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Zusammenfassung 

Stoßwellen eines kontinuierlichen Verkehrsflußmodells. Ziel dieser Untersuchung ist die 
Entwicklung eines Programms zum Zeichnen der Stromlinienbilder von Verkehrsflüssen unter Ver­
wendung eines kontinuierlichen Modells von LIGHTHILL. Es handelt sich dabei um eindimensionale 
Strömungen mit geschwindigkeitsabhängiger Dichte p (v). Die Kontinuitätsgleichung führt zu der 
quasilinearen partiellen Differentialgleichung v, + vx. ( v+ p (v)/ p' (v)) = 0. In [3] sind geeignete Rand­
bedingungen dafür angegeben, und es wird gezeigt, daß man aus dem Fahrverhalten x = x (t; 0) des 
Führungsfahrzeugs einer Kolonne die Trajektorien x = x (t; c), also das Fahrverhalten der folgenden 
Fahrzeuge, explizit erhalten kann. 

Hier wird die Theorie der Verdichtungslinien entwickelt. Bei einem Spezialfall des kontinuier­
lichen Modells, beim P-Modell, lassen sich die Verdichtungslinien explizit bestimmen. Das P-Modell 
kann man für eine approximative Behandlung allgemeinerer Fälle verwenden. Zum Abschluß wird 
eine Standardaufgabe der Simulation von Verkehrsflüssen, die durch eine Folge von Verkehrsampeln 
geregelt sind, formuliert und ein Programm beschrieben, das anhand des kontinuierlichen Modells 
Stromlinienbilder davon errechnet. 

1. Summary 

The purpose of this investigation is the development of a program for 
the construction of stream-line pictures of traffic flow using a continuous 
model. In a continuous model traffic flow is treated as if it were a flow of 
a fluid. The model used here is due to LrGHTHILL and represents a one­
dimensional flow with a density p (v) dependent on the velocity v. The 
continuity equation leads to the quasilinear partial differential equation 
v1 +vx (v+p(v)/p'(v))=O. In [3] the author has given adequate boundary con­
ditions. Furthermore it is shown there, that x=x (t; 0) being the path of the 
leading vehicle of a column;' the trajectories x = x (t; c), i. e„ the paths of the 
following vehicles in the sense of the continuous model, can be obtained 
explicitly. 
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The theory of shock waves in this flow is developed here. As a special 
case for which shock waves can be determined explicitly the P-model is intro­
düced. lt is described how general flows of the continuous model can be 
approximated by means of the P-model. 

A standard task of the simulation of a traffic flow regulated by traffic 
lights is formulated and a description is given of a program constructing 
stream-line pictures of it. 

2. The Continuous Model 

2.1. Differential Equation and Leading Condition 

We will investigate a one-dimensional flow with a density depending on 
the velocity in a given manner. The equation of motion of the "leading vehicle" 
serves as a boundary condition and certain trajectories x = x (t; c) of the flow 
will be interpreted as the equations of motion of the "following vehicles". Let 
the reciprocal of the density, which is dependent on the velocity, be given by 
a (v). · 

From the continuity equation 

a quasilinear, partial differential equation of first order for v (t,x) follows: 

( 
a (v)) 

v1 +vx v- a' (v) =Ü. 

Additionally, we need the 

initial condition v (O,X)= V(X) for X ::;O 
and the 

leading condition v(T,X(T))=X(T) for T~O. 

The initial condition describes the velocity distribution V (X) of the column 
at the time t=O. Tue position of the leading vehicle at this time shall be x=O. 
The leading condition is an adequate boundary condition, if the path X (T) of 
the leading vehicle is given. 

In general, integration of the differential equation leads to the following 
implicit, local description of the velocity field v (t,x), which contains the 
arbitrary function g (v): 

x=(v- ;, ~~ )- t+g (v). 

From this we recognize that a velocity v occurring in the initial or in the 
leading condition will be propagated along a straight isoclinal line with 
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slope m (v): = v-a (v)/ a' (v). The flux density M (v): = p. v: = v/a (v) is maximal 
if and only if the function m (v) vanishes. If we assume that a (v) has a continuous 
positive second derivative, with the exception of points of discontinuity, then 
m (L') will be continuous and monotonically increasing with v. 

2.2. Integration and Domains of Determinacy 

Replacing v with x we interpret the velocity field as a differential equation 

for the trajectories x = x (t; c) 

(. a(x)) . 
x= x- a' (x) . t+g (x). 

Under certain assumptions, the equation 

x-X (T)=(t-T). (X (T) a (X (T))) 
a' (x (T)) 

(2.2.1) 

describes a family of straight isoclinal lines, parametrised by T, starting from 
the leading curve and spread over a schlicht domain of determinacy. This family 
has an envelope. Assuming X ( T) > 0, the envelope is situated to the left of the 
leading curve, i.e. outside the domain of determinacy. Given X (T)<O, the 
envelope is a boundary of the domain of determinacy to the right of the 
leading curve (see Fig. 1). 

X(TJ 
X 

t t 

Fig. 1 

In [3] the following results are established: 

(2.2.2) Let X ( T) be a smooth monotonically increasing leading curve with 
a non-negative second derivative, which is continuous with the exception 
of a finite number of points. 

a) The domain of determinacy is bounded by the leading curve and the 
isoclinal lines starting from its starting point and end point. 

b) For czO the trajectories are obtained in the parametric representation 
with parameter T 

t= T +c·a'(X(T)) 

x=X (T)+c. d (X (7))· (x (T) a (~ (T))) 
a' (X (T)) . 
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Obviously, we get the leading curve itself for c = 0. The parameter c gives 
the number of vehicles M between the leading curve and the c-th trajectory. 

X(T) 

C=C1 

Fig. 2 

This is seen as follows. 

Using (2.2.2) we substitute 
~:=X (T)+c (T). a' (X (T)) X (T)-c (T) a (X (T)),withc (T)=(T2 -T)/a' (X(T)), 
and obtain 

M=J 1 +(T2 -T)·-,-2 dT=- (T2 -T)· 1 
T2 ( 1 a" X) [ 1 JT2 

r, a a a T1 

(2.2.3) Let X (T) be a leading curve as in (2.2.2) but with a negative second 
derivative. 

a) The domain of determinacy is additionally bounded by the envelope of 
the isoclinal lines. 

b) The trajectories are given by (2.2.2.b) with the additional restriction 
-1 

c< imposed on c. 
- a"(X(T))·X(T) 

Furthermore, we mention that corresponding results can be obtained for 
the initial condition. 

(2.2.4) Let the initial condition be given by a non-negative, continuous 
function V (X) with a non-negative derivative, which is continuous with the 
exception of only a finite number of points. 

a) The domain of determinacy is bounded by the definition interval [X 0 , O] 
of V (X) on the x-axis and the isoclinal lines starting from the points 
(0, X 0 ) and (0, 0). 
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b) The trajectories are obtained in the parametric representation with 
parameter X 

(

X d~ ) 
t=a' (V(X)) · ! a (V(~)) +c 

x=X +a' (V(X)}. (v(X) a (V(X))). (J d~ +c) 
0 a (V(rn 

(c) For O~c~f a(:~~)) the trajectories start from points of the interval 
o X d~ 

[X 0 , O], and on the parameters X and c the condition J , ..... , + c 2 0 is 

imposed~ 
0 

/ 

(2.2.5) Under the assumptions of (2.2.4), but with V' (X)<O, the domain 
of determinacy is additionally bounded by the envelope of the isoclinal 
lines. 

If general initial and leading conditions are given, they may be investigated 
separately for the domains of determinacy of the monotonic regions of V (X) 
and X (1) respectively. The transition from one domain of determinacy to 
the other is usually along shock waves dealt with in section 3. 

2.3. P-Diagrams 

Naturally, a (v) is a convex, monotonically increasing function. The 
simplest functions with this property are quadratic polynomials a (v)= 
=a0 +a1 v+a2 v2 with ai>O for i=0,1,2. With this consideration in mind, if 
we admit only parabolas X (1)=A 0 + A 1 T + A 2 T

2 for leading curves, the 
enYelope of the isoclinal lines degenerates to the single point (tE> xE), 

tE= a1 +2a2A1 x =Ao 
---, E 
a2A2 

a0 -a2 Ai 
4a2 A 2 

Tue slope of an isoclinal line belonging to the velocity v is given by m (v)= 

=(-a0 +a2 v2)/(a1 +2a2 v). 

We have 

(2.3.1) The trajectories are 

t=c (a1 +2a2 A 1)+ T- (1+4a2A 2 c) 

x=A0 +c (a2At-a0 )+(A1 T +A2 T
2) · (1+4a2A 2 c), 

furthermore: 

a) Tue trajectories are parabolas, which become broader monotonically 
with increasing c. 

b) Tue vertices of the paraholas are situated on a straight line of slope 
m IÜl= -a0/a1 through (tE, xE). 
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lt is a remarkable fact, that not only the leading curve X (T) but all the 
trajectories are parabolas. Since every trajectory in turn can be regarded as 
the leading curve for the following trajectories, it is possible to draw the 
tiajectories of all parabolas X (T) in one single diagram. Such'·a diagram shall be 
called a parabola- or P-diagram. The special continuous model is called the 
P-model. In Fig. 3 a P-diagram is shown. 
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lf a flow problem with arbitrary functions a (v) and X (T) is given, lt is 
natural to try a local approximate treatment by means of P-diagrams. We 
must therefore approximate the functions a (v) and X (T) by smooth functions 
aP (rl and XP (T) respectively, which are composites of parabolic arcs. 

If 

{
a01 +a11 v+a21 v

2 for O::::;;v::::;;v 1 , 
a(v)= 

2 a02 +a12 v+a22 v for v1 ::::;;v 

v.ith a11 +2a21 v1 =a12 +2a22 v1 is such a function, the behavior of trajectories 
is described by two P-diagrams, the first of which is valid in the sector bounded 
by the isoclinal lines with slopes m (0) and m (v 1), while the second is valid 
outside. 

3. Shock Waves 

3.1. System of Differential Equations for Shock Waves 

Let the leading curve X ( T) be given in composite form 

(3.1.1) X(T):= 11' - s 
{

X ('T'I for T< T 

X2 (T) for T?:. Ts 

\\ith X 1 ( T8 ) =X 2 ( Ts) = : X s. Only the case X 1 ( Ts)?:. X 2 ( Ts) is admitted. The 
functions Xi (T), i= 1,2, are assumed to be smooth, convex or concave, with 
a second derivative existing everywhere except possibly at a finite number of 
points. Since m (v) is a monotonic increasing function, the domains of 
determinacy belonging to the leading curves Xi (T) overlap. (They would not 
if X 1 (Ts) were less X 2 (Ts) thus leaving a region of indeterminacy.) 

Within the intersection of these two domains the shock wave is to be 
determined, i.e. the line along which the jump from the first domain of 
determinacy to the second occurs. The condition is that the c-th trajectory 
of the first domain has to pass over to the c-th trajectory of the second 
domain. 

\\'e take seven parameters, t, x, v1, v2 , T1, T2 , c to characterize a point P 
of the shock wave. The quantities t, X are the space Coordinates, and Vi. D2 

are the velocities in P on either side of the shock wave, which are induced by 
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isoclinal lines starting from the points (Ti, Xi (Ti)), i= 1, 2, of the leading curve. 
Finally, e is the parameter of the trajectory through P. Obviously vi does 
depend on Ti according to vi =Xi ( T;). In spite of this, we use V;, too, for the 
purpose of abbreviation. ' 

For the points (t, x) of the intersection of the domains of determinacy 
the following equations are valid. 

t= Ti+c · a' (Xi (T;)) 

x =X. ( T) + e . a X. ( T) . X. ( T) - . '(. ) {. a(k;(T;))} 
' ' '' '' a'(X;(Ti)) 

(i= 1,2) 

In order to obtain the equation of the shock wave, we have to eliminate 
e, T1 and T2 . 

This leads to four differential equations 

dt = (l+ e. a' (v;)) d 1i+ a' (vi) de 

(3.1.2) { a (v.)} 
dx=(l+e. a' (v.)) v. dT+a' (v·) v.---' de 

i 1 i i i a' (vJ · 
(i= 1,2) 

If we take c as a parameter for the shock wave we obtain the following 
system of differential equations of first order for the six functions t (e), x (c), 
V; (c) and Ti (e) 

(3.1.3) 

d 
a(v 1)-a(v2)d 

t- e 
V1 -Vz 

dx Vz a (v1)-v1 a (v2) de 
V1 -Vz 

l 
The initial values are t (0)= T" x (0)=X 8, v;(O)=X; (T8 ) and T;(O)= T 8 • 

3.2. Spontaneous Formation of Shock Waves 

The slope of the shock wave in P is 

a (vi) · (v 1 -v2 ) 

a(v 1)-a(v2) · 

i=l,2. 

If v1 approaches v: = v2 then m (vi. v2) will approach the slope m (v) of iso­
clinal lines belonging to the velocity v. 

We now discuss a smooth transition (X1 (T8 )=X2 (T8 )=: Vs) from X 1 (1) to 
X 2 ( 1) at ( T" X J with the assumption that X 1 ( 1) > 0 and X 2 ( 1) < 0. The two 
domains of determinacy intersect between the isoclinal line through ( T" Xs) 
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and the envelope belonging to X 2 (1) starting from Q=(tA, xA). Therefore a 
spontaneous formation of a shock wave can be expected. For O:S;c<cA we 
haYe dt\=Ü in (3.1.3.). Since 1 +ca" (X2 (1)). X2 (1)=0 is valid along the en­
Yelope d v2 becomes indeterminate for c = c A at Q. 

Fig. 5 

Tue initial conditions for the shock wave are 

t (CA)= Ts + CA · a' (V,) = : t A 

, { a (Vs)} X (cA)=Xs +CA a (V,)· Vs- a' (Vs) = : XA 

v;(cA)= Vs, T;(cA)= Ts i= 1, 2 

together with 
-1 

CA 
a" (Vs) · X 2 ( Ts)" 

H we take a (v)= a0 +a1 (v- Vs)+ a2 (v- V.}2 + a3 (v- Vs)3 + ... in the neighbor­
hood of v = Vs and 

X;( T)=Xs+ vs (T- Ts)+ B;(T- Ts)2 +Ri (T---:- Ts)3 + ... (i= 1,2) 

in the left respectively right neighborhood of T= Ts we obtain 

t=tA +a1 · (c-cA)+ ... 

x=xA +(a1 Vs-a0 ) · (c-cA)+ ... 

3 B1 · B'~. 1 2 
v1 = Vs-4a2 (B B ) · (2 B2 R ) · (c-cA) + „. 

1 - 2 G3 2 +a2 2 

, B3 
v2 =Vs+4a~ (

2 
B 2 

2 ) ·(c-cA)+ ... 
a3 2 +a2 Rz 

Computing9•4 26 
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3 Bi 1 i 

T1 = Ts-2a2 (B1 -Bi). (2a3 B~ +a2 Ri). (e-eA) + ... 

Bi 
T2 =Ts+2a~ (l ·2 

2 
) -(e-cA)+ ... 

a3 B2 +a2 R 2 

as the beginning of the Taylor series for the parameters of the shock wave. 
The slopes of the envelope and the shock wave in Q coincide. 

3.3. Determination of Shock Waves for the P-Model 

With the assumptions from the P-model the system (3.1.3) of differential 
equations can be integrated explicitly. Setting Xs: = Ts: =0, X 1 (n: =A1 T+ 
+ A 2 T

2, X 2 (n: =B1 T +B2 T
2 with A1 ~B1 we obtain from (3.1.3) 

dt =(a1 +a2 [v1 +v2])de 

dx=(a2 v1 v2 -a0 ) de 

2a2 A2 

1 4 
(v1 -v2 ) de 

+ a2 A2 e 
(3.3.1) 

2a2 B2 ( )d -----V1 -V2 e 
1+4a2B2e 

and v1 =A1 +2A2 T1, v2=B1 +2B2 T2. The initial conditions are t(O)=x(O)=O, 
v1 (0)=A1, v2 (0)=B1. We introduce w: =v1 -v2 satisfying the differential 
equation 

and obtain 

V1 -V2 = w-----------­

V 1+4a2 A2 e V1 +4a2B2e 

Now, v1 and v2 can be determined, 

as well as the constants of integration 

_ B ß_B1 A 2-A1 B2 
cx-A1 - 1• - A B . 

2- 2 

Finally, this leads to a parametric representation of the shock wave with 
parameter e 
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t=c (a1 +2a2ß)+,.. 'A
2
a_B

2
\ {Vl +4a2A 2c V1 +4a2B2c -1} 

( 
2 a

2
A 2B2 ) 

x=c -ao+a2ß +a2 (A2-B2)2 + 

+ (aß \ {V1+4a2A 2c V1+4a2 B2 c-l}. 
2 A 2 -B2 

Consideration of the limit case A 2 = B2 yields 

t=c (a 1 +a2 (A1 +B1)) 

x=c (-ao+a2A1B1)+ 4a~A2c2 (A1 -B1)2 
• +4a2A2c 

3.4. Discussion of the Shock Waves of the P-Model 

375 

(3.3.2) 

(3.3.3) 

In this section we will ascertain the main geometric properties of the shock 
'\fi'llYes. The equations 

t=Ar+B~. x=Dr+E~ 

i - B- a - z rx2 A1B2 E- aß ) 
~ _.f-a1+2a2ß, -2(A2-B2)' D--ao+a2ß +a2 (A2-B2)2' -2(A2-B2) 

Jescribe an affine transformation of the conic K given by r = c, 

~=V1+4a2 A2 c · V1+4a2B2c-1 

:n the (r, ~)-plane. The curve K is an ellipse (hyperbola, parabola) for 
A: · B1 <0 (A 2 · B2 >0, A2 · B2 =0), the determinant of the affine transformation 
being 

I
A BI Ai-B1 ( ) 

M: =DE =l(A
2
-B

2
)2 · A 2a(B1)-B2a(A1). 

,-e obtain the discriminant ö of the shock wave (3.3.2) by Ö= -16a~ A 2 B2 M
2 

.md the second invariant LI by Ll=4a~(A 2 -B2)2 M4 • Therefore we have 

i3.-Ul In the P-model with a(v)=a0 +a1 v+a2 v
2 the leading curve (3.1.1) 

:;:"roduces a shock wave, which is a 

straight line if A 1 =B1 or A 2 a (B 1)=B2a (A 1); otherwise an 

dlipse if A 2 • B 2 <0 

hyperbola if A 2 · B2 >0 

parabola if A 2 · B2 =0 

In generaL a jump of the velocity when passing over from an accelerating 
ldccderating) leading curve X 1 (T) to an accelerating (decelerating) leading 
cane X 2 f T) will .yield a shock hyperbola. If ·the signs of the acceleration_s 
b X 1 1 n and X 2 ( T) are opposite, a shock ellipse will be formed. There 
.are some additional cases of degeneration. 

26* 
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A 2+B2 ( AiB2+A2Bf) Xm= -ao+a2 . 
8a2A 2B2 A2+B2 

The point (tm,xm) bisects the line segment between the origins of the P­
diagrams belonging to X 1 ( n and X 2 ( n respectively. 

If we introduce 

Bi VTA'J-AiVTBJ 

VTAJ-VTBJ 
as weighted means of the velocities A1 and B1, we have A 1 ~w1 ~B1 and 
m(A 1)~m(w1)~m(B1). The slopes of the asymptotes of a shock hyperbola 

are (D±E · 4a2 VA2B2)/(A±B · 4a2 VA2B2 ) andit can be seen that they are 
identical with m (w1) and m (w2). Obviously, the slope of the asymptdte of 
the branch of the shock hyperbola, running in the intersection of the domains 
of determinacy is m ( w 1 ). 

3.5. Intersection of Shock Waves 

If two shock waves intersect, the intersection is the starting point of a 
new shock wave. For the P-model, the intersection points can be obtained 
explicitly. 

fT,,X,J 

Fig. 6 

Let the two shock waves 11 and 12 start from the points (T1,X 1) and 
(T2,X2 ), where they are generated by the jump of a parabola with 
acceleration 2. B 2 (respectively 2 · B3) and velocity V2 (V3) to a parabola 
with acceleration 2. B3 (2. B1) and velocity U 3 (U i). We deal with the general 
case only; other cases are to be treated similarly. 

For convenience, we introduce the intersection point ( T3 , X 3) of the first 
and third parabola and choose cyclic denotations with indexes to be reduced 
modulo 3. The shock wave starting from the intersection point (t*, x*) is 
identical with the shock wave 13 , which would be generated in (T3 , X 3). 
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Ob\iously, the following geometric relations are valid: 

X;+ U;+z (Ti+ 1-T;)+Bi+ 2 (Ti+ 1-T;)2=X;+ 1 
(i=l,2,3) 

U;+2B;(T;+ 2-T;+ 1)= V;. 

Following (3.3.2), the equations of the three shock waves considered, are 

t=P; r+Q; e;+ T; 

x=R; r+S; e;+X; 

't"=C 

e;=Vi+4a2 (Bi~l +B;+ 2) c+l6a~ Bi+l B;+z c2 -1 

with 

P;= a1 +2a2ß;, 
Ol; 

Q;= 2 (Bi+1 -Bi+2)' 

Olf Bi+1 Bi+z s. ßz+a )2' • R;= -ao+a2 i z (B;+1 -Bi+2 
Olißi 

2 (Bi+1 -Bi+2). 

lt is necessary to evaluate the point (t*, x*) common to the shock waves 
11, lz., 13 . We determine the parameter c = c* belonging to this point, using the 
SJ'5lCID of four linear equations for r, ei. ez, e3. 

(P1-P2)•+Q1e1-Q2e2+ Ti- Tz=Ü 

(Pz-P3)r+Q2ez-Q3e3+ Tz- T3=0 

(R1-R2)•+ s1e1 - s2e2+X1 -X2=0 

(Rz-R3)r+ s2e2- s3e3+X2-X3=0. 

The values of r, e1, ez, e3 can easily be determined. With extensive 
alculations, it can be shown that the four quantities thus obtained satisfy 
6e rdations (e;+ 1)2=1 +4a2 (B;+ 1 + Bi+ 2) r+ 16a~ B;+ 1 B;+z r 2, ascerting that 
6e points (r, e;) are situated on the conics in the (r, e;)-plane discussed in 3.4. 
"lkn:fore we have c*=r. 

4. Simulation 

We have used a one-dimensional flow with a density depending on the 
~ as a basis for a continuous model of traffic flow. In the preceding 
pmagraphs the theory has been developed to the extent that all the important 
dicd.s can be evaluated exactly or at least approximately. We have to discuss 
im:dtods for applying this theory to concrete situations. W e will formulate 
a mndard problem of simulation of traffic flow regulated by traffic lights. 

A single lane shall be given, on which the traffic flow is regulated by traffic 
1ights. The positions of the traffic lights and their switching plan shall be known 
as wdl as the maximum velocity admitted · between two consecutive traffic 
~ Additionaily the standa~d accelerations shall be prescribed, which · a 
aic::le has to observe in the case that it is the first vehicle behind one of the 
traßic lights switching to „green". If the distribution of traffic density is known 



378 G. SCHMIDT: 

at time t = 0 the further course of the traffic situation in the continuous model is 
determined and stream-line pictures are to be drawn. 

At the Mathematical Institute of the Technical Un1versity of Munich a 
program has been developed, which allows a stream-line picture for a given 
problem of this standard type to be drawn. 

At present the program presumes as an initial distribution of density 
that a column of a certain length is standing at the first traffic light and that 
the rest of the street is empty. For the time being, only functions a (v) of the type 
a(v)=a0 +a1 v+a2 v2 are admitted. 

The program needs the following items for input 
- a0 , a 1, a2 and some quantities of capacity 
- the distances of the traffic lights from the origin, the maximum velo-

cities and the standard accelerations 
- for every traffic light a list of times, which are to be interpreted alter­

nately as the beginnings of red and green phases. 

P,, f3 intersectioo points of shock waves 
Fig. 7 

At the beginning, the path of the first vehicle is determined from standard 
accelerations, maximum velocities and occasional delay by traffic lights. We 
obtain a sequence of segments of parabolas. Hereafter the number of vehicles 
remaining in "immediate" connection with the leading vehicle is evaluated. 
A vehicle is said to be in immediate connection with the leading vehicle if, 
firstly, it passes all traffic lights within the same green phase and, secondly, 
it is influenced by every segment of the leading curve. (Two shock waves inter­
secting for c = c*, the influence of the domain of determinacy enclosed be­
tween them vanishes for czc*.) 
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For the vehicles being in immediate connection with the leading vehicle, the 
tnjeaories according to (2.3.1) with respect to the boundary lines of (3.3.2) 
.c drawn by means of a platter. 

After this, two cases are to be distinguished. 

Al The remaining flow has been cut off by the red phase of a traffic 
iPl- Then the first of the remaining vehicles is treated as mentioned 
k.fore.. 

Bl An intersection of shock waves has occured. Then the vanishing of a 
• fWMrot of the leading curve has to be managed. 

Thus. a new leading curve being obtained, the trajectories of the vehicles 
.-:h are in immediate connection to the leading vehicle can be drawn, etc. 

In Fig. 7 a stream-line picture is given to show formation and intersection 
a. *1ct waves. 

T•o periodically switching traffic lights are given in Fig. 8 and Fig. 9. In 
emr picture the switching plan is optimally chosen in relation to the standard 
x:a:laation and the function a (v). The lengths of the red phases and the 
pn:m phases being the same, the shift of the phases causes a stoppage and 
im&ishes the traffic capacity of the lane. 

Fig.8 
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Fig. 9 

In Fig. 10 a traffic flow over a lane with four traffic lights is shown. The 
switching plan of these four traffic lights being unchanged, in Fig. 11 an 
additional traffic light optimally adjusted to the flow situation is introduced as 
the last but one. lt can be seen that the traffic capacity is increased. 

Fig. 10 
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