
Contact Relations with Applications

Gunther Schmidt1 and Rudolf Berghammer2

1 Fakultät für Informatik, Universität der Bundeswehr München
85577 Neubiberg, Germany
gunther.schmidt@unibw.de

2 Institut für Informatik, Christian-Albrechts-Universität Kiel
Olshausenstraße 40, 24098 Kiel, Germany

rub@informatik.uni-kiel.de

Abstract. Using relation algebra, we generalize Aumann’s notion of a
contact relation and that of a closure operation from powersets to general
membership relations and their induced partial orders. We also investi-
gate the relationship between contacts and closures in this general setting
and use contacts to establish a one-to-one correspondence between the
column space and the row space of a relation.

1 Introduction

Forming closures of subsets of a set X is a very basic technique in various disci-
plines. Typically this is combined with some predicate that holds for X and is
∩-hereditary, like “being transitive” or “being convex”. Such predicates lead to
closure systems, i.e., subsets C of the powerset 2X of X that contain X and any
intersection of subsets collected in C. It is well known that there is a one-to-one
correspondence between the set of closure systems of 2X and the set of extensive,
monotone, and idempotent functions on 2X (the closure operations on 2X).

According to G. Aumann, [1], closures always come with a relation, namely
a contact. When introducing this concept, one intention was to formalize the
essential properties of a contact between objects and sets of objects, mainly to
obtain for beginners a more suggestive access to topology than “traditional”
axiom systems provide. In the introduction of his paper, Aumann also men-
tions sociological applications as motivation, but in fact all examples of [1] are
from mathematics. A main result of [1] is that, like closure systems and clo-
sure operations, also closure operations and contact relations are cryptomorphic
mathematical structures in the sense of [6].

In this paper, we generalize Aumann’s concept of a contact between sets and
their powersets to contacts given by an (almost) arbitrary relation M , that may
be interpreted as “individual is a member of a group of individuals”. Such an
approach allows to treat also examples from sociology, political science and so
forth. As we will show, each group membership relation M induces a partial
order ΩM on the groups of individuals. With respect to ΩM , we consider a no-
tion of closure operation that directly arises out of the original one by replacing
set inclusion by ΩM . In this very general setting, we investigate contacts, their
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properties, and a construction similar to the lower/upper-derivative construction
of formal concept analysis. The latter leads to a fixed point description of the
set of contacts. Guided by Aumann’s main result, we also study the relationship
between general M -contacts and ΩM -closures. Finally, we use contacts to estab-
lish a one-to-one correspondence between the column space and the row space
of a relation (or a Boolean matrix).

To carry out our investigations, we use abstract relation algebra in the sense
of [13, 12]. This allows very concise and precise specifications and algebraic proofs
that drastically reduce the danger of making mistakes. To give an example,
when constructing closures from contacts, a subtle definedness condition plays a
decisive role that easily can be overlooked when using the customary approach
with closures being functions. Relation-algebraic specifications also allow to use
tool support. For obtaining the results of this paper, the use of the RelView tool
(see [3]) for computing contacts and closures, testing properties, experimenting
with concepts etc. was very helpful.

2 Relation-Algebraic Preliminaries

We denote the set (or type) of relations with domain X and range Y by [X↔Y ]
and write R : X↔Y instead of R ∈ [X↔Y ]. If the sets X and Y are finite,
we may consider R as a Boolean matrix. Since this interpretation is well suited
for many purposes, we will often use matrix notation and terminology in this
paper. In particular, we talk about rows, columns and entries of relations, and
write Rx,y instead of 〈x, y〉 ∈ R or xR y.

We assume the reader to be familiar with the basic operations on relations,
viz. RT (transposition), R (complement), R∪S (join), R∩S (meet), R;S (com-
position), the predicate indicating R ⊆ S (inclusion), and the special relations
O (empty relation), L (universal relation) and I (identity relation). Each type
[X↔Y ] with the operations , ∪, ∩, the ordering ⊆ and the constants O and L

forms a complete Boolean lattice. Further well-known rules are, e.g., RTT = R,
RT = R

T
and that R ⊆ S implies RT ⊆ ST. The theoretical framework for

these rules and many others to hold is that of an (axiomatic) relation algebra.
The axioms of a relation algebra are those of a complete Boolean lattice for the
Boolean part, the associativity and neutrality of identity relations for compo-
sition, the equivalence of Q;R ⊆ S, QT; S ⊆ R , and S ;RT ⊆ Q (Schröder
rule), and that R 6= O implies L;R; L = L (Tarski rule).

Furthermore, we assume the reader to be familiar with relation-algebraic
specifications of the most fundamental properties of relations, like univalence
RT;R ⊆ I, totality R; L = L, transitivity R;R ⊆ R, and the symmetric quotient

construction syq(R,S) := RT; S ∩ R
T

;S together with its main properties like
the following ones.

syq(R,S) = syq(R , S ) [syq(R,S)]T = syq(S,R) (1)

R; syq(R,R) = R syq(Q,R); syq(R,S)] ⊆ syq(Q,S) (2)
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Otherwise, he may consult e.g., [12], Sections 3.1, 4.2, and 4.4.
The set-theoretic symbol ∈ gives rise to powerset relations ε : X↔ 2X that

relate x ∈ X and Y ∈ 2X iff x ∈ Y . In [4, 5] it is shown that for ε the formulae of
(3) hold and these even characterize the powerset relation ε up to isomorphism.

syq(ε, ε) = I ∀R : L; syq(ε,R) = L (3)

Based on (3), a lot of further set-theoretic constructions can be formalized in
terms of relation algebra. In this paper, we need the following.

ı := syq(I, ε) : X↔ 2X Ω := εT; ε : 2X↔ 2X (4)

The relation ı is called singleton-set former, since it associates x ∈ X with
Y ∈ 2X iff Y = {x}. The relation Ω specifies the inclusion order on sets. Based
on (3) and (4), the following properties are shown in [4]:

Lemma 2.1. If ε : X↔ 2X is a powerset relation, then ı : X↔ 2X is an injec-
tive mapping1, Ω : 2X↔ 2X is a partial order, and ı;Ω = ε = ε;Ω. �

The construction used in the definition of Ω can be generalized to arbitrary
relations R : X↔Y . Then ΩR := RT; R : Y ↔Y is reflexive and transitive
due to the Schröder rule; it shows the “column-is-contained-preorder”. In case
of syq(R,R) = I, i.e., without multiple columns, it is even antisymmetric and,
thus, a partial order. Besides these partial order properties, we will apply the
following fact.

Lemma 2.2. For all relations R : X↔Y we have R;ΩR = R.

Proof. The inclusion R ⊆ R;ΩR follows from the reflexivity of ΩR, and with the
help of the Schröder rule R;ΩR ⊆ R is shown by

RT; R ⊆ RT; R ⇐⇒ R; RT; R ⊆ R. �

As a last construction, we need the canonical epimorphism ηE : X↔X/E in-
duced by an equivalence relation E : X↔X. It relates each element x ∈ X to
the equivalence class c ∈ X/E it belongs to. The following properties are imme-
diate consequences of this component-wise specification; it can even be shown
that they characterize canonical epimorphisms up to isomorphism.

ηE ; ηET = E ηE
T; ηE = I (5)

In Sections 3 and 5 we will apply canonical epimorphisms induced by the two
equivalence relations ΨR := syq(R,R) and ΦR := syq(RT, RT), respectively. In
this context, the following additional property will be used.

Lemma 2.3. For all R : X↔Y , the canonical epimorphism ηΨR : Y ↔Y/ΨR
induced by ΨR fulfils R; ηΨR = R ; ηΨR .

1 . . . in the relational sense of Def. 4.2.1 of [12].
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Proof. We abbreviate ηΨR by η. Then, inclusion “⊆” follows from

ηT total =⇒ ηT;RT ⊆ ηT; RT ⇐⇒ R; η ⊆ R ; η

using Prop. 4.2.4.i of [12], and inclusion “⊇” from

R ⊆ R ⇐⇒ R; syq(R,R) ⊆ R ⇐⇒ R; η; ηT ⊆ R ⇐⇒ R ; η ⊆ R; η

using the first rule of (2), the first axiom of (5), and the Schröder rule. �

3 Contact Relations

If we formulate Aumann’s original definition of a contact relation given in [1] in
our notation, then a relation A : X↔ 2X is an (Aumann) contact relation if the
following conditions hold.

(A1) ∀x : Ax,{x}
(A2) ∀x, Y, Z : Ax,Y ∧ Y ⊆ Z → Ax,Z
(A3) ∀x, Y, Z : Ax,Y ∧ (∀ y : y ∈ Y → Ay,Z)→ Ax,Z

Our aim is to investigate contact relations by relation-algebraic means and
supporting tools (like the manipulation system RelView [3]), thereby gener-
alizing Aumann’s original approach by replacing the powerset by a set G (of
groups of individuals, political parties, alliances, organizations, . . . ) and the set-
theoretic membership relation ε : X↔ 2X by a generalized membership relation
M : X↔G with regard to G. The latter point not only allows to treat math-
ematical examples for contact relationships as [1] does, but also examples from
sociology, political science and so forth. In the following theorem, we present
relation-algebraic versions of the above axioms. The proof of their correspon-
dence consists of step-wise transformations of (A1) to (A3) into point-free ver-
sions using well-known correspondences between logical and relation-algebraic
constructions. Doing so, (A1) leads to a singleton-former ı and (A2) to an inclu-
sion order Ω as specified in (4).

Theorem 3.1. A relation A : X↔ 2X is an Aumann contact relation iff ı ⊆ A,
A;Ω ⊆ A, and A; εT; A ⊆ A.

Proof. We only show the equivalence of (A3) and A; εT; A ⊆ A; the other
equivalences are calculated in quite a similar way.

∀x, Y, Z : Ax,Y ∧ (∀ y : y ∈ Y → Ay,Z)→ Ax,Z
⇐⇒ ∀x, Y, Z : Ax,Y ∧ ¬(∃ y : y ∈ Y ∧ A y,Z)→ Ax,Z

⇐⇒ ∀x, Y, Z : Ax,Y ∧ εT; A Y,Z → Ax,Z

⇐⇒ ∀x, Z : (∃Y : Ax,Y ∧ εT; A Y,Z)→ Ax,Z

⇐⇒ ∀x, Z : (A; εT; A )x,Z → Ax,Z

⇐⇒ A; εT; A ⊆ A �
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The relation-algebraic characterization of contacts just developed does not yet
allow the generalization intended. We still have to remove the singleton-former,
since such a construct need not exist in the general case of membership we want
to deal with. The next theorem shows how this is possible.

Theorem 3.2. A relation A : X↔ 2X is an Aumann contact relation iff ε ⊆ A
and AT; A ⊆ εT; A .

Proof. We show that the relation-algebraic specification of an Aumann contact
relation of Theorem 3.1 is equivalent to ε ⊆ A and AT; A ⊆ εT; A . Starting
with “=⇒”, we use Lemma 2.1 to show ε ⊆ A by

ı ⊆ A =⇒ ı;Ω ⊆ A;Ω ⇐⇒ ε ⊆ A;Ω =⇒ ε ⊆ A.

Because of the Schröder rule, AT; A ⊆ εT; A is equivalent with A; εT; A ⊆ A.
In the case “⇐=”, property ı ⊆ A follows from ı ⊆ ε and ε ⊆ A. Using the
Schröder rule, we obtain A;Ω ⊆ A from

AT; A ⊆ εT; A ⊆ εT; ε = Ω .

For the last property, cf. the proof of “=⇒”. �

Hence, we have that membership implies contact and for all Y, Z ∈ 2X from the
existence of an element that is in contact with Y but not in contact with Z it
follows that even a member of Y is not in contact with Z. In the literature such
relations are also known as dependence or entailment relations and in particu-
lar considered in combination with so-called exchange properties. See [7, 6] for
example. And here is our generalization of Aumann’s concept of a contact.

Definition 3.1. A relation K : X↔G is called an (Aumann) contact relation
with respect to the relation M : X↔G — in short: an M -contact — if the
following properties hold:

(K1) M ⊆ K (K2) KT; K ⊆MT; K

Axiom (K2) is called the infectivity of a contact. We have chosen this form
since it proved to be particularly suitable for relation-algebraic reasoning. For
concrete sociological or similar applications, frequently the equivalent version
K; MT; K ⊆ K is more appropriate. E.g., in the case of persons and syndicates
it says that if a person x is in contact to a syndicate Y1 all of whose members
are in contact to a syndicate Y2, then also x is in contact to Y2.

In real life, contacts are frequently established by common interests. As an ex-
ample, we consider a protesters scene of non-governmental organizations. There
exist persons willing to protest against several topics t ∈ T . Then typically a
person x ∈ X will get in touch with an activist group g ∈ G iff for all topics he
is in opposition to, there is at least one supporter for it in the group g. If we for-
malize the situation in predicate logic and afterwards translate this version into
a relation-algebraic expression, we arrive at miJ(maJ(M))x,g, where M : X↔G
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denotes activist group membership, the complement of the relation J : X↔T
specifies the relationship “is in opposition to”, and the functions miJ and maJ
are defined as follows:

miJ(R) = J ;R maJ(S) = J
T

;S (6)

If J is a partial order, then miJ and maJ column-wise compute lower bounds and
upper bounds, respectively; in the general case, they column-wise compute lower
derivatives and upper derivatives, respectively, in the sense of formal concept
analysis (see [9]). The next theorem shows that the above construction based on
interest-relations J always leads to M -contacts.

Theorem 3.3. For all relations M : X↔G and J : X↔T , we obtain an M -
contact K if we define K := miJ(maJ(M)).

Proof. Property (K1) follows from

J
T

;M ⊆ J
T

;M ⇐⇒ J ; J
T

;M ⊆ M Schröder rule

⇐⇒ M ⊆ J ; J
T

;M
⇐⇒ M ⊆ miJ(maJ(M)) by (6)
⇐⇒ M ⊆ K,

and property (K2) from

MT; J ; J
T ⊆ MT; J ; J

T

⇐⇒ MT; J ; J
T ⊆

(
J ; J

T
;M

)T
⇐⇒ J ; J

T
;M

T

; J ⊆MT; J Schröder rule
⇐⇒

[
miJ(maJ(M))

]T; J ⊆MT; J by (6)
⇐⇒ KT; J ⊆MT; J

=⇒ KT; J ; J
T

;M ⊆MT; J ; J
T

;M
⇐⇒ KT; miJ(maJ(M)) ⊆MT; miJ(maJ(M)) by (6)
⇐⇒ KT; K ⊆MT; K . �

Next, we give a concrete application of the construction of Theorem 3.3. We
assume four persons, denoted by the natural numbers 1 to 4, three groups g1, g2
and g3, and six topics A,B,C,D,E and F . If group membership is described by
the left-most of the following three RelView-matrices and the persons’ interests
by the RelView-matrix in the middle, then these relations lead to the contact
specified by the right RelView-matrix.

M = J = K =
1
2
3
4

g1 g2 g3
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In these pictures, a black square means 1 and a white square means 0 so that,
e.g., the first person is a member of g1 and g3. By definition, M ⊆ K. In addition,
(4, g1) ∈ K, because wherever all persons of the group g1 are jointly J-interested
in a couple of topics (here {1, 2}×{A}), then also person 4 is J-interested in these
topics. Also (2, g3) ∈ K: the rectangle {1, 4} × {A} indicates that all members
of the group are jointly J-interested in topic set {A} and so is person 2.

We even can prove completeness of the construction of Theorem 3.3, i.e., that
every M -contact K can be represented as an expression miJ(maJ(M)). As the
next theorem shows, we only have to take the groups as topics and K itself as
interest relation J .

Theorem 3.4. For all relations M : X↔G and all M -contacts K : X↔G the
equation K = miK(maK(M)) holds.

Proof. “⊆”: This inclusion is equivalent to property (K2), since

K ⊆ miK(maK(M)) ⇐⇒ K ⊆ K ; K
T

;M by (6)

⇐⇒ K ; K
T

;M ⊆ K

⇐⇒ K
T

;K ⊆ K
T

;M Schröder rule
⇐⇒ KT; K ⊆MT; K .

“⊇”: Starting with (K1), we get the result by

M ⊆ K ⇐⇒ K ; I ⊆ M

⇐⇒ K
T

;M ⊆ I Schröder rule

⇐⇒ I ⊆ K
T

;M

=⇒ K ⊆ K ; K
T

;M

⇐⇒ K ; K
T

;M ⊆ K
⇐⇒ miK(maK(M)) ⊆ K by (6). �

From the Theorems 3.3 and 3.4, we immediately obtain a fixed point character-
ization of the set of M -contacts.

Theorem 3.5. Assume a generalized membership relation M : X↔G to be
given and consider all relations R : X↔T for some set T . Then the function

τM : [X↔T ]→ [X↔G] τM (R) = miR(maR(M)),

will always produce an M -contact. The set KM of all M -contacts equals the set
of fixed points of τM in case T = G. �

Using relational fixed point enumeration techniques (cf. [2]), this property can be
used to compute for small relations M all M -contacts by a tool like RelView.

Since the underlying relation M is contained in each M -contact K, normally
in K a lot of columns coincide. The column equivalence relation ΨK = syq(K,K)
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relates two groups iff the corresponding columns of K are equal. Hence, we
can remove duplicates of columns of K by multiplying it with the canonical
epimorphism ηΨK induced by ΨK from the right. In the next theorem we prove
that in the construction miK(maK(M)), instead of K also its revised form can
be used.

Theorem 3.6. For all relations M : X↔G and all M -contacts K : X↔G we
have that K = miK;ηΨK

(maK;ηΨK
(M)).

Proof. In the following calculation we abbreviate ηΨK by η.

miK;η(maK;η(M)) = K; η ; K; η
T

;M by (6)

= K ; η; (K ; η)
T

;M Lemma 2.3

= K ; η; ηT; K
T

;M

= K ; η; ηT; K
T

;M [12] Prop. 4.2.4.ii

= K ; syq(K,K); K
T

;M by (5)

= K ;
[
K ; syq(K , K )

]T
;M by (1)

= K ; K
T

;M by (2)
= K Theorem 3.4 �

4 Contacts and Closures

Closure operations appear in many fields in computer science and mathematics.
Usually, they are defined as extensive, monotone, and idempotent functions on
powersets, i.e., functions h : 2X → 2X such that the following conditions hold.

(H1) ∀Y : Y ⊆ h(Y )
(H2) ∀Y, Z : Y ⊆ Z → h(Y ) ⊆ h(Z)
(H3) ∀Y : h(h(Y )) ⊆ h(Y )

As in the case of Aumann contact relations, we start our investigations with a
relation-algebraic characterization of closure operations. In the next theorem,
the relation Ω denotes set inclusion on the powerset 2X as specified in (4).

Theorem 4.1. A mapping H : 2X↔ 2X is a closure operation iff H ⊆ Ω,
Ω ⊆ H;Ω;HT, and H;H ⊆ H.

Proof. As in the case of Theorem 3.1, we only treat one case, viz. the equivalence
of (H3) and H;H ⊆ H. To enhance readability, in the following calculations, we
apply the common notation of function application also for H.

∀Y : H(H(Y )) ⊆ H(Y )
⇐⇒ ∀Y,Z, U : H(Y ) = U ∧H(U) = Z → (∃W : H(Y ) = W ⊇ Z)
⇐⇒ ∀Y,Z, U : HY,U ∧HU,Z → (∃W : HY,W ∧ΩZ,W )
⇐⇒ ∀Y,Z : (∃U : HY,U ∧HU,Z)→ (∃W : HY,W ∧ΩT

W,Z)
⇐⇒ ∀Y,Z : (H;H)Y,Z → (H;ΩT)Y,Z
⇐⇒ H;H ⊆ H;ΩT
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(H1) equals H ⊆ Ω, so that with antisymmetry and univalency of H we get

H;H ⊆ H;Ω ∩H;ΩT = H; (Ω ∩ΩT) ⊆ H; I = H. �

A simple relation-algebraic reasoning shows that H;H ⊆ H in fact is equivalent
to the equation H;H = H when H ⊆ Ω ⊆ H;Ω;HT. This corresponds to the
well-known property that in (H3), due to (H1) and (H2), even equality holds.

Because of Theorem 4.1, we are able to generalize the concept of a closure
operation from powerset lattices to arbitrary partial order relations within the
language of relation algebra as follows.

Definition 4.1. Given a partial order P : X↔X, a mapping H : X↔X is
called a closure operation with respect to P — in short: a P -closure — if the
following conditions hold:

(C1) H ⊆ P (C2) P ⊆ H;P ;HT (C3) H;H ⊆ H

In [1] it is shown that there is a one-to-one correspondence between the set of all
Aumann contact relations between X and 2X and the set of all closure operations
on 2X . Without proof and reference to its origin, this correspondence is also
mentioned in [6]. In the remainder of this section, we investigate the relationship
between contact relations and closure operations in our general setting, i.e.,
in conjunction with M -contacts and ΩM -closures, and using relation-algebraic
means. As the only basic prerequisite on the relation M : X↔G we assume
syq(M,M) = I, i.e., pairwise different columns, to ensure that ΩM is a partial
order (see Section 2). (Even this is not a really essential requirement.)

How to obtain M -contacts from ΩM -closures is shown in the following theo-
rem. In words, the theorem states that x ∈ X is in contact with g ∈ G iff x is a
member of the closure of g.

Theorem 4.2. For all relations M : X↔G such that syq(M,M) = I and all
ΩM -closures H : G↔G, the relation K := M ;HT : X↔G is an M -contact.

Proof. For proving (K1), we use (C1) and Prop. 4.2.3 of [12] in

M ;ΩM ⊆M =⇒ M ;H ⊆M ⇐⇒ M ⊆M ;HT ⇐⇒ M ⊆ K.

Now, Lemma 2.2 yields the result. The verification of property (K2) bases on
the following calculation.

K; MT; K = M ;HT; MT; M ;HT

= M ;HT; MT; M ;HT [12] Prop. 4.2.4.iii
= M ;HT;ΩM ;HT

⊆M ;ΩM ;HT;HT by (C2) (cf. [12] p. 143)
⊆M ;ΩM ;HT by (C3)
= M ;HT Lemma 2.2
= K

An application of the Schröder rule to this inclusion completes the proof. �
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To obtain a closure operation h from a contact relation A, in [1] the closure h(Y )
of a set Y is defined as the set of elements being in contact with Y . Relation-
algebraically, this leads to the expression syq(A, ε) for the closure operation.
Contrary to the transition from closure operations to contact relations, which
also works in our general setting, the transition from M -contacts K to ΩM -
closures is problematic. The reason is that syq(K,M) may be non-total. But if
syq(K,M) is total, it is indeed an ΩM -closure as the following theorem shows.

Theorem 4.3. For all relations M : X↔G such that syq(M,M) = I and all
M -contacts K : X↔G, the relation H := syq(K,M) : G↔G is an ΩM -closure
provided it is total.

Proof. Since totality of H has been assumed as a prerequisite, we show univa-
lence to establish H as a mapping:

HT;H = [syq(K,M)]T; syq(K,M)
= syq(M,K); syq(K,M) by (1)
⊆ syq(M,M) by (2)
= I.

Property (C1) follows from (K1), since

H = syq(K,M) ⊆ KT; M ⊆ MT; M = ΩM .

In the proof of (C2) we use that totality of syq(K,M) implies surjectivity of
syq(M,K) = syq(M , K ) (cf. Prop. 4.4.1.i,ii of [12]). We start with

H; ΩM ;HT = [syq(M,K)]T;MT; M ; syq(M,K) by (1)
= [M ; syq(M,K)]T; M ; syq(M , K ) by (1)
= KT; K [12] Prop. 4.4.2.ii
⊆MT; K by (K2)
⊆MT; M by (K1).

Using that H is a mapping, we get from this H;ΩM ;HT ⊆ ΩM , i.e., the desired
inclusion ΩM ⊆ H;ΩM ;HT. Also the first two calculations of the subsequent
proof of property (C3) use the surjectivity of syq(M,K) = syq(M , K ). From
(1) and Prop. 4.4.2.ii of [12] and (K1) we get

KT; M ; syq(M,K) = KT; M ; syq(M , K ) = KT; K ⊆ KT; M

and Prop. 4.4.2.ii of [12] and (K2) yield

K
T

;M ; syq(M,K) = K
T

;K = (KT; K )
T ⊆ (MT; K )

T
= K

T
;M.

Putting these inclusions together, we obtain

(KT; M ∪ K T
;M); syq(M,K) ⊆ KT; M ∪ K T

;M
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that, due to the definition of syq(K,M) and (1), holds iff

syq(K,M) ; [syq(K,M)]T ⊆ syq(K,M) .

An application of the Schröder rule to this result followed by the definition of
H, finally, shows H;H ⊆ H. �

Combining the last two theorems, we obtain for our general setting an injective
embedding of the ΩM -closures into the M -contacts.

Corollary 4.1. Assume a relation M : X↔G such that syq(M,M) = I and let
KM and HΩM denote the set of M -contacts and ΩM -closures, respectively. Then
the function conM : HΩM → KM , where conM (H) = M ;HT, is injective.

Proof. First we show that syq(conM (H),M) is total for all H ∈ HΩM .

syq(conM (H),M); L = syq(M ;HT,M); L definition of conM (H)
= H; syq(M,M); L [12] Prop. 4.4.1.vi
= H; L since syq(M,M) = I
= L H total

Hence, syq(conM (H),M) is an ΩM -closure due to Theorems 4.2 and 4.3. The
above calculation, furthermore, shows that the function

cloM : conM (HΩM )→ HΩM cloM (K) = syq(K,M)

fulfils cloM (conM (H)) = H for all H ∈ HΩM , and we are done. �

Specifying the point-wise ordering of mappings relation-algebraically, we obtain
for H1, H2 ∈ HΩM that H1 ≤ H2 iff H1 ⊆ H2;ΩMT. In respect thereof, the
following theorem shows that the function conM is even an order embedding
from the ordered set (HΩM ,≤) into the ordered set (KM ,⊆).

Theorem 4.4. Under the assumptions of Corollary 4.1 we have H1 ⊆ H2;ΩMT

iff M ;H1
T ⊆M ;H2

T.

Proof. In the following calculation we combine the fact that H1 and H2 are
mappings with Prop. 4.2.4.iii of [12].

H1 ⊆ H2;ΩMT ⇐⇒ H1 ⊆ H2; MT; M
T

⇐⇒ H1 ⊆ H2; M
T

;M

⇐⇒ H1 ⊆ H2;MT ;M Prop. 4.2.4.ii of [12]
⇐⇒ H2;MT ;M ⊆ H1

⇐⇒ H1;MT ⊆ H2;MT Schröder rule �

A little reflection shows that (KM ,⊆) is a complete lattice. For the ordered
set (HΩM ,≤) this is not true in general. It is, however, true if the underlying
set G on which the closure operations work is finite [10]. In general, we are
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not able to establish a one-to-one correspondence between contact relations and
closure operations in our general setting without further assumptions on the
underlying relation M : X↔G. For instance, for the example of Section 3,
RelView computed for the membership relation M and M -contact K given
there the following matrices for ΩM and syq(K,M).

ΩM = syq(K,M) =
g1
g2
g3

g1 g2 g3

The relation Ω may be described as being the column-is-contained-preorder for
M , while syq(K,M) compares columns of K and M for being identical. Fur-
thermore, the tool ascertained that there exist exactly 128 relations containing
M and exactly 66 of them are M -contacts. Since ΩM is the identity relation,
however, there exists only one ΩM -closure, viz. ΩM .

In matrix terminology, totality of syq(K,M) means that each column of
K : X↔G appears also as a column of M . Hence, this property should hold
for G being a powerset 2X and M being the powerset relation ε : X↔ 2X . And,
in fact, totality of syq(K, ε) can be shown so that, together with the already
obtained results, we are able to give not only a completely relation-algebraic
proof of the above mentioned result of Aumann but also to show that the sets
are isomorphic complete lattices.

Corollary 4.2. For all powerset relations ε : X↔ 2X , the ordered sets (Kε,⊆)
and (HΩ ,≤) are isomorphic via the function conε : HΩ → Kε of Corollary 4.1
and its inverse function cloε : Kε → HΩ, where cloε(K) = syq(K, ε).

Proof. For each K ∈ Kε, (1) and the second axiom of (3) imply

syq(K, ε); L =
(
L; syq(K, ε)T)T =

(
L; syq(ε,K)

)T = L.

Because of Theorem 4.3, therefore, cloε(K) is defined for all K ∈ Kε. From the
proof of Corollary 4.1 we know already that

cloε(conε(H)) = H

holds for all H ∈ HΩ . Furthermore, we obtain for all K ∈ Kε the equation

conε(cloε(K)) = ε; syq(K, ε)T = ε; syq(ε,K) = K

using the second axiom of (3) in combination with Prop. 4.4.2.ii of [12]. These
two properties show that the functions are bijective and mutually inverses. That
the two mappings are order isomorphisms follows from Theorem 4.4. �

One might conjecture that in the case syq(M,M) = I from an isomorphism
between the sets KM and HΩM also the second axiom of (3) follows, i.e., M is
essentially a powerset relation. Unfortunately, this speculation is false, as the
simple example with a single group, i.e., G := 11, and M as L : X↔11 shows.
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5 Linking Column and Row Types of a Relation

Considering a relation M : X↔Y as a Boolean matrix, rows and columns may
be joined or intersected in much the same way as one may form sums of rows or
columns of real-valued matrices. In comparison with the vector space spanned by
the real-valued rows, on will then obtain unions of rows, or intersections, respec-
tively. Unions of rows of M may, of course, also be considered as complements of
intersections of complemented rows. For the following, we decide to treat mainly
intersections. Although this looks more complicated introducing complements,
it gives better guidance along residuation.

By the following four RelView-pictures we want to decribe the situation.
We consider a 4× 4 Boolean matrix M . The 4× 7 matrix right besides M shows
all possible intersections of sets of columns of M . Each of the seven results
represented by a column of the matrix. Note, that the full vector is obtained
by intersecting the empty set of columns. In the same way the 7 × 4 matrix
below M enumerates all intersections of sets of rows of M . Again we have seven
different results, now represented by the matrix’s rows. Finally, the 7× 7 matrix
β bijectively links the column intersections and the row intersections of M .

M =
1
2
3
4

1 2 3 4 5 6 7

= β

It is evident that several combinations of rows may produce the same union.
When considering εTX , multiplied from the left, where εX : X↔ 2X is the pow-
erset relation of X, one will probably obtain many identical unions of rows.
In order to eliminate multiply occurring unions, one may, of course, wish to
identify them. A little reflection shows in an analogous way that all intersec-
tions of rows of M are given by the rows of R := εTX ; M : 2X↔X. The
elimination of multiple rows of R is obtained via ηT

Ξ ;R : 2X/Ξ↔Y , where
ηΞ : 2X↔ 2X/Ξ is the canonical epimorphism induced by the row equivalence
relation Ξ := syq(RT, RT) : 2X↔ 2X . Equivalence classes of rows so obtained
will be called row types.

We will use contacts for linking the row types of a relation with its col-
umn types. The corresponding reflection, namely, shows that all intersections
of columns of M are given by the columns of C := M ; εY : X↔ 2Y , where
εY : Y ↔ 2Y is the powerset relation of Y , so that we proceed with

Definition 5.1. Given M : X↔Y , C := M ; εY , and R := εTX ; M , we de-
fine the column intersection types relation as C; ηΨ : X↔ 2Y/Ψ and the row
intersection types relation as ηT

Ξ ;R : 2X/Ξ↔Y .
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To visualize the constructions, we consider again the 4×4 matrix M of the above
example. The following RelView-matrices represent the membership relation
εY and the relation C, respectively.

εY = C =

If we transform C into the column intersection types relation C; ηΨ by the elimi-
nation of all multiple occurrences of columns, we exactly obtain the result already
shown above.

It is a remarkable fact that there exists a close connection between the row
and the column types relation. By the following bijection, one may feel reminded
that for a real-valued matrix the row rank equals the column rank. Some ideas
from the approach stem from real valued matrices as presented e.g., in [11]. For
the proof we need that symmetric quotients are difunctional in the sense that

syq(P,Q);
[
syq(P,Q)

]T; syq(P,Q) ⊆ syq(P,Q), (7)

which immediately follows from (1), (2) and Prop. 4.4.1.iv of [12].

Theorem 5.1. Given a relation M : X↔Y together with the derived relations
C := M ; εY , R := εTX ; M , Ψ := syq(C,C), and Ξ := syq(RT, RT), there
exists a bijective mapping (in the relational sense) of type [2X/Ξ↔ 2Y/Ψ ].

Proof. The idea is to compare the contact relation miM (maM (εX)) = miM (RT)
and the lower derivative miM (εY ) = C via a symmetric quotient construction;
so we define (equality of the two versions is easy to prove by expansion):

A := syq(miM (RT), C) = syq(RT,maM (C)) : 2X↔ 2Y

The relation A is total and surjective. For totality, we calculate

A = syq(miM (RT), C)

= syq( M ; M
T

; εX , M ; εY )

= syq(M ; M
T

; εX , M ; εY ) by (1)

⊇ syq( M
T

; εX , εY ) [12] Prop. 4.4.1.v

and apply then that syq( M
T

; εX , εY ) is total by (3) and (1) . To prove surjec-
tivity, we reason in the same way, but use the other variant of A.

Next, we have a look at the row equivalence relation Ξ ′ := syq(AT, AT) and
the column equivalence relation Ψ ′ := syq(A,A). It so happens that Ξ = Ξ ′ and
Ψ = Ψ ′ via a general cancelling rule for symmetric quotients that follows from
the laws of [12], Section 4.4. E.g., the second equality is shown by

Ψ ′ = syq(A,A)
= syq(syq(miM (RT), C), syq(miM (RT), C))
= syq(C,C) cancelling
= Ψ.
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Based on A : 2X↔ 2Y and the canonical epimorphisms ηΞ : 2X↔ 2X/Ξ and
ηΨ : 2Y ↔ 2Y/Ψ , now we define the following relation by simple composition:

β := ηΞ
T;A; ηΨ : 2X/Ξ↔ 2Y/Ψ

This is a matching, defined as a relation that is at the same time univalent and
injective. Using the Schröder rule, for the proof of univalency we start with

AT;A ⊆ A
T
;A ⇐⇒ A; A

T
;A ⊆ A ⇐⇒ A;AT; A ⊆ A ⇐⇒ A;AT;A ⊆ A.

This yields AT;A ⊆ A
T
;A and, by transposition, also AT;A ⊆ AT; A , since

symmetric quotients are difunctional due to (7). So, we have AT;A ⊆ syq(A,A).
If we combine this with Ξ = Ξ ′ = syq(AT, AT) and Prop 4.4.1.iii of [12], we get

AT;Ξ;A = AT; syq(AT, AT);A = AT;A ⊆ syq(A,A) = Ψ ′ = Ψ.

Now, the univalency of the relation β can be shown as follows:

βT;β =
[
ηΞ

T;A; ηΨ
]T; ηΞT;A; ηΨ

= ηΨ
T;AT; ηΞ ; ηΞT;A; ηΨ

= ηΨ
T;AT;Ξ;A; ηΨ by (5)

⊆ ηΨT;Ψ ; ηΨ see above
= ηΨ

T; ηΨ ; ηΨT; ηΨ by (5)
= I by (5)

Transpositions of difunctional relations obviously are also difunctional. This im-
plies A;AT ⊆ syq(AT, AT) and from this fact we obtain, analogously to the above
calculations, first A;Ψ ;AT ⊆ Ξ and then injectivity β;βT ⊆ I.

Since canonical epimorphisms and their transpositions are total and surjec-
tive and these properties pass on to compositions, by construction β is also total
and surjective, i.e., the bijective mapping we have searched for. �

Let, for M : X↔Y and y ∈ Y , by M (y) : Y ↔11 the y-column of M be denoted.
Then M∩

c := {
⋂
y∈IM

(y) | I ∈ 2Y } is the set of all intersections of sets of
columns of M and M∩

r := (MT)∩c that of all intersections of sets of rows. It is
easy to show that

⋂
y∈IM

(y) 7→ [I] is a bijective function from M∩
c to 2Y/Ψ in

the usual mathematical sense and, hence, |M∩
c | = |2Y/Ψ | and |M∩

r | = |2X/Ξ|.
Now, from the above theorem we get |M∩

c | = |M∩
r |, as already demonstrated by

means of the introductionary example of this section.
Note that all constructions of Theorem 5.1 and its proof are relation-algebraic

expressions, that is, algorithmic. As a consequence, they immediately can be
translated into RelView code, such that the tool can be used to compute for a
given relation its column intersection types relation as well as its row intersection
types relation and also the mapping that bijectively links the rows of the latter
with the columns of the first one. Similar to Definition 5.1 also column union
types relations and row union types relations can be introduced and then an
analogon of Theorem 5.1 holds for these constructions.
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6 Conclusion

At the end of Section 4, we have remarked that a one-to-one correspondence
between M -contacts and ΩM -closures also may exist for M not being (isomor-
phic to) a set-theoretic membership relation. Presently, we are looking for simple
conditions on M which ensure that the sets KM and HΩM are isomorphic. In this
context, it is also interesting to study whether these conditions imply that ΩM
belongs to a specific class of orders. In respect thereof, a first result is that each
relation M that, using matrix terminology, is obtained from a powerset relation
ε by adding additional rows consisting of 1’s only has as many M -contacts as
ΩM -closures and in this case ΩM is isomorphic to Ω.

Besides Aumann contacts, another concept of contacts is discussed in the lit-
erature, mainly for reasoning about spatial regions. In most cases (see e.g.,[8]),
the underlying structure is a Boolean lattice, i.e., essentially a powerset ordered
by set inclusion. This fact leads in a natural way to the task of detecting the
interdependencies between the two concepts (if such are) and whether it is also
possible and reasonable to generalize the latter one similar to our generalization
of Aumann contacts to M -contacts, a work that is planned for the future. An-
other future work is the relation-algebraic treatment of other closure objects,
like implicational structures, join-congruences, Moore families and so on.
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