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Abstract

This is in some sense an addendum to [Schll]. It originated from work
on diverse other topics during which a lot of purely relational results
with broad applicability have been produced. These include results on
domain construction with novel formulae for existential and inverse im-
age, a relational calculus for binary mappings, and the development of a
formally derived relational calculus of Kronecker-, strict fork-, and strict
join-operators. The many visualizations in this report make it also a
scrap- and picture book for examples.

Keywords relational mathematics, relation algebra, domain construction, vectorization, bi-
nary mapping, Kronecker-, fork-, and join-operator, products, existential and inverse image

1 Introduction

In this report, several definitions, propositions and constructions are collected that already
would have been incorporated in the book [Sch11] when they had been available at that time.
This work is completely based on relation-algebraic methods. Nevertheless, we often use terms
such as set, powerset, etc. to give intuition for the concepts intended.

Included is in Chapt. [2, what has to be mentioned from known relational methods to make
the article self-contained. In addition, several new ideas of this kind are elaborated. Then
follows a further study of the membership relation in Chapt. [3|and, based on it, a presentation
of novel insights on existential and inverse images in Chapt. 5] To underpin the often quite
intuitive formulae with rigorous relation-algebraic proofs for the first time turned out to be an
unexpectedly difficult task.



The categorical product is again studied in Chapt. [f] and in Chapt. [7, working also with vector-
ization. Therewith, a relation may be seen in different incarnations, a relation as a rectangular
Boolean matrix or a Boolean vector along the powerset, offering intricate interdependencies.

While relations lend themselves mainly to being studied with linear concepts, it also possible to
approach binary mappings or operations via relational mathematics as in Chapt.[8} Application
of such concepts allows to study Boolean algebra from quite a different perspective in Chapt. 9}

A slight generalization has taken place: It is known that relational mathematics admits also
non-representable relation algebras as models — in case the Point Axiom should not have been
postulated.

The presentation via computer-generated examples allows a very detailed view. They have
been generated with the language TITUREL (see [Sch04]), that directly interprets relational
terms and formulae. So one can be sure to see the results of the explanations in the text
directly mirrored. Accumulating such a multitude of rules and formulae follows the idea of
René Descartes, who is told to have said: ,,Jedes Problem, das ich gelost hatte, wurde zu einer
Regel, mit deren Hilfe spater weitere Probleme gelost werden konnten.

2 Prerequisites

The prerequisites presented routinely for relational work are fairly well-known: We will work
with heterogeneous relations and provide a general reference to [Sch1l], but also to the earlier
[SS&9, [SS93, SHW9T7]. Our operations are, thus, binary union “U”, intersection “N”, compo-
sition , unary negation “— 7, transposition or conversion “ "7, together with zero-ary null
relations “1”, universal relations “T”, and identities “I”. A heterogeneous relation algebra

W, ”

(A2
;

e is a category wrt. composition and identities I,

e has as morphism sets complete atomic boolean lattices with U, N, ™, I, T, C,

e obeys rules for transposition " in connection with the latter two concepts that may be
stated in either one of the following two ways:

Dedekind rule:
RSNQC(RNES"): (SN R"Q)
Schroder equivalences:
ABCC <+ AWCCB <+ (B CA

The two rules are equivalent in the context mentioned. Many rules follow out of this setting;
not least everything for the concepts of a function, mapping, or ordering; e.g., that mappings
f may be shunted, i.e., that A:f C B < A C B:f". Therule (AN B:ig")ig=AgNB
for univalent ¢ is also frequently applied and sometimes referred to as destroy and append;
Prop. 5.4 of [Sch1l].

A new and widely useful rule serves to negate the left-composition with a partial identity:



2.1 Proposition. (I N A):T = (INA)T for an arbitrary homogeneous relation A.
Proof: T=LT=[IN(AUA)[T=[TINA)UINA)]T=(INA)TU(INA)T implies
(INA)TC (INA)T, thus proving direction “C”.

For “D”, we use that I N A C I is univalent, prior to applying the Schroder rule:
INA)INA)T=[(INAININANATCINANALT =1 O

It is relatively hard to see: this specializes Prop. 5.6 in [Sch1l] for a homogeneous relation A:
INAYR=(INATU(INA):R

Another rule that sometimes proves helpful is the following:

2.2 Proposition. For any two mappings f,g : X — Y, this rule holds:
(fng)T=(ngT
Proof: (fNg)T=(fINg)TC (fNgl)(IN fHg)T=(fNgyInflg)TC(fNg)T o

There exist two resp. three versions of an interpretation. The first one takes two mappings f, g
which never assign the same value. In this case both sides result in T. Then there may be two
mappings with one or more values identical. In this case, precisely the respective arguments
lead to 0-rows; they may even lead to 1L when f = g.

3 Symmetric quotient and membership

When a non-commutative composition is available, one usually looks for the left and the right
residual, defined via

ABCC < ACCB"=C/B and ABCC <= BCA"C = A\C.
Residuations have been studied intensively, not least in the context of Heyting algebras. We
prove some rules for residuals:

3.1 Proposition (Residue cancellation). The following formulae hold for arbitrary relations
Q, R, T — provided typing is correct:

i) (Q\R)/T = Q\(R/T)
i) Q\Q = (Q\Q)/(Q\Q)
iii) Q/(RU) C (Q:U")/R if U is total

Proof: i) (Q\R)/T = Q" RT™ = Q" RT" and symmetrically to the other side.

— — —T = —

i) Q\Q = QQ implies that (Q\Q)/(Q\Q) = Q"QQ"Q = Q"QQ-Q = QTQ, since

@;@T;Q = @, which in turn follows from Schréder’s rule and reflexivity of @T;Q.
i) T=TU ' =(QUQ)U"=QU ' UQU" <<= QU CQU"

— QUTR CQU"R" <<= QU"R CQU"R" o




Intersecting such residuals in syq(R,S) := RS N RS, the symmetric quotient syq(R,S) :
W — Z of two relations R: V — W and S : V — Z is defined. Symmetric quotients serve
the purpose of ‘column comparison’:

[sya(R,S)],.=Vv €V : Ryy ¢+ S..
The following result may easily be understood. If a column of A and the corresponding one of
B are equal to some column of C, then also their intersection and union will be equal.

3.2 Proposition. For arbitrary relations A, B, C' with all the same source always
sya(4,C) Nsyq(B,C) C syq(AN B,C) Nsyq(AU B,C).

Proof: For inclusion in the first term, we expand the symmetric quotients and negate to obtain
ANB.CU(ANB)CCACUA"C U B.CUB"C,

which is obviously satisfied. This is then used to prove the other part.
syq(AU B,C) = syi(éU—B, C) =syq(AN B,C) now applying the former
2 syq(4,C) Nsyq(B, C) = syq(A, C) Nsyq(B,C) O

The illustration of the symmetric quotient is as follows:

coREaZg  PDae ko
B RN e N R Y PNV ££§3§£25£5£5
US,0000000000001 A/001000000000
French [0 100000100000 K[00O0O0O00O00D00ODO0O
R=German|0010001101010 Q010000000001
British |0 110000100001 J|looooooooooo0o0
Spanish \0O 001001001101 10{001000000000
B B e koo 9/oo1000000000
855585228888 sloooooooo0o0000
US,000101110100 71100000000000
French [100100100100 6001000000000
S=German[110011010001 5000000000000
British|1 10000101011 41]000000000000O0
Spanish \0 00101110000 3{looo0010000000
2\000000000000

Fig. 3.1 R,S and syq(R,S)

The symmetric quotient shows which columns of the left are equal to columns of the right
relation in syq(R,S), with S conceived as the denominator.

It is extremely helpful that the symmetric quotient enjoys certain cancellation properties. These
are far from being broadly known. Just minor side conditions have to be observed. In any of
the following propositions correct typing is assumed. What is more important is that one may
calculate with the symmetric quotient in a fairly traditional algebraic way. Proofs may be
found in [Sch11].

3.3 Theorem. Arbitrary relations A, B satisfy in analogy to a - g = b
i) Aisyq(A, B) = BN T:syq(A, B),

ii) syq(A, B) surjective = A:syq(A,B)= B. O



3.4 Theorem. Arbitrary relations A, B, C satisfy in analogy to g . % =
i) syq(4, B)syq(B,C) = syq(4,C) Nsyq(A, B) T
=syq(A,C) N Tsyq(B, C)
ii) If syq(A, B) is total, or if syq (B, C) is surjective, then
syq(4, B)syq(B,C) = syq(4,C). O

3.5 Theorem. Assuming arbitrary relations X, Y, Z, always in analogy to i D=
e syq(X,Y) \syq(Z,X) 2 syq(Z,Y)

* syq(syq(X,Y),syq(X, Z)) 2 syq(Y; Z)
e syq(syq(X,Y),syq(X, 7)) =syq(Y,Z) if syq(X,Y) and syq(X,Z) are surjective
O

Here is another basic rule:

3.6 Proposition. For a surjective mapping f always syq(X, fY) C syq(f"X,Y).

Proof: «<— XTfYNXTfYCXTfYNX"fY
Above, the second terms are equal since f is a mapping. Containment of the first ones:
<~ XT;f;YQT;f;Y <~ XT;ng;f = T:XT;fUF;f:W;f O

4 Membership and singleton injection

The symmetric quotient is used to introduce membership relations € : V. — P(V) between a
set V and its powerset P(V) or 2. These can be characterized algebraically up to isomorphism
demanding syq(e,¢) C I and surjectivity of syq(e, R) for all R. With a membership ¢, the
powerset ordering is easily described as = €7Z. Also least upper bounds with regard to Q
may be expressed via membership and symmetric quotient, making this a very powerful tool;
see [Schii].

4.1 Proposition. If ¢ is the membership relation and €2 the corresponding powerset ordering,
the following equations hold for arbitrary relations X:

i) e X =X and &&"X :7,

o]

i) lubq(X) = syq(e, e X). O



We also introduce singleton injection o := syq ([, ¢) and atoms a := ¢":0.

.
_ T o TS

o~ ,—»—\r—'ﬁ:éj,_»ﬁ/_qrq@:r'ﬁ:equ\’o :E g J.a

~ e~ ———— T T 9 ~d 0 d oLV ELO T L ®

,_A,,_»,--Q”_,H O QLT T = T Q9 ~Q " M e e M e M e e A (B S e S
T2 828852888 {{ / 0000000000000000
2/0101010101010101 fa}{0100000000000000
b[0011001100110011 {b}|0010000000000000
T cloooo111100001111 {a,b}10000000000000000
d\0000000011111111 {c}]0000100000000000
L {ac}|0000000000000000

. ==%% {pbcj|0000000000000000C

2 T LT sT3ss {abc}|0000000000000000
RS2 828l l {d}/]0000000010000000
a/01000000000000O0O {a,d}[0000000000000000
_b|[0010000000000000O0 {bd}([0O00000000000000
= .:10000100000000000 abd {0 0000000000000 O0O
d\0000000010000000 {cd}|0000000000000000
. {a,c,dl [00O00000000000000
T:0';c=(0110100010000000) {becd){00O000000000000000O0
{a,b,c,d} \OOO0OO0O0OO0000000000O

Fig. 4.1 ¢, singleton injection o := syq (L, ¢) and atoms as vector o":0: T as well as diagonal ¢":0

The following results correspond to the lowest level of element-is-contained-in-set considera-
tions. They are fairly intuitive and easy to understand from Fig. 4.1. The basic purpose
of these statements is to make these tiny set arguments work together with more advanced
algebraic mechanisms.

4.2 Lemma. i) gie" =1

vil) (QNelig)ie™ =T
vill) (QNe™"MT(QNe™T) =cte

Proof: i) gic” = [aaT]T = [asyq(z—:,]lﬂT =1

ii) o =syq(L,¢e) = Tene by definition and Te D Toe result in “D7.

“C”  means ﬂgauﬂ: ]I;eﬂs]UTTE
= T:ﬁ;eu[ﬁ;eﬂs}uﬂ:[Eeuﬁ;suﬂ]ﬂ[ﬁ-sUsUW,whiChistrue.

iii) 0:Qd=ccE=0cce=1

=g, using (i)

o]



oV =cehe=0ee=Le=0cU WE using (i,ii)

iv) “D” is obvious. For “C”, it suffices to prove T:o Ne C (TNeio"):(c N Tie) C o using (i).

V) TenTo=TeUle)NLoULo=Teule)nonlo=TeUle)n(Teus)nlo

= [ESU (Eﬂé‘f)} ﬂﬂ:ﬂgﬂﬂ
vi) This follows with the Dedekind rule from
etTNQC (eTNQT):(TNef) CehieQd =clie.

vii) We start with formally showing the intuitively clear fact Q:e™ = T:
Qe D (QANTE) (T NELT) =Tz 2T  trivial
D syq(T,e)isyq(e, T) =syq(T, T) =T [Schil] Prop. 8.13.ii; syq(e, T) is surjective
which is used together with (vi) in the following chain of reasoning
(QNehie)e"=(QNe"M)e" =Qe™Ne"T=TNe"T =¢c"T.

viii) We recall the definition of singleton injection o := syq(I,¢) and use (i,iii):
e=eNT=enNkT=0QN0oe"T=0:(QNe"T) since o is univalent
Therefore
ele=(QNe"MNoTo:(QNe™T) C(QNe™T)(QNe™T) since o is univalent
The other inclusion “C” follows with (vi) from

(Q"NTe):(2Ne™T) =(Q" Nele):(QNete) Celiel =eie |
:CX e T X
~5
3 n
v €- A4 X_: /ﬂ-\: X:_ Xs
X > 2 2 %2

Fig. 4.2 Quotient of membership

4.3 Proposition. Let be given the membership relation € : X — 2% and an equivalence
relation =Z : X — X and its natural projection & : X — Xz satisfying &£ = Z. Then

i) (:=e"E¢e is a preorder.
ii) Q := syq(Zie,Zi¢) is an equivalence satisfying Q = Q' N Q.

Let n : 2% — 2%= denote its natural projection, i.e., the mapping that satisfies Q = nn".



iii) &Q = Zie
T:e:m  satisfies the properties of a membership relation.

T U =n0s

<
S~—
™
e
™
|
™
m
=

Proof: We recall that for an equivalence ¥, in general ¥:U:Y = U:Y and Z:V:¥ = Z: ¥, and
that its natural projection is a surjective mapping.

i) Reflexivity holds since I C Q = 7. C ¢":Z:¢, while transitivity follows from

eTEEe =eTSe Celifie <= LDeaeimeCoe =— eLmeaehimeCelimie

ii) A relation syq(A, A) is always an equivalence following [Sch1ll Prop. 8.14.i]; furthermore
N

e ie=e"EEeNTe Be =syq(Se,Ze) =Q

ili) Zie = eisyq(e,Zie) since € is a membership
Cesyq(Ze, Z5¢) = e'syq( ie,5Zi¢) = Q) [Schlll Prop. 8.16.i]
C Ziersyq(Zie,Eic) = Zie  since always Aisyq(A4,A4) = A

Assuming an arbitrary X that is acceptable with regard to typing,
T:syq(ez, X) = Tisyq({Temn, X)
=T:n"syq(Te, X) due to [Schlll Prop. 8.18] since {"e = £":e:Q), see above
= TT"Syq (gT;{_:’ X)
D Tisyq(e,&X) Prop. 3.6
=T because € is a membership.

V) fT;g = ST;g;ST;E = ST;E;&“ = {r;&Q = ST;E;’I];T]T = 8:;1’]T

Vin=eTEen=cTEEen=e"SeQn =c"Senpnn=c"Zenn'in=clZen
=" EEen = Qe e = nnhet&lhan = npnhet&Ehen = neliEs = s O

5 Power operations

There is an interesting interrelationship from relations to their counterparts between the corre-
sponding powersets. It offers the possibility to work algebraically at situations where this has
so far not been the classical approach; some has already been collected in [Sch11].

5.1 Definition. Let any relation R : X — Y be given together with membership relations
e: X — 2% &Y — 2Y. Then the corresponding existential image mapping is defined



as v, 1= syq(R"e,&’). One may correspondingly study the inverse image mapping defined
as ¥ r = syq(R:e', e). O

We recall an interesting fact concerning the existential image; see [Sch1l]. Referring to [dRE9S],
the pair e,&’ constitutes an L-simulation of U, by R, and in addition, eT,e'" show an L'-
simulation of R by ¥ ,. In total, we have for an existential image the equality

eVR =g,
Correspondingly, an application of this simulation rule to R" instead of R reads

T
e R = Vprie’, or else Rie' = e,

5.2 Proposition. The existential image and the inverse image also satisfy formulae with
respect to the powerset orderings:

i) V:dpr C I if f is a mapping,
ii) Q;f};T = ﬂf;Q’ if f is a mapping.

Proof: i) Via shunting the claim is ' C ¥, 19}T, which we prove in negated form:

EIT;g 2 SIT;fT;f;g = 8,T;fT;f;€' = EIT;fT;E;ﬁ}T = ﬂfT;Engfﬂ}T = '19fo§"79;-|— = ﬁfT,'Q;ﬂ}T

5’T,—§ =9 ;5’T;§ =9 ;Q, O

— T ol — T f A — .
T—effyg—a,fxe—ﬂf, ; f

Another rule combines the inverse image with the singleton injection.

5.3 Proposition. i) Any relation R : X — Y with oy, oy the singleton injections satisfies
O'X;ﬁ;%T;O'}T/ g R and &TX;lg;LT;O'{/ = R.

ii) When f is a mapping, this sharpens to O’X;19f = fioy.

Proof: i) O'X;19;T;O'§T/ C 5X;?9;T;0} = Rieyioy = R Prop. 5.2

i) szﬁf = ox:syq(fTex,ey) definition of symmetric quotient

= syq(fTexiok,ey) Prop. 8.16.ii of [Schil]
=syq(fT,ey) =syq(l fT,ey) = fisyq(L,ey) = fioy Prop. 5.2 |

The following rules are not unimportant when, in a forthcoming paper, continuity is studied in
topology and transferred to a point-free relation-algebraic version.
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Fig. 5.1 Existential and inverse images
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5.4 Proposition. Let f: X — Y be an arbitrary mapping. Then

. T T T
1) ﬁfT,'ﬁfT;ﬂf = ﬂf"n?f;ﬁf’

.. T T
ii) ﬁfT,Tﬂﬁf :ﬁfT Fﬂﬂﬁf,

iii) ﬁ;T cd, or syq(ex, fiey) C syq(fTiex,ey) when f is surjective.

Proof: i) and ii) are proved together, starting with
0T N0, C (0 NI, T)(TNY,0,) Dedekind rule
= 19}%9 fT;19 ; since existential images are total
C ﬁ;TW N P since existential images are univalent

resulting in equality in between. Similarly
ﬁ;T NT9, (TN 19;T;19;);(z9f mW;f};T)
ChyNTY,

Thus, (i,ii) mean the same. For the remaining proof we start from

00 NT,) =T N0, masking

fofr
c(Tn 19;"19}”19;)" (ﬁf N T;ﬁ;;ﬁ}) Dedekind rule
T 4T T
- ﬁf;ﬁfT;ﬁf; q9f
= 19;; s 9 ; existential images are multiplicative

= 19;; 19f C1I since f:f":f = f for a mapping

Now shunting gives the needed result 19} N T f - 5

The following is proved mutatis mutandis:
W N D) =0T N0 0 0 C (0 N0 T)(T N0 0 0 )
T T
= (ﬁfT N ﬁf;ﬁfTW);ﬁfT;ﬁf:ﬁfT - ﬁfT;ﬁfoﬁf;ﬁfT

T T
Vg =Vl C 1

iii) results simply from an application of Prop. 3.6. O

These results imply not least that ﬁ;T is univalent, or a partial function, when f is surjective.
With (ii), we have then also ¥ ;N ﬁ;TW = ﬁ;T.
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Fig. 5.2 Existential and inverse image for a surjective mapping
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Fig. 5.3 Existential and inverse image for a non-surjective mapping

5.5 Proposition. Consider a relation R : X — Y as well as the corresponding power relator

Cr = (e\(R€)) N ((e"R)/ET)

:2X 5 2Y Then

=cRe NeTRe
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R univalent (g univalent

R surjective (g surjective
(r total
R injective (r injective

)
)
iii) R total
)
) =17,

el

f mapping

Proof: The proofs of (i,...,iv) follow all the same scheme using Prop. 19.11 of [Sch11].
CriCr = CrriCr = Crrp = e RuRe Ne' "R Rie!
CemTenNeTle =eTedNee =4 N =1

V) (g =eTfie Nelifiel =T fie! NeTi fre! = syq(fTe,e) = ﬁf O

The construct ¢ looks quite similar to a symmetric quotient, but it is not!

6 Relations in varying representations

When dealing with relations, we have — in principle — three incarnations of the same idea. A
relation between sets X, Y may, namely, be represented

e as R: X — Y corresponding to a possibly non-square Boolean matrix,

e ast: X xY — 1 corresponding to a Boolean vector characterizing a subset of pairs,

2X><Y

® asr: — 1 corresponding to a point in the powerset of the pair set.

Their interrelationship using projections 7 : X XY — X, resp. p: X XY — Y and the
membership relation £, : X x Y — 2%>Y starting in the product is as follows:

t=cor  r=syq(ex,t) R=rel(t)=na"(vTg, Np) t=vec(R)=(mRNp)T,q
The transition from R to v is a vectorization, known also at other occasions in algebra. While

it may be considered an easy construction, one should think of a 5000 x 1000-relation and its
vectorization that may be much harder to handle in practice.

6.1 Proposition. R =rel(vec(R)) and t=vec(rel(tr))

Proof: R=7"ply N R
- (7TT;p N R;Hy);(ﬂy N (WT;p)T;R) Dedekind
m(pNmR)(Iy NTyxR)
7L [(pNmR): Ly N (pNmR):Tyx:R)] since (p N mR) is univalent
T [,0 NmRN (p N 7T,-'R);Wy7x;R)]
T [p N (p N W,'R);Wyy)] = 7TT;[(7T;R N p);WY’]I;WILY) N p] = rel(vec(R))
7L ((mRNp) N pTyy):(Tyy N(mRNp)p) Dedekind rule
WT;W;R;pT;p =R

IaRIaNIam!
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=Ty, 1 N Ty = 0Ty g Oe)Ty g

(p N tW]lY) ( v N pT;t);T]L]l

(PO ety )Ty q

((v T]1Y ﬂp) ﬂp) TY]l

[ T]IY Np)N p} Ty = vec(rel(r))
[

:

NN <

mt )0 T]LY N p) } [(t;Tﬂ,Y N ,0) N W;?TT;p};TY’]l
mr ﬂpp}tTﬂy- v, 1
W]IY Y]l_tT]l]l_t i

I 1m1m N

It should be made clear that the relations with standard abbreviation €, 7, p do not fall from
heaven. Rather, they are defined generically as characterizations up to isomorphism using the
techniques of domain construction developed in [Sch1l]. They allow to formulate via a language
called TITUREL

T~Pi XY p~Rho XY given that X = src(R) and Y = tgt(R)

e« ~ ElemIn (DirPro X Y)

Following the idea of the threefold ways of denoting, the identity I : X — X gives rise to the
vector vec(ll) = (N p):T : X x X — 1 and finally to the element Z = syq(ex, (7 N p):T) :
2X*X 5 1 in the powerset of all pairs.

6.2 Proposition. Consider a set X together with the membership e, : X x X — 2X>X on
the direct product of the set with itself and define the point

1 :=syq(ex, (N p)T) = syq(ex, vec(L)).
Then rel(ey:Z) = L.

Proof: rel(ex:Z) = rel(ex:isyq(ex, (m N p)T)) =rel((m Np):T)
=77 [(r N p)TNp| expanded
=7 (mNp) see below
=INnatp=INT=1I

Now the postponed transition is justified with a sequence of containments implying equality:
(rNp)TNpClmrNp) NpTTN(rNp)pl=(mNp:(r"Np)p  pis total
=(rnp)(atpND) =@Np (TN =7nNpC(xNp)TNp O

Much in the same way as later for 91, J, we show here that it is possible to express the least
and the greatest relations as points

BOT : 2XY 1, TOP : 2XY 5 1.

6.3 Proposition. Consider sets X,Y together with the membership e : X x Y — 2%X*Y
on the direct product of the sets and define the point

BOT = syq(ex,vec(l)) = syq(ex, 1)

TOP :=syq(ex,vec(T)) = syq(ex, T).
Then rel(ex:BOT) = 1L and rel(ex:TOP) =
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Proof: rel(e,:BOT) = rel(ex:syq(ex,vec(ll))) = rel(vec(l)) =1 u]

The processes of transposition and negation
T:2X><Y_)2Y><X N:2X><Y_>2X><Y

may also be conceived as bijective mappings, as well as the process of composition
C - 2X><Y % 2Y><Z — 2X><Z

as a binary mapping, i.e., all three in a pointfree fashion. While we omit discussing C, we refer
for N to Fig. 9.3. Here, we restrict to studying formally the interchange of components of a
pair, which obviously determines a bijective mapping

7': 2X><Y — 2Y><X

satisfying certain rules.

2X><Y T S 2Y><X'
€ g’
XxY L > Yx X
T p, 1% 7T/

Fig. 6.1 Illustrating transposition as an operation on relations conceived as points

6.4 Proposition. Consider two sets X, Y together with the memberships ¢ : X x Y — 2%V

and ¢ 1 Y x X — 2Y*X of both their direct products and define
P:=mp" Npr’ T :=syq(P"¢,e).
Then

i) P is a bijective mapping to be interpreted as sending (z,y) to (y, ).
ii) 7T is a bijective mapping resembling transposition.
iii) Pipf=m P =p Phim=p Pip=n
v

V1

vii

i)
1)
)
iv) T:e'" =e P, ie., Pand T bisimulate one another via the membership relations.
)
i)
i)
viii)
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Proof: i) PT.P = (pim" Nr'ip")i(mp Npr'™) Cpinmmp N’ iphipn’ =p p Nl in’m =1
This shows univalency; analogously for injectivity. Therefore P multiplies distributively over

conjunction and we may proceed with
PP = (mp " 0 pr ) (pimT v wlipt) = (mp” O per )i plim T O (mep! T 0 e )
= (rNpr' P )m N (mp w7 N p)ip”
=(rNM):a" N (TNp)p  =ma Npp" =1,

giving totality, and in analogy also surjectivity.
ii) 7 is univalent, since 7T = syq(e’, PTe)syq(PTe, ') = syq(e’,&’) = L. Tt is total because
T' = syq(e’, PTie) is surjective by definition of the membership &’
iii) is trivial.
iv) T:e"" = [ T"|" = [¢'syq(e, PT:e)]" = [PTe]" =" P
V) rel(PT'v) = F,T;(PT;U;W N p,) = W/T,'(PT;U;T N PT;7T) = W,T;PT;(U;W N 7T) = pT; (U;T N 7T)
= [wTnmTp]" = [T nat)p]" = [77(wT N p)]" = [rel(v)]’
vi) vec(R") = (7" R" N p')T = (P"pR" N Phim):T=P(pR Nm):T
CPY(pNnmR)(R"Np"m)T=Pi(pNmR):(R"NT):TC P(pNmR):T=P.:(mRNp)T

CPi(rNpRY):(RNx"p)TC P(rNpR)T implying equality everywhere in between
= PTivec(R)

vii) T=7"p=a%(pNeT) U (pNtT) = rel(t)=7"(pNutT)Ca%(pNtT)=rel(r)
mi(pNeT)NpC(ma Np(pNeT) ) (pNeTNmatp) CLeT=uvT Dedekind rule
= mri(pNuT)CpUnT <<= rel(t)=75(pNeT) Ca(pNuT)=rel(r)

viii) vec(R) = vec(rel(vec(R))) Prop. 6.1
= vec(rel(vec(R))) according to (vii)
= vec(R) Prop. 6.1 u]

7 Some categorical considerations

We here give relation-algebraic proofs of certain results we will use afterwards. Everything is
fully based on the generic constructions of a direct sum, or product, etc. If any two heteroge-
neous relations 7, p with common source are given, they are said to form a direct product
if
mhr=10, phip=1 ma Npp' =101, wp=T.

Thus, the relations 7, p are mappings, usually called projections. In a similar way, any two
heterogeneous relations ¢, x with common target are said to form the left, respectively right,
injection of a direct sum if

v =1, we'=1 Uk =1 wuk"=1

7.1 Definition. Given any two direct products by projections

T: X XY —X, p:XxY—Y, 7. UxV —U p:UxV-—V,
we define as binary operations on relations
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i) (AQB) :=mAr" " Np:Bp": XxY —UxV, theKronecker product,

i) (CQD):=Cr"ND:p": Z— XxY, thefork-operator,

Y L > UxV

iii) (FEQF) =mEnNp:F: XxY — W, the join-operator. O
W 14

X x
X
Y s
Y B7g

Fig. 7.1 Kronecker, fork-, and join-operators applied to relations and mappings

Obvious identities are (A® B) ' = (AT® B") and (CQ D)™ = (CTQ DT). The next results
are presented in some detail because they are very close to the ‘unsharpness’ situation where
model problems arise: There exist relational formulae that hold in the classical interpretation,
but cannot be derived in the axiomatization followed here; see [Schlll Sect. 7.2].

7.2 Proposition. Let be given any two direct products by projections
T: X XY —X, p:XxY-—Y, 7. UxV —U p:UxV-—V
together with relations A: X — U and B : Y — V. Then

1

AQB)m =mANp:BT (AR B):p =mATNpB

ii) (AQB):'=mA in case B is total

1v

) (

) (
iii) (AQ B)ip' =pB in case A is total

) AL = (AQT) =mA  (I®B)y = (TEB) =pB.
(AQI)xw=A  (IQB)y =B.
v) If A, B are both univalent, then so is (A® B).

vi) If A, B are both mappings, then so is (A B).

Proof: i) (AQ B):n' = (mAn"" N p:B:p"):w" by definition
=mANpBp "’ since 7’ is univalent, [Sch1l], Prop. 5.4
=m AN p:BT property of the direct product 7', p’

The second formula is derived analogously.

ii) and (iii) are trivial consequences.
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iv) (IQB)p = (mn" NpBp )p=mapNpB=mTNpB= (TeOB) =TNpB

V) (A@ B) T (A@ B) = (W/;AT;ﬂ'T N p/;BT;pT);<7T;A;7T/T N p;B;plT) by definition
CaATr"mAn' N p B p"pB:p'" monotony
Ca AT A7 NpBT:B:p'" since projections 7, p are univalent
Caiw" Npip'" since A, B are assumed to be univalent
= 1T by definition of a direct product

vi) Univalency follows from (iv). (AQ B)T 2 (AR B)n' ' T=mAT=mT=T O

The results above are more or less known. It was important to execute rigorous axiomatic
proofs, i.e., not just based on Boolean matrices. Of course, analogous formulae hold in the
converse situation.

7.3 Proposition. Let be given the setting above.
i) (RRS) (PRQ) C (RPRSQ)
(R®S): (POQ) € (RPOSQ) (RQS):(PRQ) € (RPQSQ)
(RQS): (POQ) CRPNSQ
i) (f®g) (ARB) = (fA®Q¢B) provided f,g are both univalent
i) (f®g) (ASB) = (ffASg¢B) provided f,g are both univalent
(RRS):(ASB) = (RAS S:B) provided A, B are both injective
(RQS) (ASB) = RANSB provided A, B are both injective, or R, S both univalent
(RRS)T= (RTOST)
(AQB)NC:T=(ANCTLQBNCT)
(AQ B) N (CTODT) = (ANCT® BN D)

(R\R ®S5\S) € (RQS)\ (ROS)

)
)
)
vil) (ANCQBND)=(AQB)N (CKLD)
)
ix) C: (AQB) = (CAQC:B) provided C is univalent

Proof: i) See [Sch1ll Prop. 7.2.ii], where it is also mentioned that a pointfree proof of equality
is impossible notwithstanding the fact that equality holds when the Point Axiom is demanded;
i.e., not least for Boolean matrices. Indeed, there exist models where equality is violated.

ii) According to Prop. 7.2.iv, (f & ¢g) is univalent, so that we may reason

(f ®g) (A ® B) = (f ®g);(7T2;A;7T§ N p2fB;p:-|3—) by definition
= (f®g)msAmiN (fQg)peB:ip univalency
= (7T1;f N pl;g;T);A;W%— N (Wl;f;T N plg)Bpg PI"Op. 7.24
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=m: fiAmy 0 prgT O m fiT N prgBipl masking
=m: fr Ay N p1ig Bipy  trivial
= (fi{A®R¢g:B) by definition

iii) is shown similar to (ii).

iv) For clarity, we mention the ever changing typing of the universal relations explicitly:

<R® S) WX’XY’,Z = (7T;R;7T/T N p;S;p/T);TX/Xy/,Z by definition

= (mRa" NpSip" )" Tx 7 since 7' is total

= (mRNpSipn')Txi 7 since 7’ is univalent, [Sch1l], Prop. 5.4
= (mR N p: STy x/ ) Txr.z property of the direct product

= W;Rx'TXQZ N pP; S"TY’,Z masking

= (R;TX/,Z ) S;Ty/,z) by definition

V) (A N C;TZ’X @ Bn CJTZ’y) = (A N OfTZ)()fTFT N (B N Cx‘sz);pT
=A7r"N C;Tz,XﬂTT N B:p™ N C;sz;pT
=Ar"N C"TZ,XXY N B:p™ N C’TZ,XXY =An"NBp' N C"TZ,XXY
= (AQB) N C:Tzxxy

vi) Assume A: X — Y, B:U —V,C: X — Z,D:U— W:
(A@ B) N (C"TZ,YXV @D"TVV,YXV) = 7T;A;7T,T N p;B;p,T N W;C;TZ,YX‘/ N ,O;D;TwyyXV
=mAT  NmCTzyxy N pBip N pDiTwyyy shuffled
= T (A;TF,T N C"TZ,YXV> N p;(B;p,T N D;TW,YXV)
= 7T;(A7'7T/T N C;TZVY;W/T) N p;(B;p/T N D;TW’V;pIT)
= T (A N C;Tz,y);ﬂ'/-r N p(B N D;TW,V)‘p/T
== (A N C;Wzy ®B N D;TW\/)

vil) (ANCQBND) =(ANC)a"Nn(BND)p"
=An"NCr" N Bp" N Dip"
=An"NBp NCin"NDipl = (AQB) N (CKL D)

viii) (RQS) \ (RQS) = (RQS)(RQS) = (RTQST)Ra™ NS pT
= (ROS) R US)) = (RTQS) R U (RFTOS")SpT
= (mR™N p;ST);E;TrT U(mR™N p;ST);g;pT
O mRUR7TU p;ST;g;pT
= mRTR7TN p;ST;g;pT =mRTR7™ N p;ST;g;,OT = (R\R QS\9)

ix) trivial m

As mentioned, one must not demand arbitrary products to exist, because one will then run
into model problems. To employ the Point Axiom is a requirement stronger than necessary.
When here just two additional products are requested, this means some sort of an “improved
observability” for the pairs in the product A x B via vectorization.
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Fig. 7.2 The two additional products in the proof of (RQS): (PO Q) = RPN S:Q

For better reference, we recall an important result by Hans Zierer with its difficult proof from
[Zie88| Zie91]. It shows that when these additional products are available, there will hold
equality in the third containment of Prop. 7.3.1.

7.4 Proposition. Let again be given the setting above. When products 7, p; and s, pa,
m : BxC — B, p:Bx(C—C
o AX (B xC)— A, p2: Ax (BxC)— (BxC)

exist, there will in addition to Prop. 7.3.i hold
(RQS) (POQ) = R-PNSQ.

Proof: The intricate point is to define the following constructs

X =prRa" N (m NppS):p" Y = (m N poprR)m N par(m N pr:S)ipT,
of which Y turns out to be univalent, and to show several rather simple consequences. These
follow applying the destroy and append-rule for univalent relations repeatedly.

p{;X =R7n™N S;pT

pyY = (7‘(‘1 N pl;S);pT Npp R =X

Yir = (7?2 N pg;pl;R) N pQ;(ﬂl N pl;S);T Yip= (7?2 N pg;pl;R);W N pg;(ﬂl N pl;S)
Putting pieces together, we obtain

(R®S): (POQ) = (Ra"N ") (P N pQ)

= p1ip5:Yi(mP N p:Q) see above

= p1ipy (YVimPNYip:@Q) since Y is univalent

= p1p5 [{(m2 O porp1r R) O i (my 0 p1:S) TP

N{(m2 N p2rpr: R)T N poi(m N p1:S)}Q]  see above
= pipy [(m2 0 paip1: R)- P OV par (1 N p1:S) T
N (m2 N pyrp1 R)T N po:(my N p1:S): Q] masking

;p;; [(71'2 N pQ;pI;R);P N pg;(ﬂ'l N pl;S);Q} trivial
Apr RPN (m N pl;S);Q} destroy and append twice, pJimy =T
= R:PNS:Q destroy and append twice, pjimy =T i
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That the two products requested are often met in practice may be seen from the discussion of
associativity in Def. 8.2 and Fig. 8.2.

It is the merit of Jules Desharnais, to have sharpened the previous result in the important
paper [Des99]; also to be retrieved in [Win98]. Now just one of the relations P, @, R, S needs
to possess a vectorization in order to obtain equality.

7.5 Proposition. Let again be given the setting above. When the product 7/, p/
7 AxC — A, p:AxC —C
exists, there will in addition to Prop. 7.3.i hold

(RQS): (POQ) = RPN SQ.

Proof: Only one direction needs to be proved.

RPOSQ (R@]I)WPQSQ Prop. 7.2.iv
C [(RQI) ﬂSQPT | (7PN (RQI)"S:Q] Dedekind rule

C (RQI){x PN (RTOI):5:Q] monotony and transposition

C (RQI):x:P ﬂ {(RFOL):S:QN7P}| trivial

C (RQL):(n"P (RT OIL):SN7P:Q"}:Q) Dedekind rule and monotony
- (R@I);(W/;P ©:R%:S N p 2SN W/;Px‘QT}x‘Q)

C(RQI):(r""PnN {7r TNpSHQ) trivial

C(RQD):(n"PnN (TES):Q) definition of join

C(RQD):(r7" PN (IXRS):p:Q) Prop 7.2.iv

C(RAOQD):(I®RS)(pQN (I®S)"n'P) Dedekind rule and monotony

C (RAQD:(IRYS):(mPNpQ) Prop. 7.2.1

= (RQI):(IRS): (PO Q) definition of join

= (RQS) (PO®Q) according to [Schll] Prop. 7.5 O

Fig. 7.3 The additional product in the proof of (RQS): (PO Q) = RPN S:Q

The following proposition states that left residuation distributes over the strict fork.

7.6 Proposition. For relations typed A:W — X, B: X —Y, C: X —Z7
A\ (BOCO) = (A\B@A\C)
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Proof: A\ (BQC) =A% (BQC) = A=Ba"NCip" = A%(B:nT U CipT)
= AT (E;WT U U;pT) = A" BT U AT;a;pT = AT BTN AT;U;,OT = A" BN AT;U;pT

X+Y P ik

0 {:

X Q LU
Y 1 v

Fig. 7.4 Tlustrating the addition theorem with P := /"Q:w" UK": Rip"

An addition theorem, quite similar to the broadly known
sin(x 4+ y) =sinx - cosy + cosz - siny,

holds for direct sum and direct product, cf. Fig. 7.4:

O

7.7 Proposition. Let be given any three relations ) : X — U, R:Y — V and S :
X+Y — Z. In addition, we consider the injections ¢ : X — X +Y, k:Y — X4V as well
as the projections 7 : U x V. — U, p: U x V. — V| generically given. Then the following

generalized addition theorem holds
syq (S, QT UK Rip") = syq(vS, Q)" N syq(k:S, R)ip".
In another notation, this looks as follows:

syq(S, QT UKL R p") = (syq(65,Q) S syq(k:S, R))

Proof: In what follows, we abbreviate P := (" Q:n" UK Rip".
syq(v:5, Q)" =syq(vS, Q") = syq(vS, v P)
syq (xS, R):p" = syq(x:S, Rip") = syq(k: S, k: P)
syq(v:S, v P) Nsyq(k:S, i P) = STT:u: PN STTu: P N STRT kP O STikT ki P
= STy PN STy PN ST kP N STk kP 1,k are mappings
= ST PN STES kP NS PN ST KTk P shuffled
= ST (T UKSK):P N ST (1T U KT R): P
=STPNS"P =syq(S,P) .,k form a direct sum

Now we relate pairs of subsets of two sets X,Y with subsets of the direct sum X + Y.
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o )

X+Y
2 0
9% x oY
X4Y _ .
T p
X o . X
}Y o > 9V

Fig. 7.5 Converting subsets of a sum to pairs of subsets

In Prop. 7.8, it is demonstrated that 2X*Y is isomorphic to 2% x 2Y. In addition, it turns
out that e, : X +Y — 2% x 2Y satisfies the properties of a relational power, although it is
constructed differently. In largely the same sense, the mappings

syq(ue,ex) : 2¥7 — 2% and syq(ké,ey): 28TV — 2V
establish 2%*Y as another direct product of 2% and 2. Since the direct product is uniquely
determined up to isomorphism, however, we are able to prove the isomorphism via the bijective
mapping ¢.

Earlier, we have been scrupulous with regard to the existence of products; we should maintain
this here. Everything is fine, when &', 7, p are available. We assume this to be the case. In
another model of relation algebra, however, 7, p may not exist; then additional investigations
are necessary.

7.8 Proposition. Let arbitrary sets X,Y be given for which we consider their membership
relations ex : X — 2%, ey : Y — 2¥ the direct product 2% x 2¥ of these powersets, as well
as the direct sum X + Y and its membership relation ¢ : X +Y — 2X*Y; see Fig. 7.5. Then
the following hold

i) for the construct ey = 1Nexim UKkheyip'
o LE, =exiT" LELT = €x Kiey = €yip’ KiEyip =€y
e syq(ues,ex) =T syq(kicy,ey) = p

ii) for the construct ¢ :=syq(e,e)
o v =syq(ve, ex)n Nsyq(ke ey)p', i.e. o satisfies an addition theorem

o pm =syq(ue',ex)  @p=syq(re, ey)
e ¢ is a bijective mapping

e cip=c, epipl =¢
o syq(mek,el) =1 syq(pey,ey) =k
e ¢, satisfies the relational requirements of a membership relation.
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iii) for the construct Q, :=e, e

e is an ordering.

o O, = (Qx ®Qy)
e ¢ is an order isomorphism between the orderings

O i=eMgl 25 52X+ and QL 2% x 2Y — 2% x 2V,

Proof: i) We demonstrate the main sample cases:
ey = u(hexmt URNeyiph) = wihiexim' Uuklieyipt = Lexim' UL =exim’
LELT = €X;7TT;7T =E&x
syq(ves, ex) = syq(exim’, ex) = msyq(ex,ex) =7
ii) The first formula is an immediate consequence of the addition theorem Prop. 7.7. We have

to obey some care: Only ey, ey, & have been introduced as membership relations; ¢, is defined
differently but denoted similarly, since it will soon turn out to be one also.

Then we prove with the addition theorem

o= [syq(ve ex)m Nsyq(ke, ey)pT]im
= syq(ue’,ex) Nsyq(kie’,ey)phim

(
=syq(ue’,ex) N Syq(/i g;ey):T  since m, p form a direct product
=syq(ve,ex) N since syq(ey,...) is always surjective
— syalie’ cx)

Now, we convince ourselves that ¢ is total, which follows with the preceding result from

o T=@mT =syq(re’,ex) T and the fact that ex is a membership

Univalency follows also with the addition theorem

o C [misyq(ex,ve’) N psyq(ey, ke')]: [ syq(ue ex)n" Nsyq(ke, ey)pT]
C msyql(ex,te’)isyq(ue,ex)m N psyq(ey, ke')syq (ke ey)ip
C msyq(ex,ex )@ Npsyqley,ey)p’ Sma Npp" =1

Even simpler and without the addition theorem we get p:ip" C syq(e’,¢’) C I, so that ¢ is
injective. Finally, ¢ is surjective since ¢’ is a membership relation.

elip=-¢eisyq(e,ey) = e, since ¢ is a membership relation
e =cipipt =¢ since ¢ is already established as a bijective mapping

syq(mek,e}) = syq(mek, pe’) = syq(pmek, ") since ¢ is a bijective mapping
= syq(syq(v€,ex)ek,e") see above
= Syq( a ng)
= Syq( e’)
= u(ehem Neie
_L(Q’TQQ’):L

It is relatively easy to prove that the differently constructed e, is a membership relation:
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syq(e+,e4) = syq(ehip, ') = pTisyq(e, elip) = plisyq(e',e)p = T lp = pTlip =1
syq(es,U) = syq(eip,U) = ¢"isyq(e’,U) is surjective since €' is a membership

according to [Schll] Prop. 8.18.

iii) Q, is — consequently — indeed an ordering. It satisfies

_ T — T T — T _ S - T
(Qx Q@ Qy) =meexm’ N peyEyip’ = meiex:m N peyeyipt
= 5-'_;_;LT; LEL M 6-_5_; l{T;If;€+ Pl"Op. 7.8.1
= el TuEr Nel KT KEL L, K are mappings
=elnhvEf UelRTimEL

=cli((T UKTR)EL =€l 1,k form a direct sum

First direction of the isomorphism proposition, using that ¢ is a bijective mapping:

IT. =

Vip=ciehp =eTichp=e"ey = pel ey = pelEr = pilly

Second direction:

T. T

Q" = LT’ = elieyyt =l = phie’le’ = plie’lie’ = T o

8 Binary operations

We now attempt to study also binary operations on a set relationally. This will already allow
a very basic look on group theory. It will turn out that such elements as the unit, e.g., will be
points. A point resembles the classic element of set theory. In the relational setting, a point is
a row-constant, injective, and surjective relation z, i.e, it satisfies

o =, zax' CI, Tix=T.

We assume a direct product with projections 7, p : X x X — X and in addition a binary
mapping A : X x X — X. A first preparatory observation concerns what one might consider
as coretract or section in a category, here simply a left-inverse of the projection p.

8.1 Proposition. If z is any point, then f := (p N ma:T)" is a mapping. It satisfies fip =1
and p C f\I.

Proof: Since x is row-constant and injective, we have univalence
fBmf=p@nmeT)i(pNmeT Cpp' NmaTTata" Cpp' Nma’ =1

as well as totality
[T=(p"NThz"n")T=p(TNmaeT)=p-imeT =TaT=T since z is a point.
fip= (pT M T;xTﬂTT);p =INTzhrhp=INTx"T=INT=1I
pgf\lzﬁ — fiICp <+ fpCl <= True i
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number indicates row

point ¢

a
b
c
d
e

f
g

Fig. 8.1 Binary map as table and as relation, projection p and transposed mapping f for point ¢

(m N pix:T)T is also a

g\L

Given z, we map with f every y to the pair (z,y). By symmetry, g :

mapping; it satisfies ggw =T and w

8.2 Definition. Given this setting, we define as follows:

mp" N pi' Hips components of a pair.

i) P:=
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ii) A commutative <= P:A=2L
iii) The shuffling for the associative law is achieved by one version of the following
T :=7n'mml NaiprTip] N plipTip] or, grouped suitably,
=rhimm] N (cipr’ N plip)pr = (M7 Q (p®I))
=7i(mm] N prhip)) Npiplipl = (TQTT) ©p"ipi)

iv) 2 associative <= (ARIx)A=T (Ix QA):A O

The associativity condition is here given in an acceptably concise form; written down without
sufficient care, it appears considerably longer.

8.3 Lemma. Several identities for P,T — correct typing assumed.
i) P, T are bijective mappings.

i) PT=P

iii) P/ (R®S) = (S®R) P

iv) P (ROS) = (SOR) (RQS)P = (SQR)
V) THQ® (RRYS)) = (QOR) ®S): T

vi) (QQ (RQYS)) = ((QQR) ©5):T'

Proof: iii) P (R®S) = (mp" N p7"):(mRa" N p:S:p'") by definition
= (mp" Npa")ymRa' N (mp" N p7")ip:S:p'"  since P is univalent
= (mprNp) R N (r N p7tip)Sip"  Prop. 7.2.i
=pRa" NS p" =mS:p" N pRa" 7, pare projections

Similarly from the other side:
(S®R):P’
= (71';5;71’” N p;R;p,T);(ﬂ'/;plT N p,,rﬂ'/T)
— W?S?ﬂJT" (W/;p/-r ﬂ pl;ﬂ_lT> m p"prlT;( /;,O/T m pl;ﬂ_lT>
=mS:(p Nnapm) N p Rt N ')
= W;S;p,T N ,O;R;7T/T

iv) P (R®S) = (mp" Npa"):(m RN p:S) by definition
=(mp" Np7a)mRNO (mp" N p7")ip:S since P is univalent
= (mp mNp):RNO(rNp7ntip)S Prop. 7.2
=pRNmS=mSNpR mn,pare projections
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Fig. 8.2 Illustrating the associative shuffling

v) similar to (iii) and (vi)
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Several identities are satisfied for 7'

T:m =7, Tipy=7ipr' Npip" = (p&®1I)
7T =mn Npntipl = (IR7"), oT = phip]

There follow characterizations of elements as being neutral, being inverses, etc. One will observe
in (i), that the possibility of left-inversion of z, (i.e. Vy : 3p : mpu Ay, Vy:3Iz:z+2=1y)is
defined without mentioning the neutral element. A left-invertible element is characterized by
the fact that the corresponding row of the composition table for 2l contains all the elements in
some sequence.

8.4 Definition. Let be given the binary mapping 2 as before.

i) 77T the set of elements that may be left-inverted, i.e., {x | Vy : 3p : mpp A Upy }

ii) pTAT the set of elements that may be right-inverted, i.e., {y | Vz : 3p: ppy A Ay}
iii) A allows left-inversion <= 7"A=T

iv) 2 allows right-inversion <= p"A=T O

To identify a left-invertible point e (i.e. a transposed map) means via shunting also
e C T < TCc AT e < el C WT;QL,

and relates (i) with (iii). In Fig. 8.3, for the element a, e.g., there is no element = such that
A, = e, the fifth.

® Q2 O T O w B0

a/3 2 1 4167
L OT Ous B0
bl 1254367 a [0 a/1000000
132 426 7 b|1l b{0000100
c|O cl0100000O
A=d|1 5 4 7 4 3 6 aLAT=d]o A (pNmfiMH=d[0000010
e|O el0001000O0
ef1 254567 g tloo10000
f11 3 6 5 2 47 g \0 g\000000O01

g\l 2 7476 3
Fig. 8.3 A mapping with elements b, f posessing all left-inverses and left-division by f

Whenever one takes a point ¢ C 7726 T, the construct f := (p N miT)T is a mapping, according
to Prop. 8.1. As an example, left-division by f is shown as a mapping 2™ (p N 7 f:T) on the
right: Ay =c = f\c=b orelse Aq=e = fle=d.

Invariant elements commute with every other one. In the table representation, row and column
concerning this element are equal.

8.5 Definition. Let be given the binary mapping 2 as before. Then
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an AN PRALT = p=[2A N PALT = 7\ ([A N P:ALT) is the set of invariant elements,

i.e., those x with Vy : 2, =2, ]
S QL o T O w— 0
3214567
b1 324567 a /1
cl1 234567 b(l’
C P ——
A=d|1 547236 dfo|=7"[>ANPAT
el 0
el1 25 436 7 ilo
fl1 365 247 g \0
g\1 27456 3

Fig. 8.4 A hardly interesting binary mapping and its invariant elements

In case 2 is a group operation, the invariant elements together form the center of the group.

Next interesting are left- resp. right-neutral elements. The intention for a right-neutral element
n, : X — 1 is that application of 2 to any pair (z,n,) with  chosen arbitrarily results in x.
In the relational setting with points x, n,., this reads

A" (xOn,) =A% (max N pn,. )= x.
When working in a group theory environment, n, is usually called zero or unit element, depend-

ing on whether one works in an additive or multiplicative setting. A point-free formulation for
all x simultaneously is

AT (I@TLT;WI[X) = A" (W;IX N p;nT;T]lX): Iyx.
This is a condition n, has to satisfy. Concentrating on “C” alone, the following equivalences
make it more explicit:

A“(mINpn.T)CIT <<= 7NpnTCA <= pnTCAUT

= pRAN7T)CnT <= nTCpRANT)

The n, thus characterized may in arbitrarily chosen cases uninterestingly be equal to I for
which p":m = T gives a hint. We assume, however, a point e C n, and recall that according to
Prop. 8.1 g := (7 N p:e;T)T is a map. From

WAg" =AT(r N peT) CA (7N pin.T) C I
we then derive equality: The mapping ¢:2 contained in the mapping I means that they are
equal.

8.6 Definition. Let be given the binary mapping 2 as before. We call any point e in

p(AN7) aright-neutral element,

77 (AN p) a left-neutral element,

p(RANT) N7 (RANp) aneutral element. O
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In an alternative approach, we might have considered
Op = lIxux NATT: X x X — X x X

i.e., all the pairs with result and left component equal. Then one would look for points e in
n, = pT;m:X — X,

indicating right-neutral elements if any, and then giving rise to forming of right-inverses

iy = WT;(ﬂ;e;T N ,0) = rel(QL—e,T) X — X,

With the standard methods, it is possible to prove
A (4, OI) =A"(mi, Np) CeT
WeT C Tt N p =i, Up
T=UeTUmi, Up=WAeTUmi, Up since A is a map
i, CRAies T U p
" RAeTUp Ciy
i, C 7T (AeTNp) =rel(AeT) = rel(AeT)  due to Prop. 6.4.vii

1eeey

We have to show equality A" (i, © I) = A" (w4, N p) = e T with a separate argument, based
on the fact that e is a neutral point, or else, a transposed mapping. It suffices, according to
Prop. 5.2.iii of [Sch1l], when 21" (7, N p) turns out to be surjective

T;Q[T;(ﬂ';ir N p) = T;<7T;ir N ,0) = T;,OT;(W;Z'T N p) =T (pT;W;iT N ]I) =1T: (T;Z'T N ]I) = T, since

Tid, =T’ (Q[;B;T N p) =T (QL'GJT N p) = (T N T,-'GT;Q[T);,O =T e Ap=Te"T=T

when 2U allows right-inversion and e is a point.

As an example, we show the alternating group As as well as a constant binary mapping.

NN AN AN AN AN N SN N

MM — M A — N
NN NS oS —
TN AN N M
RN N~y
NN AN e
AN AN N AR NS
OO ([1,2,3],[1,2,3]) ;100000000 S S
— & o3 (12,3,1],[1,2,3)) [0 1 0000000 oy oy
123 (1 2 3 ([1,2,3,12,3,1])]0 00000000 ) R R)
% (3,1,2),]1,23) |0 00100000 [1,2,3 /1 1 1\ [1,2,3 /100
2,31] 2 3 1 (12,3,1],[2,3,1) |0 00000000 [2,3,1](000] [2,3,1]|00 1
a1 \3 1 9 ([1,2,3,03,1,2) |]oooo000000]| [31,2]\0 00/ [31,2] \0 10
[3.1.2] ([3,1,2],(2,3,1) ] 000000000
(12,3,1],[3,1,2) \000O000000O
([3,1,2),/3,1,2) \00 0000000
A Oy n, .

Fig. 8.5 Existence of right-neutral elements

Here also the forming of inverses ¢, is indicated. Since n, in Fig. 8.6 is not row-constant, it
cannot contain a point, so that there is no right-neutral element.
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2IERETIETIE 0TS
ELELEET LSRR
(,) ,1000000000000000
(ba) [OO0D0D00000000000O00O
(a,b) [0 01 0000000000000
(ca){0000D0D00000000000O
52 oo (bbbyloooOOODODODODODODODODOO0OO
al1 11 1 (a,c)|]0000010000000000 s.0 o 5.0 v
(da)[0000000000000000|a/1000\ a/1000
b1 1 11 (cb)loooooooooooo0o0000|b[1000|b[1000
111 (be)]0000000000000000|c|l1000]c|l1000
(a,d)[0000D00D0001000000[d\1000/ d\1000
d\1 1 11 (db)[0OO0O0OD0OD0D0D0D00000000O
(cc)]000D0000000000000O
(bd)]O0O0D0O00D00000000000
(dc)[0OOO0D0D0D0D0D0D000000O
(cd)|0000000000000000
(d,d) \00O0D0O0D0D0D0D000000O0O
A Oy Ty .

Fig. 8.6 Non-existence of right-neutral elements

Right- or left-neutral elements may exist or not. In Fig. 8.7 we see what it means to be
right-neutral: The corresponding two columns correspond to the row-inscriptions.

S QL O T O ws
a/3 21416 7
S QL OT Ous 0 SO OT O un o0
b1 3 2 42 67 a /0 a/1000000 a/0000000
l1 234367 b|o0 b(0100000 b[0OD0DO0DO0O0O
cl1 cloo1o0100 clooooooo
A=d|1 5 4 7 4 3 6 d{0] =nyge d|0100010 dl0100000
el1 el0010100 el0010100
el]l1 254567 flo flo1o1000| flooo1000
fl1 36 56 47 g \0 g\0000001 g\0000000
g\1 2 7476 3

Fig. 8.7 Binary map without left- but two right-neutrals ¢, e and right-inverses wrt. to ¢ and e

A left-neutral element in analogy, gives rise to a row identical with the column numbering.
From this fact it will become clear that there can be at most one point as neutral element e.
The aforementioned transition to inverses

i:=7"(2enp).

will then be a bijective mapping, which it was neither for ¢ nor for e in Fig. 8.7.

8.7 Proposition. For some binary mapping 2 we consider the left- as well as right-neutral
element sets n;, n,. If both contain points e, e,, these will be equal.

Proof: We apply the result obtained before in two directions
AT (Y NpesT) =A% (r N pepT):Y =AT¢g"Y =LY =Y,
and correspondingly
WA (me TNpZ)=UA"(pNme M) Z =A" 1.2 =17 =Z.
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Therefore
ep T =A% (6[{W® e,ﬂT) =A" (meﬂT N p;e,ﬂT) =e. O

Should there exist more than one in either one of n;, n, they will thus all be equal.
(XxX)xX
/
xxx 7

Fig. 8.8 Illustrating distributivity

Also the concept of distributivity may be formulated relationally in case there are two binary
mappings J, N, as, e.g., in a lattice the join and meet.

8.8 Definition. Given two binary mappings, we say that J distributes over 91, when

(@D IO (pPRDJ)M = (M),
or else, when J: 9 = (M ®1):J as we will later slightly abbreviate. O

One might also demand in blown-up form resembling (aV¢) A (bVe) = (aAb) Ve
[(7mm™ O plipT): Jom O (e p” O plipT) op|s M = (s M O plipT):

9 Boolean algebras

A note seems necessary concerning Boolean algebras; here supported with visualization in a
concrete example. The peculiar recursive and fractal symmetries of these examples often give
additional insight — and have already triggered secretaries to stitch such patterns for a pot
cloth.

Most people work with subsets U C X, while we distinguish between a subset in this standard
form and the corresponding element e in the powerset, considered as a point. The two are
related via the membership relation € as shown in Fig. 9.1 together with the powerset ordering

) =¢cTE

Theoreticians frequently consider Boolean algebras “with signature (X, -,+,—, 0, 1)”. Fol-
lowing their idea, we find on X the operations N, U, 1, T.



34

—_— — ,»Hf—faf%j

— e O T TS Q)

—_—— 002 BT T o9

A8 LO0 S oL ST SIL T O SO C

e S S S S e e
f,1111111111111111 0
{fa}{0101010101010101 0
U=ee e=syq(eU) mloo11001100110011]]0
{ab}|0001000100010001 0
N = {¢}/]0000111100001111 0
-~ ﬁﬁg gggﬁaag {a,c}|0000010100000101 0
2o e BT AT g e be}/00O00001100000011 0
CLLELELLDELLLELL &ibﬁ{ 0000000100000001]|]0
a/0101010101010101 0 {d}0000000011111111 0
b(0011001100110011 1 {adj[0O0O00000001010101 0
c{0000111100001111 0/ {(bd}{OO0OO0ODO0DO0D0D000110011 1
d\0000000O0O11111111 1/ {abd}|0000000000010001 0
{cd}[OO0O0ODO0D00000001111 0
(0000000000100000)=¢ {acdf|0000000000000101/]0
{bedt{0000000000000011 0
{a,b,c,d} \OOOOO0O0OO000000000 1 0

Fig. 9.1 Subset U and corresponding point e in the powerset via ¢, €2

There is, however, a second “lifted” form, for which the elements are taken from 2% with
corresponding operations consisting of

M, J, N, (5T =)syq(e, L), (E-T=)syq(e,T),

as defined below. Easiest to observe are the O-ary operators or elements e T ~ 0,2":T ~ 1
for which obviously, looking at Fig. 9.1,

I =ee™T =esyq(e, L), T=&&"T=ecsyq(e,T).

Next we study the unary operator
N :=syq(,¢) N :2X — 2X

visualized in Fig. 9.2, for which we show in advance
&N =gsyq(g,e)=¢ e:N =eisyq(E,e) =esyq(e,8) =¢
ICQ=ce=c"e&N = NCe¢cle

Multiplying a relation with N from the left flips this relation upside/down, while multiplying
from the right side flips it left/right. Sometimes, we have to apply N to both sides of a pair,
for which purpose we also introduce

N:i=(NRN) =mNa NpN:p":2% x 258 — 2% x 2%,

We identify here disjointness £7:e which is shown in Fig. 9.2. It looks as if the powerset ordering
Q of Fig. 9.1 were rotated by an angle of —90 degrees, which may more mathematically be
expressed as (1N = eT:¢; this time flipping left /right.
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{}y 0000000000000001 {y,1111111111111111
{2} [0000000000000010 {2} [1010101010101010
{b} 0000000000000 1O00O {b}1100110011001100
{a,p}|0000000000001000 {a,b}|1000100010001000
{(}]0000000000010000 {c}/1111000011110000
{a,c} 00000000001 000OO0DO0 {a,c}lOlOOOOOlOlOOOOO
{bec}|0000000001000000O0 {be}|{1100000011000000
{a,b,c} 000000001 00000O00O0 {a,b7c}1000000010000000
{/0000000100000000 {(d}]/1111111100000000
{a,d}|0000001000000000O0 {,d}|1010101000000000
{b,d} 000001000000000O00O0 {b,d}llOOllOOOOOOOOOO
{a,b,d} 000010000000000O00O0 {a,b,d}lOOOlOOOOOOOOOOO
{c,d}]0001000000000000O0 {cd}|{1111000000000000
{a,c,d} 001000000000000O00O0 {a,c,d}lOlOOOOOOOOOOOOO
{b,c,d}OlOOOOOOOOOOOOOO {b,c,d}llOOOOOOOOOOOOOO
{a,p,c,ld} \10 0000000000000 0/ {abecd, \1000000000000000O0
Fig. 9.2 Negation NV and disjointness €T:e = (&N in the powerset

At last, we consider the binary operations meet 9 and join J which we mainly obtain special-
izing the result of Prop. 7.8 to the case X = Y and integrate them into the relational mechanism
using the least upper, resp. greatest lower, bound taken rowwise according to [Sch11] Prop. 9.10.

o ()

2X+X N
0,
X oX
X+X 22
" jl 0
L K M
0

X
X . 2° N
Fig. 9.3 Converting subsets of a sum to products of subsets with join J and meet 9

A first step is the investigation of the bijection ¢ of Figs. 9.3 and 9.4. We show the relation
indicating with >a, respectively a< whether an element has been injected to the left or to the
right. Only when restricting to somehow coherent visualizations of 2X*X and 2% x 2%, this
will show a ‘diagonal’.

9.1 Proposition. We assume the setting of Prop. 7.8, however with X = Y, so that additional
formulae may be formulated including join and meet.

i) J =syq(uey Ukiep,e) =syq(en’ Ueip',e) = LlubRg(m U p) = syq(er U p]", e)

= syq((EQ%E),8) =syq(En' NEp',E)
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i) M =syq(res Nkieg,e) =syq(en Nep',e) =glbRg(m U p) = syq(&[r U p|", )
=syq((eQ¢),¢)
i) &J'=wvey Ukiep =am Uep'

v) e MT =ve, Nkey = Nep' = (eQe)

— e
e e O e I N el I
A @ O AR @ A A A
B T
e e e T e e Y )
{} 1000000000000000
{a<}[0100000000000000O0
{>a}|0010000000000000O0
{a<,>a} [0 000100000000000
{b<}|0001000000000000O0
{a<,b<}|0000001000000000
{>ab<}|0000000100000000
{a<,>a,b<} /|0 000000000100000
{>b}|0000010000000000
{a<,>b} |0 000000010000000
{>a,>b}|0000000001000000
{a<,>a,>b} |0O000000000001000
{b<,>b}|0OO0O0O00000000010000
{a<,b<,>b} |0O000000000000100
{>a,b<,>b}|{0000000000000010
{a<,>ab<,>b} \DOOOODODODO0D0D0D000000O01
Fig. 9.4 Relation ¢ converting subsets of a sum to products of subsets for X := {a, b}

Proof: i) We formulate the join J as a least upper bound and recall Prop. 9.10 of [Schii]
JT=1lubq([rUp|") =syq(e,er Up|") =syq(e, e’ Ueip') = syq(e, ey U kiey)

i) MT =glbg([r U p]") = syq(E,&[r Up|") =syq(e,en’ Nep’) =syq(e,ves Nrey)

M = gle (m U p) by definition
= [glbg([r U p]") ]T by definition
= [syq (&, &7 U ] ]T Prop. 9.10 of [Sch11]
=syq(&n' UEp', &

T

Prop. 8.10.i of [Schi1i]

(

=syq(EnTNEpT,e
=syqEn" NEpT, e
=syq(en Nep',e

\_/\_/\_/\_/\_/\_/

J = 1ubRg(m U p) by definition

= [1ubg([7 U p]")]" by definition

= [syq(e,&[r U p]T)]T Prop. 9.10 of [Schi1]
=syq(em’ Uep',e)

iv) Me™ = [& ‘,)JTT]T = [esyq(e,em™ N apT)}T = [e77N apT}T =me' Npe' = (eQe)

iii) The proof for J:e" is established in a similar way.
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We convince us formally that 991 is commutative:
P:M = Pisyq((eQe¢),e) by definition

=syq((eQ¢):P,e) since P is a bijective mapping
= syq(em P NephPe)

:syq(sp Nen',e)

=syq((e@¢),e) = M

A trivial remark is in order, namely that a pair with coinciding first and second component
will have precisely this coinciding set as its meet, i.e.

TNpCM or (ISL) C M
The proof can also be carried out in a fully formal way:
< 7wNpCsyqen Nep',e)
— erNep eU(en Nep ) ECTUD
— (mNp)re’ C(en"Nep)™ and (rNp)E Cen Nep'
< (rNp)e’ Cme"Npe’ and (7Np)g Cme Upe’ = me' Upe" which is true.

Some other helpful formulae:

9.2 Proposition.

i) Nim=mN, N:ip=pN, Nt =3:N, N:J=IM:N
i) Mhimr=Q MTp=Q
i) 3T =Qr Jp=Q
iv) MO =mQ"NpQ" = ("GN JQ=mQnNpl= (20N
v) (em"Nep’) M =¢ (em"Uep'):J =¢ variant form (e Qe)M =«
vi) (€Q¢€)(RQQ) = (eQ¢)
vii) MTisyq((en" Nep"), X) =syq((en" Nep"): M, X)

M syq( (@), X) = sya( (= @) M, X)

viil) mQNpC J pQ2Nm C J orin variant form
cJ

QeI <3 Ie9)

Proof: i) Since N, N are mappings, we may apply Prop. 7.2.ii to the first two and then proceed
with, e.g.

NN = Nisyq(en™ Nep',e):N =syq([en Nep [N, &N)

= syq(s:wT;NT N e;pT;NT,g) = syq (e N Nep"N,E)

=syq(eN:m" NeN:ip',E) =syq(En" NEp',E)

= syq(emT NepT &) =syq(en’ Uep', ) =syq(en Uep',e) = J

i) M" =syq(e,en" Nep’) = (en™ Nep™) Nelian NepT
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=gi(em™Nep") Netan NeTiep = (em™ Nep™) N Q" N Qip"
Now
MTm = [ET; (em™NepT) N QT N Q;pT];W

= |:Q;7TT N{e(er™Nep™) N Q;pT}]w =QN{e(en Nep) NQp hr=0NT=0Q
since

{?T;<€;7TT N €;pT) N Q;pT};W D) {W[)T N Q;pT};W = {ﬂ;pT N Q;,OT};W = {ﬂ N Q};pT;W

= {QT N Q};pT;ﬂ' =LT=T

iii) JTr=NMNa=NIM"mN=NQUN = N:c"&N = NieTeeN = E=cce=Q"

iv) From Prop. 9.1.iv, we have 9t:e” = me" N p:e’. Negation and multiplication with & from
the right side gives

M:ieTie = meTie U piehie

—  Michie =mehie N pictie

< MicTe =meTe N petie

— MQ" =mQ"Np:Q" meaning the intersection of lower cones

Alternative proof:

QM =Qsyq(e, (Q¢)) =cTEsyq(e, (6Q¢))
= cTesyq(e, (eQe)) since every syq(e,...) is a transposed mapping

=T (eQe) =¢\ (eQe) = (e\e Qe\e) due to Prop. 7.6
= (29

v) (e Nep" )M = (em" Nep')syq(en Nep’,e) =¢,

since M is surjective according to Prop. 9.4.ii and [Schll] 8.12.iii; for J similarly.

vi) The following is shown in two steps:
(eQ@e): (RN =(em" Nep ) (mQr™ N p:Qip")
- emhmmt N E;pT;p;Q;pT iSOtOIly
CeaQin'Nelhp’ 7, p are univalent
=an' Nep' = (eQe) since e =¢

Short alternative proof:

(c@e) (XN C (¢02QeQ) = (2QN)  using Prop. 7.3
On the other hand side

QR =mQr N pQp" Dmr’ Npp' =1,
so that also

(©e) (XN 2 (Qe)l= (¢Q¢g).

vii) We apply Prop. 8.18 of [Sch1l] and, therefore, prove just
(em™Nep ) MMT = (e Nep)syq(en Nepl,e) MT = M" = (e’ Nep')

Vlll) 7T;Q N pﬂ = 7T;Q N p(Q N QT) = 7T;Q N pQ N p;QT
= J3:QNpQ" due to (iv)
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0O

Of course, the traditional reasoning with orderings, e.g., a < c,a < d = a < c¢Nd, assumes

another shape.

9.3 Proposition. i) For points a, ¢, d we have

aC Qc amT _ 4
aC Qd = aCOQM"(cOd) = (Q2Q02): (cE&d)
ii) For points b, ¢, d we have

bC e T AT, _ (OT T .
s = DCOIT () = (O (O

Proof: i) M™ (¢c©d) =syq(e,(en" Nep")):(me N p:d) by definition
=syq(e, (e Nep")i(meN p:d)) since (mcN p:d) is a point
= syq(e, e (mec N pd) Nept(men pd)) again since (mc N p:d) is a point!
= syq(e, e (Cﬂ?‘( ipid) Ne(phimend))
=syq(e,e(cNT)Ne(TNd)

= syq(e,eicNed) =s, which is a point!

Now, we may continue

QM" (cOd) =Qs=c"Es

Tieisyq(e,eicNed) =checNed

= €
— e (FeUead) =e"EFeUcled=cagcNetad=c ecNead=QecNQdDa

Short alternative proof:
QM (cOd) = (2Q02) (cOd) =QenQ:d Prop. 7.3.ii

ii) is proved in a similar way.

One will understand Prop. 9.2.iv when interpreting it with cone intersection: Lower cone of
a meet means intersecting the lower cones of the projections. Upper cone of the join is the
intersection of the upper cones of the projections. Prop. 9.2.i resembles the De Morgan rule.

9.4 Proposition. Given any direct product with projections 7, p: X x X — X, and meet-

or join-forming 9N, J,
i) the construct p := 7 N p is univalent and surjective,
ii) meet-forming 9 and join-forming J are surjective mappings,

iii) concerning meet- and join-forming, J distributes over 91,

iv) meet-forming 9 is a homomorphism and, even stronger, (2 & Q)9 = M Q.
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Proof: i) We use that the direct product encompasses every pair and that projections are
surjective before applying the Dedekind formula

I=TNnIT=a%pNphipC (" Nplipp)(pNmplip)= (" Np")(pNmn)

i) M =syq(en Nep'e)= (e N e;pT)T;e_ﬂ (aﬂT_ﬂ ep\Le=:ANB
A=meleUpelie =meTie N petie =meTie N petie =mQ" N p: Q7
B D (7T;€T U p;eT);E =meLVEU peE =meLEN pee =meLe N pe e =mOQ N P
M=ANBOD(@Q NpQ)N(mQNp)=m( Q"N Np( QN =mlInpl=nrnp

The latter is surjective owing to (i). The proof for J is rather similar.

i) (DI (pQL):J)M where the first factor is a mapping
= (7®D:JQ (p®I):JF)syq((cQe),e) definition of M

=79((c©e) (T I © (r®I):J) " ¢)

=s5yq((eQe): (3 (TT®I) © 3% (p'®I)),e) transposed
=syq(eJ " (77 )me:ﬂ (p"®1),e) Prop. 7.3i

= syq((en’ U&?p)( ®I) N (671' Uep ) (p"®T),e) Prop. 9.1.iii
=syq((em’ (1" ®I) Uep (r" QL)) N (a7’ (pT QL) Uep™ (p'®I)),e)
:syq((awTw’TU g )N (ephn" U ep'),€)

=syq((er"n Neptn' ) Uep", )

=syq((en” ﬂSp)?TTU6pT,€)

= syq([e: M Usp] )

= syq([e (fmT7T Natpp) Ue(phim MTa™ 0 p7)), )

= syq([en"(m MTr T N pp ) Uep™(m MTa'" N pp'T)], €)

= syq([er’ Uep'|(m MTa'" N pip'T),€)

=syq(s[m UpT (MTRI),e)

=syq(s[r U] (M RT) ")

(M QL) syq(emrUp|T,e) since (M ®1I) is a mapping
= (M ®I):J Prop. 9.1.i

iv) “C” follows with shunting (2 ® Q)M C M:Q <— (Q®N) C NM:QLM" from

MO = MIET = (O (D2) = (89 00 = 82\ (£©2)
D (e\e ®e\e) following Prop. 7.3.viii
(Q®Q)
The other direction “2” applies distributivity (iv):
M:Q=7"p' NMQ 7, p form a direct product
(T Np)N 9M:Q  from now on using the abbreviation of Def. 8.8

/T

=7
7’ (fj T p Nnp)n Mm:Q J is total and 7’ ,p form a direct product
7'’

/T

ﬁ plip )i N M destroy and append

/T

NN M p’T} ;p again destroy and append

—~

|
~
EP=

T
/T

>q

/. T

7T’T Npip N EJJI;Q;p’T];p’ again destroy and append

TN (ML) (QOL) ' ]p  due to Prop. 7.3.iii

AT (M I)J:p'']:p due to Prop. 9.2.viii

W’Tﬂ(( ®I):J @(p@ﬂ) J)M: p']p due to Def. 8.8, (iv)
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other laws may be found later in Prop. 9.5.

[y —~~ —~ —~= [t —
_~—_ o~ 2 Q. < ) -~ T2 - = o]
— < Q0 < o < 0 <Q =) < el el © Q o =
— — — — — — - < — — — < — < Q o]

o {a} {b} {ab} {c} {ac}t{bc} abc {d} {a,d}{b,d} abd {c,d} acd bed all
{a} | {a} {a} {a,p}{a,p}{ac}{ac} abc abc {a,d}{a,d} abd abd acd acd all all
{b} | {b} {a.p} {b} {ab}{b,c} abc {b,c} abc {b,d} abd {b,d} abd bed all bed all
{a,b} |{a,b}{a,b}{a,b}{a,b} abc abc abc abc abd abd abd abd all all all all
{c} | {c} {ac}{bc} abc {c} {a,c}{b,c} abc {c,d} acd bed all {c,d} acd bed all
{ac} [{ac}{ac} abc abc {ac}{ac} abc abc acd acd all all acd acd all all
{b,c} |{b.c} abc {b,c} abc {b,c} abc {b,c} abc bed all bed all bed all bed all
abc | abc abc abc abc abc abc abc abc all all all all all all all all

{d} | {d} {a,d}{b,d} abd {c,d} acd bed al

ey

{d} {a,d}{b,d} abd {c,d} acd bed all
{a,d} [{a,d}{a,d} abd abd acd acd all all {ad}{a,d} abd abd acd acd all all
{b,d} |{b,d} abd {b,d} abd bcd all bed all {b,d} abd {b,d} abd bcd all bed all
abd | abd abd abd abd all all all all abd abd abd acd all all all all
{c,d} [{c,d} acd bed all {c,d} acd bed all {c,d} acd bed all {c,d} acd bed all
acd | acd acd all all acd acd all all acd acd all all acd acd all all

bed | bed all bed all bed all bed all bed all bed all bed all bed all

{a,b,c,d} | all all all all all all all all all all all all all all all all

X X
Fig. 9.6 J as function table J € [2X]2 x2

; abbreviated notation for 3- and 4-element sets
9.5 Proposition. J, 2 satisfy

i) [ﬂ'T Np" ﬂﬁ;pq; J =1 [7TT Np" 3;pT],: M =1, i.e., the absorption laws

i) (MAL)M =T (IR M):M ie., the associative law, where

T:(X xX)xX — X x (X x X) is the brace rearrangement bijection of Def. 8.2.

Proof: i) We start the proof of “C” with Prop. 9.2.i, Prop. 9.1.i and shunting.
[WTmpT;m;pT];g — [WTHQT’,pT};J CcI — ﬂ_TﬂQT’,pngT
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= JCrUpQ <+« cemUep cUler U e;pT]T;E CTUpeTze
The first term is contained in 7, because

(W;ET N p;ET);s Cmee CT
The second term is also contained in 7, owing to univalency of 7

meELECT <= eniwCe
Finally, the third term is equal to the right-most one. This was the proof of containment only;

but this suffices because the total (see Prop. 9.4.ii) term [77 N p™- M :p"]: J contained in the
univalent I, so that both must be equal.

i) T (IQ MM =T (I im)syq((e@g),s) Prop. 9.1.ii
=Tisyq((eQe): (I® M) ,e) since (IXR M) is a mapping
=Tisyq((eQe): (I® MT),e) transposed
=Tisyq((cQeMT),e) Prop. 7.3.ii
=Tisyq((cQ (eQ¢)),e) Prop. 9.1l.iv

= (7 (pRI))syq((cQ (eQ¢e)),e) expanding T according to Def. 8.2.iii

=sy9((c@ (Qe)) ('7Q (p®I)) ) T isamap

=syq((e® (5@5))"(7TT"7T'T (p"®1I)),e) transposed

=syq(en" " N (eQe): (p"®1I),e) Prop. 7.4

=syq(enhn’ N (ep” @5) e) Prop. 7.3.1ii

=syq(en 7 Neptn’ ﬂsp £)

:sng(ew ﬂg,o)ﬂ ﬂsp , )
(
(
(
(

=syq((eQe)m"” ﬂé‘p €)
=syq(((cQ¢) Qe),¢)
=syq((eM"Qe),e) Prop. 9.1.iv
=syq((eQe): (M T®ﬂ> €)

g

Qe
=syq((cQe) (M KI)",e)
= (M) syq((eQe),¢)
— (M RI):M

10 Concluding Remarks

These additions have already been broadly applied, not least in studies of relational topology.
The relational language TITUREL reflecting all these ideas in functional programming style
has made it possible to successfully explore discrete topologies, concepts of nearness, proximity
that have been studied by logicians.

These investigations further support our firm creed: Mankind seems hardly capable of handling
intellectually more than linear situations!
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