the formal parameters Ri. As a simple example, the fol-
lowing unary relational function hasse computes the so-called Hasse diagram
R ∩ RR+ of an acyclic relation R:

hasse(R) = R & -(R * trans(R)) .

In this declaration, a call of the pre-defined operation trans yields the transitive
closure of its argument.

A relational program in RelView essentially is a while-program based on
the datatype of relations. Such a program has many similarities with a func-
tion procedure in languages like Pascal or Modula-2. It starts with a head line
containing the name of the program and the list of formal parameters. Then
the declarations of the local domains, functions, and variables follow. The last
part of a program is its body, a sequence of statements which are separated by
semicolons and terminated by the RETURN-clause. We give again a simple exam-
ple. If g = (X, R) is a directed graph with the set of arcs given by the relation
R : X ↔X and s : X ↔1 is a vector describing a subset X ′ of X, then the
vector (R∗)Ts : X ↔1 describes the set of those vertices which are reachable
from a vertex of X ′. Without using the reflexive-transitive closure, the latter
vector may be computed by the following relational program:

reach(R,s)
DECL u, v
BEG u = s;

v = R^ * u & -u;
WHILE -empty(v) DO
u = u | v;
v = R^ * u & -u OD

RETURN u
END.

RelView can be used to solve many different tasks. First, it assists the
formulation and the proof of relation-algebraic theorems. In this field, the sys-
tem can help to construct examples which support the validity of a theorem
or to find — via random generated relations — counter-examples to disprove
the considered relation-algebraic property. Relational program development is
a second very important application of RelView. Whereas relation algebra in
combination with a programming logic (e.g., the Hoare calculus) forms the for-
mal basis for ensuring correctness of the derived relational programs, RelView
supports many validation tasks for the development of a relational algorithm.
For example, it can be applied to check the formal relational problem specifica-
tion against the informal fixed requirements. Experimenting with relations and
relation-algebraic propositions, the system may also help to find loop invariants
or other decisive properties necessary for a correctness proof of a relational pro-
gram. As a third application, the execution of a relational program or a piece
of it by means of RelView in the course of a program derivation can reveal
alternative development steps and possibilities for optimization.



3.2 The Rath-System

The Rath-System presents a library of Haskell modules that allows to explore
relation algebras and several weaker structures such as categories, allegories, dis-
tributive allegories, division allegories (see e.g., [5]) and Dedekind categories (see
e.g., [12]) by providing tools to construct and test such structures. These modules
constitute a common framework for calculational work with all the structures
mentioned. It takes into account that they share concepts and properties so as
to be able to, for instance, introduce the idea of division only once for division
allegories and to directly reuse it for the more specific Dedekind allegories as
well as for relation algebras.

For example, in Rath a parameterized data structure Cat obj mor repre-
senting categories with objects given by the type obj and morphisms given by
the type mor may be defined as follows:

data Cat obj mor = Cat
{cat_isObj :: obj -> Bool
,cat_isMor :: obj -> obj -> mor -> Bool
,cat_objects :: [obj]
,cat_homset :: obj -> obj -> [mor]
,cat_source :: mor -> obj
,cat_target :: mor -> obj
,cat_idmor :: obj -> mor
,cat_comp :: mor -> mor -> mor}

Here cat objects yields the list of objects and cat homset yields for a pair of
objects the list of morphisms. Source and target of a morphism are computed via
cat source and cat target. Composition of morphisms is given by cat comp
and cat idmor applied to an object yields the corresponding identity morphism.
Finally, cat isObj and cat isMor test whether an element from obj respectively
mor is indeed an element of the category. This is necessary, as one might be using
the datatypes Int or String to denote the objects.

As an application of the above data structure, we want to implement the
one-object category of truth values. It may be defined as an element of the data
structure of categories as follows:

catB :: Cat () Bool
catB = Cat
{cat_isObj = const True
,cat_isMor = const $ const $ const True
,cat_objects = [()]
,cat_homset = const $ const [False, True]
,cat_source = const ()
,cat_target = const ()
,cat_idmor = const True
,cat_comp = (&&)}



There is exactly one object () of type () and two morphisms True and False
of type Bool. Composition is given by intersection such that True becomes the
identity. Now, the comprehensive test mechanism of Rath could be used to
verify that catB is indeed a category. An execution of

performAll acat_TEST catB

will apply all pre-defined tests for categories on this structure. Of course, it is
also possible to perform other tests on such a structure in order to find models
with a specific property by using the underlying language Haskell. Later on, we
will demonstrate this approach by an example.

A next step in the hierarchy of structures could be the representation of
allegories. Following [5], an allegory is a category with some extra structure,
in particular an intersection, a transposition operation, and an inclusion test.
Within Rath, a corresponding parameterized data structure looks as follows:

data All obj mor = All
{all_cat :: Cat obj mor
,all_transp :: mor -> mor
,all_meet :: mor -> mor -> mor
,all_incl :: mor -> mor -> Bool}

Similarly, also other relational categories, including relation algebras, can be
introduced. In doing so, it is also possible to compute different relation-algebraic
expressions. Usually, such an execution is not as efficient as in RelView. But
in contrast with RelView, the Rath system provides the possibility to switch
to nonstandard relation algebras, i.e., to exchange the underlying model of the
relational category in question.

Rath also provides means to construct new algebras from given ones as
product algebras, subalgebras and matrix algebras. Last but not least, it is pos-
sible to generate a specific relational category by defining the corresponding
operations on the set of atoms and taking the complex algebra over this atom
structure (see [11]). This reduces the size of the algebra and the complexity
of the operations. Using the representation of relation algebras by their atom
structure, a wide variety of such algebras was generated with the system. For
the moment, this variety contains 4527 different integral relation algebras (see
again [11]). Besides these algebras, there are several examples of relation alge-
bras included, which model quite simple everyday situations such as compass
directions, interval interdependency, spatial information with “mereology”, etc.
Note that the number of available algebras is much larger since one may apply
the constructions mentioned above to those integral algebras, too.

The sources of the whole Rath-System constitute executable Haskell code.
A first account on Rath is given in [9]. This report contains examples of non-
standard relation algebras — in particular algebras which, considered from the
classical viewpoint, fail to correspond to our imagination of relations as sets of
pairs. A very well-known non-standard relation algebra goes back to R. McKenzie
and is described in detail in [13].



4 Applications

This section is devoted to some applications of RelView and Rath. First, we
concentrate on RelView and show how to solve problems on concrete rela-
tions with its help. In the second subsection, we then use Rath to verify that a
relation-algebraic proof of a property obviously holding for concrete relations re-
quires the Tarski rule (2) as an additional axiom and that a well-known property
of direct products and disjoint unions requires representability.

4.1 Computing Cut Completions and Concept Lattices

Let (X, R) be a partially ordered set, i.e., R : X ↔X be a partial order relation.
Furthermore, assume ε : X ↔ 2X to be the membership relation between X and
its powerset 2X . This means that εxs if and only x ∈ s. For s ∈ 2X , let MaR(s)
denote its upper bounds wrt. R and MiR(s) denote its lower bounds wrt. R.
Then c ∈ 2X is called a (Dedekind) cut of (X, R) if

c = MiR(MaR(c)), (3)

i.e., if the first-order formula

∀x : x ∈ c ↔ x ∈ MiR(MaR(c)) (4)

holds. Obviously, formula (4) is equivalent to the formula

∃ s : ∀x : (x ∈ c ↔ x ∈ MiR(MaR(s))) ∧ c = s. (5)

It is known that for x ∈ X the set (x) = {y ∈ X | Ryx} is a cut, called the
principal cut generated by x. Now, let C denote the set of cuts of (X, R). Then
(C,⊆) is a complete lattice, called the cut completion of (X, R), and the function
mapping x to the principal cut (x) is an injective order homomorphism.

For a relation-algebraic construction of the cut completion of (X, R), we start
with the definition that y ∈ X is a lower bound of s ∈ 2X if and only if for all z
from z ∈ s it follows Ryz. Then we describe s by a vector v : X ↔1 and use the
property of left residuals given at the end of Section 2. We obtain that the set
MiR(s) is described by the vector mi(R, v) = R / vT. Transposing the relation R
yields ma(R, v) = RT / vT as the vector describing MaR(s). In the language of
RelView, hence, we obtain the following two relational functions mi and ma for
computing lower and upper bounds:

mi(R,v) = R / v^. ma(R,v) = R^ / v^.

If the second argument of these functions is not a vector but an arbitrary relation,
then obviously they compute lower and upper bounds column-wise.

Using relation algebra and the formulae (4) and (5) — for the characterization
of cuts (5) is more suited since it immediately leads to a symmetric quotient
construction syq(ε, . . .)cs — in combination with the three relational functions



mi, ma, and syq, we obtain the vector cutvector(R) : 2X ↔1 describing the ele-
ments of 2X which are cuts, i.e., the set C, as follows:

cutvector(R) = (syq(ε, mi(R, ma(R, ε))) ∩ I)L

This relational specification may immediately be transformed into a relational
program in the language of RelView. The result is:

cutvector(R)
DECL M, O, I
BEG M = epsi(On1(R));

O = On1(M^);
I = I(O * O^)
RETURN dom(syq(M,mi(R,ma(R,M))) & I)

END.

In this program On1, epsi, I, and dom are pre-defined operations. The call On1(S)
yields the universal vector with one column and the same row number as S, the
call epsi(v) yields the membership relation with the cardinality of the base set
given by the row number of the vector v, the call I(S) yields the identity relation
with the same dimension as S, and a call dom(S) computes the composition of
S with a one-column universal vector.

Let v : 2X ↔1 abbreviate the vector cutvector(R) and inj(v) : C↔ 2X be the
injective mapping generated by v. Furthermore, define the relation C : X ↔C
by C = ε inj(v)T. Then a little reflection shows for all x ∈ X and c ∈ C the
equivalence of x ∈ c and Cxc. This means that the columns of C describe the cuts
of (X, R). Cuts are ordered by inclusion. Using the property of right residuals
given at the end of Section 2, we get for all c, d ∈ C the equivalence of c ⊆ d
and (C \C)cd. Hence, the ordering on C equals the right residual C \C. If we
formulate the procedure just described in the language of RelView, we arrive
at the following relational program:

cutcompletion(R)
DECL v, C
BEG v = cutvector(R);

C = epsi(On1(R)) * inj(v)^
RETURN C \ C

END.

Now, let us turn to concept analysis. Here one deals with (formal) contexts
which are triples (G, M, I) consisting of a set G of objects, a set M of attributes,
and an incidence relation I : G↔M . A (formal) concept is a pair (a, b), where
a ∈ 2G, b ∈ 2M , a′ = b, and b′ = a. Here the sets a′ and b′ are defined as follows:

a′ = {y ∈ M | ∀x ∈ a : Ixy} b′ = {x ∈ G | ∀ y ∈ b : Ixy} (6)

If (a, b) and (c, d) are two concepts, then (a, b) is defined to be less general or
equal than (c, d), denoted by (a, b) ≤ (c, d), if a ⊆ c or, equivalently, b ⊇ d. With



this relation the set K of all concepts constitutes a complete lattice, in [6] called
(formal) concept lattice. Sometimes, e.g., in [1], also the term Galois lattice is
used. It is obvious that the concept lattice (K,≤) is isomorphic to (KG,⊆), with
the carrier set defined as KG = {a ∈ 2G | ∃b ∈ 2M : (a, b) ∈ K}, and also to
(KM ,⊇), with the carrier set defined as KM = {b ∈ 2M | ∃a ∈ 2G : (a, b) ∈ K}.

In the following, we concentrate on the computation of (KG,⊆). Fundamental
for this is the simple fact that the equations of (6) generalize the notions of upper
bounds and lower bounds from partial order relations to arbitrary relations.
Using also the notations MaI(a) and MiI(b) instead of a′ and b′, we, furthermore,
get for a ∈ G the equivalence of a ∈ KG and

a = MiI(MaI(a)). (7)

Property (7) is exactly the defining equation (3) for a set to be a cut. Hence,
the lattice (KG,⊆) generalizes the construction of a cut completion from a par-
tial order relation to an arbitrary (incidence) relation. As a consequence, the
relational program cutcompletion can also be used to compute for a context
(G, M, I) the ordering of the lattice (KG,⊆).

We have tested this approach with many examples. The following table shows
the execution times (in seconds) for contexts of the specific form (G, G, I). They
constitute the worst case since they lead to 2n concepts, with n being the car-
dinality of G. The tests have been carried out on a Sun Fire-280R workstation
running Solaris 7 at 750 MHz and with 8 GByte main memory.

n 10 11 12 13 14 15 16 17 18 19 20
cutvector 0.01 0.02 0.43 0.96 2.16 4.64 10.0 28.1 54.2 118 257
cutcompl. 0.19 0.22 0.74 1.89 5.84 13.3 38.9 89.1 204 400 1127

On a modern PC we even obtained better results. E.g., for n = 19 instead of
400 only 258 seconds are needed to compute the concept lattice of (G, G, I).

In many applications of context analysis, experts learn from contexts by care-
fully inspecting their concept lattices. Therefore, these lattices have modest size
because otherwise they are hard to analyze visually. This is ideal for applying
RelView, especially since in such a case the system not only allows the fast com-
putation of the ordering of the lattice but also its nice drawing as a graph and its
further interactive graphical and relation-algebraic manipulation. To a certain
extent RelView can also be used for larger examples. But this requires more
sophisticated relational programs which avoid the use of a membership relation.
We have developed such a RelView-program. Starting with the incidence rela-
tion it stepwise generates the ordering of (KG,⊆) by gradually inserting missing
least upper bounds and greatest lower bounds. Its detailed description, however,
is out of the scope of this paper.

4.2 Investigating Properties of Abstract Relations

As mentioned in Section 3.1, the RelView system may be used to construct
counter-examples of a relation-algebraic property in question. Since RelView



uses just one specific model, the relation algebra of concrete relations between
finite sets, it may fail. Using Rath we are able to switch to some abstract
relation algebra providing the required counter-example. In this section we want
to demonstrate this approach.

In any relational category one may prove that the following formula (8) is
valid if one of the universal relations on the left hand side is homogeneous:

LL = L (8)

A relational category such that the equation (8) holds in general, i.e., it is valid
for all object A, B, C and universal relations from RAB ,RBC and RAC , respec-
tively, is called a uniform one. Obviously, the Tarski rule (2) implies uniformity.
One may ask if there exists a non-uniform relation algebra. An example was given
in [14]. This algebra has two objects and at most 4 relations in the corresponding
sets of morphisms.

As mentioned in Section 3.2, it is possible to define the operations on relations
just on the underlying set of atoms. Therefore, we define the following data
structures and lists of elements in Haskell:

data Obj = A | B deriving (Eq, Ord, Show)
objseq = [A, B]

data A2 = At1 | At2 deriving (Eq, Ord, Show, Read)
atoms :: Obj -> Obj -> [A2]
atoms A A = [At1, At2]
atoms _ _ = [At1]

Consequently, we will have 4 relations between A and A and 2 relations other-
wise. Notice, that the deriving-clause generates an equality, a linear ordering,
a show respectively a read function for Obj respectively A2. Transposition and
composition of atoms are defined as follows:

transpTab :: Obj -> Obj -> A2 -> A2
transpTab _ _ x = x

atComp :: Obj -> Obj -> Obj -> A2 -> A2 -> [A2]
atComp A A A At1 At1 = [At1]
atComp A A A At2 At1 = []
atComp A A A At1 At2 = []
atComp A A A At2 At2 = [At2]
atComp A A B At1 At1 = [At1]
atComp A A B At2 At1 = []
atComp B A A At1 At1 = [At1]
atComp B A A At1 At2 = []
atComp B A B At1 At1 = [At1]
atComp A B A At1 At1 = [At1]
atComp _ _ _ At1 At1 = [At1]



The operations and data structures are converted into a category respectively
an allegory by the following declarations:

aCat_NUW :: ACat Obj A2
aCat_NUW = ac where
ac = ACat
{acat_isObj = const True
,acat_isAtom = (\ s t a -> a ‘elem‘ atoms s t)
,acat_objects = objseq
,acat_atomset = atoms
,acat_idmor = acat_idmor_defaultM ac
,acat_comp = atComp}

aAll_NUW :: AAll Obj A2
aAll_NUW = AAll
{aall_acat = aCat_NUW
,aall_converse = transpTab}

Finally, the corresponding relation algebra is given as the complex algebra over
the allegory aAll NUW. This is done by the following declaration:

ra_NUW :: RA Obj (SetMor Obj A2)
ra_NUW = atomsetRA aAll_NUW

Again, the comprehensive test mechanism of Rath can be used to verify that
ra NUW is indeed a relation algebra. Furthermore, the pre-defined test for unifor-
mity ded uniform TEST may be applied to this structure. An execution of

performAll ded_uniform_TEST (ra_ded ra_NUW)

shows the following test result:

=== Test Start ===
non-uniform
Objects:
A
B
A
Morphisms:
SetMor ({At1},A,B)
SetMor ({At1},B,A)
SetMor ({At1, At2},A,A)
SetMor ({At1},A,A)

=== Test End ===

This confirms that ra NUW is not uniform. Furthermore, it gives us a counter-
example for the validity of equation (8). The composition of the greatest rela-
tion SetMor({At1},A,B) from A to B with its transposed SetMor({At1},B,A)



yields SetMor({At1},A,A), which, however, is not equal to the greatest relation
SetMor({At1, At2},A,A) from A to A.

If we denote the cartesian product and the disjoint union of two sets A and
B by A × B and A + B, respectively, we have the well-known isomorphism

2A × 2B ∼= 2A+B . (9)

Within the theory of relations there are abstract counter-parts of cartesian prod-
ucts, disjoint unions and powersets, called the (relational) product, the (rela-
tional) sum and the (relational) power. One may ask whether (9) is valid in all
relational categories. In [14] it is shown that this is true if all required objects
exist. Furthermore, it is shown that every relation algebra may be embedded
into an algebra with relational sums and powers. On the other hand, the ex-
istence of products implies representability, i.e., the algebra may be embedded
into the relation algebra of concrete relations. Since there are non-representable
algebras, a relation algebra exists with an object 2A+B , which is not isomorphic
to the product of 2A and 2B . The proof sketched so far is non-constructive. We
may use Rath to develop a concrete example with the required property. This
was done by using the matrix algebra over the non-representable algebra of R.
McKenzie. A detailed description of this model and its implementation in Rath
is, however, out of the scope of this paper.

In both examples given in this sub-section the relation algebra in question
was basically known. The Rath system was used to verify the corresponding
properties. On the other hand, it is possible to find a specific model just by
testing the required property for all relation algebras available within Rath.

5 Conclusion

In this paper we have described the two computer systems RelView and Rath
for dealing with relations and have exhibited their usual domain of applications
by presenting some typical examples.

The current investigations based on RelView and Rath are manifold. To
give two examples for RelView, we presently use the system to solve tasks
of systems architecture and re-engineering and for computing permanents of
specific matrices appearing in physics. Concerning Rath, a work in progress is,
for example, the inclusion of the theory of Goguen categories (see [15] for details)
into the system. This kind of a relational category constitutes a convenient theory
for dealing with so-called L-fuzzy relations. Our next aim is to get a prototype
of an L-fuzzy controller using Rath.

RelView is a system for set-theoretic relations, i.e., works within the stan-
dard model of relational algebra, whereas Rath is geard towards working with
non-standard models. In this sense, the systems complement each other. But
there is also some overlap in their functionality. E.g., the Rath system pro-
vides some possibilities for exploration and programming with concrete relations.
There is, of course, the drawback that the naive Haskell list implementation of



relations is not particularly efficient. For the future we plan to use the foreign-
function interface of Haskell to connect Rath with the efficient implementation
of relations in the kernel of RelView. In the last months the latter has been
isolated from the entire system and collected in a package called Kure (Kiel Uni-
versity relation package). See URL http://www.informatik.uni-kiel.de/ kure.

Much of the field of TARSKI can be circumscribed by mentioning how of-
ten words like vague, rough, fuzzy, qualitative, uncertain are used in presenting
real world phenomena. Among these, we identified the handling of geographic
information in GIS (Geographic Information Systems), dealing with lots of other
vaguely defined spatial objects, their region connection etc., and the methods
of automatic reasoning on spatial properties. Other activities are devoted to
the difficulties of banking and investment corporations in decision making when
a multitude of possibly divergent criteria must be taken into account. People
work on the design of databases and information systems for large companies
in industry including questions of information analysis, knowledge representa-
tion document management, and how to organize flexible querying. A diversity
of intelligent systems for industry, such as data mining, work-flow design, soft-
ware development with relational methods,including the demonic specification
approach is studied. Times, locations, and events are handled with computer aid,
employing temporal and other modal logics. Uncertainty is handled in common-
sense reasoning, rough, vague, or approximate logical consequences (in human
computer studies, psychology, e.g.); logical formalizations together with infer-
ence in general, proof systems from the logical side and automated reasoning as
afterwards applied in artificial intelligence. A comprehensive bibliography may
be found on the RelMiCS-homepage:

http://www.relmics.org

In any case, the two relational systems Rath and RelView are intended to
improve mechanization for any method proposed. They are thus really central,
as it is easier to estimate usefulness of a method when it can be shown with
computer aid that it really works.

While the examples in this paper are meant to demonstrate the usefulness of
the systems in rather theoretical oriented examples, researchers are encouraged
to try out the systems. With the help of the inventors, they seem capable to
solve even intricate problems. Both systems are available via the Internet:

RelView: http://www.informatik.uni-kiel.de/∼progsys/relview.shtml

Rath: http://ist.unibw-muenchen.de/relmics/tools/RATH/

Acknowledgements: We are grateful to Barbara Leoniuk and Ulf Milanese
who greatly contributed to the RelView system and to Wolfram Kahl and Eric
Offermann who did the same for the Rath system.
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