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Abstract

This is in some sense an addendum to [Sch11]. It originated from work
on diverse other topics during which a lot of purely relational results
with broad applicability have been produced. These include results on
domain construction with novel formulae for existential and inverse im-
age, a relational calculus for binary mappings, and the development of a
formally derived relational calculus of Kronecker-, strict fork-, and strict
join-operators. The many visualizations in this report make it also a
scrap- and picture book for examples.

Keywords relational mathematics, relation algebra, domain construction, vectorization, bi-
nary mapping, Kronecker-, fork-, and join-operator, products, existential and inverse image

1 Introduction

In this report, several definitions, propositions and constructions are collected that already
would have been incorporated in the book [Sch11] when they had been available at that time.
This work is completely based on relation-algebraic methods. Nevertheless, we often use terms
such as set, powerset, etc. to give intuition for the concepts intended.

Included is in Chapt. 2, what has to be mentioned from known relational methods to make
the article self-contained. In addition, several new ideas of this kind are elaborated. Then
follows a further study of the membership relation in Chapt. 3 and, based on it, a presentation
of novel insights on existential and inverse images in Chapt. 5. To underpin the often quite
intuitive formulae with rigorous relation-algebraic proofs for the first time turned out to be an
unexpectedly difficult task.
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The categorical product is again studied in Chapt. 6 and in Chapt. 7, working also with vector-
ization. Therewith, a relation may be seen in different incarnations, a relation as a rectangular
Boolean matrix or a Boolean vector along the powerset, offering intricate interdependencies.

While relations lend themselves mainly to being studied with linear concepts, it also possible to
approach binary mappings or operations via relational mathematics as in Chapt. 8. Application
of such concepts allows to study Boolean algebra from quite a different perspective in Chapt. 9.

A slight generalization has taken place: It is known that relational mathematics admits also
non-representable relation algebras as models — in case the Point Axiom should not have been
postulated.

The presentation via computer-generated examples allows a very detailed view. They have
been generated with the language TituRel (see [Sch04]), that directly interprets relational
terms and formulae. So one can be sure to see the results of the explanations in the text
directly mirrored. Accumulating such a multitude of rules and formulae follows the idea of
René Descartes, who is told to have said:

”
Jedes Problem, das ich gelöst hatte, wurde zu einer

Regel, mit deren Hilfe später weitere Probleme gelöst werden konnten.“

2 Prerequisites

The prerequisites presented routinely for relational work are fairly well-known: We will work
with heterogeneous relations and provide a general reference to [Sch11], but also to the earlier
[SS89, SS93, SHW97]. Our operations are, thus, binary union “∪”, intersection “∩”, compo-
sition “ ; ”, unary negation “ ”, transposition or conversion “ T ”, together with zero-ary null
relations “ ”, universal relations “ ”, and identities “ ”. A heterogeneous relation algebra

• is a category wrt. composition “; ” and identities ,

• has as morphism sets complete atomic boolean lattices with ∪, ∩, , , ,⊆,

• obeys rules for transposition T in connection with the latter two concepts that may be
stated in either one of the following two ways:

Dedekind rule:

R;S ∩ Q ⊆ (R ∩ Q;ST); (S ∩ RT;Q)

Schröder equivalences:

A;B ⊆ C ⇐⇒ AT;C ⊆ B ⇐⇒ C;BT ⊆ A

The two rules are equivalent in the context mentioned. Many rules follow out of this setting;
not least everything for the concepts of a function, mapping, or ordering; e.g., that mappings
f may be shunted, i.e., that A; f ⊆ B ⇐⇒ A ⊆ B ; fT. The rule (A ∩ B ; gT); g = A; g ∩ B
for univalent g is also frequently applied and sometimes referred to as destroy and append ;
Prop. 5.4 of [Sch11].

A new and widely useful rule serves to negate the left-composition with a partial identity:
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2.1 Proposition. ( ∩ ∆); = ( ∩ ∆); for an arbitrary homogeneous relation ∆.

Proof : = ; =
[
∩ (∆ ∪ ∆)

]
; =

[
( ∩ ∆) ∪ ( ∩ ∆)

]
; = ( ∩ ∆); ∪ ( ∩ ∆); implies

( ∩ ∆); ⊆ ( ∩ ∆); , thus proving direction “⊆”.

For “⊇”, we use that ∩ ∆ ⊆ is univalent, prior to applying the Schröder rule:

( ∩ ∆)T; ( ∩ ∆); = [( ∩ ∆); ∩ ( ∩ ∆);∆]; ⊆ [ ∩ ∆ ∩ ∆]; =

It is relatively hard to see: this specializes Prop. 5.6 in [Sch11] for a homogeneous relation ∆:

( ∩ ∆);R = ( ∩ ∆); ∪ ( ∩ ∆);R

Another rule that sometimes proves helpful is the following:

2.2 Proposition. For any two mappings f, g : X −→ Y , this rule holds:

(f ∩ g); = (f ∩ g);

Proof : (f ∩ g); = (f; ∩ g); ⊆ (f ∩ g; );( ∩ fT;g); = (f ∩ g);( ∩ fT;g); ⊆ (f ∩ g);

There exist two resp. three versions of an interpretation. The first one takes two mappings f, g
which never assign the same value. In this case both sides result in . Then there may be two
mappings with one or more values identical. In this case, precisely the respective arguments
lead to 0 -rows; they may even lead to when f = g.

3 Symmetric quotient and membership

When a non-commutative composition is available, one usually looks for the left and the right
residual, defined via

A;B ⊆ C ⇐⇒ A ⊆ C;BT =: C/B and A;B ⊆ C ⇐⇒ B ⊆ AT;C =: A\C.

Residuations have been studied intensively, not least in the context of Heyting algebras. We
prove some rules for residuals:

3.1 Proposition (Residue cancellation). The following formulae hold for arbitrary relations
Q,R, T — provided typing is correct:

i) (Q\R )/T = Q\(R/T )

ii) Q\Q = (Q\Q )/(Q\Q )

iii) Q/(R;U) ⊆ (Q;UT)/R if U is total

Proof : i) (Q\R )/T = QT;R;T T = QT;R;T T and symmetrically to the other side.

ii) Q\Q = QT;Q implies that (Q\Q )/(Q\Q ) = QT;Q;QT;Q
T

= QT;Q;Q
T
;Q = QT;Q, since

Q;Q
T
;Q = Q, which in turn follows from Schröder’s rule and reflexivity of Q

T
;Q.

iii) = ;UT = (Q ∪ Q);UT = Q;UT ∪ Q;UT ⇐⇒ Q;UT ⊆ Q;UT

=⇒ Q;UT;RT ⊆ Q;UT;RT ⇐⇒ Q;UT;RT ⊆ Q;UT;RT
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Intersecting such residuals in syq(R, S) := RT;S ∩ RT
;S, the symmetric quotient syq(R, S) :

W −→ Z of two relations R : V −→ W and S : V −→ Z is defined. Symmetric quotients serve
the purpose of ‘column comparison’:[

syq(R, S)
]
wz

= ∀v ∈ V : Rvw ←→ Svz.

The following result may easily be understood. If a column of A and the corresponding one of
B are equal to some column of C, then also their intersection and union will be equal.

3.2 Proposition. For arbitrary relations A,B,C with all the same source always

syq(A,C) ∩ syq(B,C) ⊆ syq(A ∩ B,C) ∩ syq(A ∪ B,C).

Proof : For inclusion in the first term, we expand the symmetric quotients and negate to obtain

A ∩ BT
;C ∪ (A ∩ B)T;C ⊆ A

T
;C ∪ AT;C ∪ B

T
;C ∪ BT;C,

which is obviously satisfied. This is then used to prove the other part.

syq(A ∪ B,C) = syq(A ∪ B,C) = syq(A ∩ B,C) now applying the former
⊇ syq(A,C) ∩ syq(B,C) = syq(A,C) ∩ syq(B,C)

The illustration of the symmetric quotient is as follows:

R =

A K Q J 10 9 8 7 6 5 4 3 2

US
French

German
British

Spanish


0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 0
0 1 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 1 0 1


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
0 0 0 1 0 1 1 1 0 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 1 0 0 0 1
1 1 0 0 0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 0


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A
K
Q
J

10
9
8
7
6
5
4
3
2



0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


Fig. 3.1 R,S and syq(R,S)

The symmetric quotient shows which columns of the left are equal to columns of the right
relation in syq(R, S), with S conceived as the denominator.

It is extremely helpful that the symmetric quotient enjoys certain cancellation properties. These
are far from being broadly known. Just minor side conditions have to be observed. In any of
the following propositions correct typing is assumed. What is more important is that one may
calculate with the symmetric quotient in a fairly traditional algebraic way. Proofs may be
found in [Sch11].

3.3 Theorem. Arbitrary relations A,B satisfy in analogy to a · ba = b:

i) A;syq(A,B) = B ∩ ;syq(A,B),

ii) syq(A,B) surjective =⇒ A;syq(A,B) = B.



5

3.4 Theorem. Arbitrary relations A,B,C satisfy in analogy to b
a · cb = c

a

i) syq(A,B);syq(B,C) = syq(A,C) ∩ syq(A,B);

= syq(A,C) ∩ ;syq(B,C)

ii) If syq(A,B) is total, or if syq(B,C) is surjective, then

syq(A,B);syq(B,C) = syq(A,C).

3.5 Theorem. Assuming arbitrary relations X, Y, Z, always in analogy to z
x : y

x = z
y

• syq(X, Y ) \ syq(Z,X) ⊇ syq(Z, Y )

• syq(syq(X, Y ), syq(X,Z)) ⊇ syq(Y, Z)

• syq(syq(X, Y ), syq(X,Z)) = syq(Y, Z) if syq(X, Y ) and syq(X,Z) are surjective

Here is another basic rule:

3.6 Proposition. For a surjective mapping f always syq(X, f ;Y ) ⊆ syq(fT;X, Y ).

Proof : ⇐⇒ XT;f ;Y ∩ XT;f ;Y ⊆ XT;f ;Y ∩ XT;f ;Y

Above, the second terms are equal since f is a mapping. Containment of the first ones:

⇐⇒ XT;f ;Y ⊆ XT;f ;Y ⇐= XT;f ⊆ XT;f ⇐⇒ = XT;f ∪ XT;f = ;f

4 Membership and singleton injection

The symmetric quotient is used to introduce membership relations ε : V −→ P(V ) between a
set V and its powerset P(V ) or 2V . These can be characterized algebraically up to isomorphism
demanding syq(ε, ε) ⊆ and surjectivity of syq(ε, R) for all R. With a membership ε, the
powerset ordering is easily described as Ω = εT;ε. Also least upper bounds with regard to Ω
may be expressed via membership and symmetric quotient, making this a very powerful tool;
see [Sch11].

4.1 Proposition. If ε is the membership relation and Ω the corresponding powerset ordering,
the following equations hold for arbitrary relations X:

i) ε;εT;X = X and ε;εT;X = X,

ii) lubΩ(X) = syq(ε, ε;X).
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We also introduce singleton injection σ := syq( , ε) and atoms a := σT;σ.

ε =

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

ab
c

{d
}

{a
,d
}

{b
,d
}

ab
d

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

a
b
c
d

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1



σ =

{} {a
}

{b
}

{a
,b
}

{c
}
{a
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}
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c
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,d
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}

{a
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,d
}

{b
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,d
}

{a
,b

,c
,d
}

a
b
c
d

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


;σT

;σ = (0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0)

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

ab
d

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{a}
{b}
{a,b}
{c}
{a,c}
{b,c}
{a,b,c}
{d}
{a,d}
{b,d}

abd
{c,d}
{a,c,d}
{b,c,d}
{a,b,c,d}



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 4.1 ε, singleton injection σ := syq( , ε) and atoms as vector σT;σ; as well as diagonal σT;σ

The following results correspond to the lowest level of element-is-contained-in-set considera-
tions. They are fairly intuitive and easy to understand from Fig. 4.1. The basic purpose
of these statements is to make these tiny set arguments work together with more advanced
algebraic mechanisms.

4.2 Lemma. i) σ;εT =

ii) ;ε = σ ∪ ;ε

iii) σ;Ω = ε σ;ΩT = σ ∪ ;ε

iv) ε = σ ∪ (ε ∩ ;σ)

v) ;ε ∩ ;σ = ;ε ∩ ;σ

vi) Ω ∩ εT;ε = Ω ∩ εT;

vii) (Ω ∩ εT;ε);εT = εT;

viii) (Ω ∩ εT; )T; (Ω ∩ εT; ) = εT;ε

Proof : i) σ;εT =
[
ε;σT

]T
=
[
ε;syq(ε, )

]T
=

ii) σ = syq( , ε) = ;ε ∩ ε by definition and ;ε ⊇ ;ε result in “⊇”.

“⊆” means ;ε ⊆ σ ∪ ;ε =
[

;ε ∩ ε
]
∪ ;ε

⇐⇒ = ;ε ∪
[

;ε ∩ ε
]
∪ ;ε =

[
;ε ∪ ;ε ∪ ;ε

]
∩
[

;ε ∪ ε ∪ ;ε
]
, which is true.

iii) σ;Ω = σ;εT;ε = σ;εT;ε = ;ε = ε, using (i)
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σ;ΩT = σ;εT;ε = σ;εT;ε = ;ε = σ ∪ ;ε, using (i,ii)

iv) “⊇” is obvious. For “⊆”, it suffices to prove ;σ ∩ ε ⊆ ( ∩ ε;σT); (σ ∩ ;ε) ⊆ σ using (i).

v) ;ε ∩ ;σ = ( ;ε ∪ ;ε) ∩ ;σ ∪ ;σ = ( ;ε ∪ ;ε) ∩ σ ∩ ;σ = ( ;ε ∪ ;ε) ∩ ( ;ε ∪ ε) ∩ ;σ

=
[

;ε ∪ (ε ∩ ε)
]
∩ ;σ = ;ε ∩ ;σ

vi) This follows with the Dedekind rule from

εT; ∩ Ω ⊆ (εT ∩ Ω; ); ( ∩ ε;Ω) ⊆ εT;ε;Ω = εT;ε.

vii) We start with formally showing the intuitively clear fact Ω;εT = :

Ω;εT ⊇ (Ω ∩ ;ε); (εT ∩ εT; ) = ;ε ; εT; trivial
⊇ syq( , ε);syq(ε, ) = syq( , ) = [Sch11] Prop. 8.13.ii; syq(ε, ) is surjective

which is used together with (vi) in the following chain of reasoning

(Ω ∩ εT;ε);εT = (Ω ∩ εT; );εT = Ω;εT ∩ εT; = ∩ εT; = εT; .

viii) We recall the definition of singleton injection σ := syq( , ε) and use (i,iii):

ε = ε ∩ = ε ∩ ; = σ;Ω ∩ σ;εT; = σ; (Ω ∩ εT; ) since σ is univalent

Therefore

εT;ε = (Ω ∩ εT; )T;σT;σ; (Ω ∩ εT; ) ⊆ (Ω ∩ εT; )T; (Ω ∩ εT; ) since σ is univalent

The other inclusion “⊆” follows with (vi) from

(ΩT ∩ ;ε); (Ω ∩ εT; ) = (ΩT ∩ εT;ε); (Ω ∩ εT;ε) ⊆ εT;ε;Ω = εT;ε

ε
Q

η

X 2
X

Ξ

εΞ
X

Ξ
2
XΞ

ξ

2
X

2
X

×

2
XΞ

2
XΞ×

π

ρ

π

ρ

Ξ

Ξ

Ω

Ω

Ω´

Ξ

Fig. 4.2 Quotient of membership

4.3 Proposition. Let be given the membership relation ε : X −→ 2X and an equivalence
relation Ξ : X −→ X and its natural projection ξ : X −→ XΞ satisfying ξ;ξT = Ξ. Then

i) Ω′ := εT;Ξ;ε is a preorder.

ii) Q := syq(Ξ;ε,Ξ;ε) is an equivalence satisfying Q = Ω′ ∩ Ω′T.

Let η : 2X −→ 2XΞ denote its natural projection, i.e., the mapping that satisfies Q = η;ηT.



8

iii) ε;Q = Ξ;ε

iv) εΞ := ξT;ε;η satisfies the properties of a membership relation.

v) ξT;ε = εΞ;ηT Ω′;η = η;ΩΞ

Proof : We recall that for an equivalence Ψ, in general Ψ;Ψ;Y = Ψ;Y and Z;Ψ;Ψ = Z;Ψ, and
that its natural projection is a surjective mapping.

i) Reflexivity holds since ⊆ Ω = εT;ε ⊆ εT;Ξ;ε, while transitivity follows from

εT;Ξ;Ξ;ε = εT;Ξ;ε ⊆ εT;Ξ;ε ⇐⇒ Ξ;ε;εT;Ξ;ε ⊆ Ξ;ε =⇒ εT;Ξ;ε;εT;Ξ;ε ⊆ εT;Ξ;ε

⇐⇒ εT;Ξ;ε;εT;Ξ;ε ⊆ εT;Ξ;ε, i.e. Ω′;Ω′ ⊆ Ω′

ii) A relation syq(A,A) is always an equivalence following [Sch11, Prop. 8.14.i]; furthermore

Ω′ ∩ Ω′T = εT;Ξ;ε ∩ Ξ;ε
T
;ε = εT;Ξ;Ξ;ε ∩ Ξ;ε

T
;Ξ;ε = syq(Ξ;ε,Ξ;ε) = Q

iii) Ξ;ε = ε;syq(ε,Ξ;ε) since ε is a membership
⊆ ε;syq(Ξ;ε,Ξ;Ξ;ε) = ε;syq(Ξ;ε,Ξ;ε) = ε;Q [Sch11, Prop. 8.16.i]
⊆ Ξ;ε;syq(Ξ;ε,Ξ;ε) = Ξ;ε since always A;syq(A,A) = A

iv) syq(εΞ, εΞ) = syq(ξT;ε;η, ξT;ε;η) = ηT;syq(ξT;ε, ξT;ε);η due to [Sch11, Prop. 8.18].
= ηT;syq(ξ;ξT;ε, ξ;ξT;ε);η due to [Sch11, Prop. 8.16.i] since ξ is a surjective mapping
= ηT;syq(Ξ;ε,Ξ;ε);η = ηT;Q;η = ηT;η;ηT;η = ; =

Assuming an arbitrary X that is acceptable with regard to typing,
;syq(εΞ, X) = ;syq(ξT;ε;η,X)

= ;ηT;syq(ξT;ε,X) due to [Sch11, Prop. 8.18] since ξT;ε = ξT;ε;Q, see above
= ;syq(ξT;ε,X)
⊇ ;syq(ε, ξ;X) Prop. 3.6
= because ε is a membership.

v) ξT;ε = ξT;ξ;ξT;ε = ξT;Ξ;ε = ξT;ε;Q = ξT;ε;η;ηT = εΞ;ηT

Ω′;η = εT;Ξ;ε;η = εT;Ξ;Ξ;ε;η = εT;Ξ;ε;Q;η = εT;Ξ;ε;η;ηT;η = εT;Ξ;ε;η;ηT;η = εT;Ξ;ε;η

= εT;Ξ;Ξ;ε;η = Q;εT;Ξ;ε;η = η;ηT;εT;ξ;ξT;ε;η = η;ηT;εT;ξ;ξT;ε;η = η;εTΞ;εΞ = η;ΩΞ

5 Power operations

There is an interesting interrelationship from relations to their counterparts between the corre-
sponding powersets. It offers the possibility to work algebraically at situations where this has
so far not been the classical approach; some has already been collected in [Sch11].

5.1 Definition. Let any relation R : X −→ Y be given together with membership relations
ε : X −→ 2X , ε′ : Y −→ 2Y . Then the corresponding existential image mapping is defined
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as ϑ
R

:= syq(RT;ε, ε′). One may correspondingly study the inverse image mapping defined

as ϑ
RT = syq(R;ε′, ε).

We recall an interesting fact concerning the existential image; see [Sch11]. Referring to [dRE98],
the pair ε, ε′ constitutes an L-simulation of ϑ

R
by R, and in addition, εT, ε′T show an LT-

simulation of R by ϑ
R

. In total, we have for an existential image the equality

εT;R = ϑR;ε′T.

Correspondingly, an application of this simulation rule to RT instead of R reads

ε′T;RT = ϑRT;εT, or else R;ε′ = ε;ϑT

RT .

5.2 Proposition. The existential image and the inverse image also satisfy formulae with
respect to the powerset orderings:

i) Ω′;ϑfT ⊆ ϑfT;Ω if f is a mapping,

ii) Ω;ϑ
T

fT = ϑ
f

;Ω′ if f is a mapping.

Proof : i) Via shunting the claim is Ω′ ⊆ ϑfT;Ω;ϑT

fT , which we prove in negated form:

ε′T;ε′ ⊇ ε′T;fT;f ;ε′ = ε′T;fT;f ;ε′ = ε′T;fT;ε;ϑT

fT = ϑfT;εT;ε;ϑT

fT = ϑfT;Ω;ϑT

fT = ϑfT;Ω;ϑT

fT

ii) Ω;ϑ
T

fT = εT;ε;ϑ
T

fT = εT;ε;ϑ
T

fT = εT;f ;ε′ = εT;f ;ε′ = ϑ
f

;ε′T;ε′ = ϑ
f

;ε′T;ε′ = ϑ
f

;Ω′

Another rule combines the inverse image with the singleton injection.

5.3 Proposition. i) Any relation R : X −→ Y with σX , σY the singleton injections satisfies

σX ;ϑ
T

RT
;σT

Y ⊆ R and εX ;ϑ
T

RT
;σT

Y = R.

ii) When f is a mapping, this sharpens to σX ;ϑ
f

= f ;σY .

Proof : i) σX ;ϑ
T

RT
;σT

Y ⊆ εX ;ϑ
T

RT
;σT

Y = R;εY ;σT
Y = R Prop. 5.2.i

ii) σX ;ϑ
f

= σX ;syq(fT;εX , εY ) definition of symmetric quotient

= syq(fT;εX ;σT
X , εY ) Prop. 8.16.ii of [Sch11]

= syq(fT, εY ) = syq( ;fT, εY ) = f ;syq( , εY ) = f ;σY Prop. 5.2.i

The following rules are not unimportant when, in a forthcoming paper, continuity is studied in
topology and transferred to a point-free relation-algebraic version.
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X

ε

X
2

R
X´

X´
2

ε´

ϑ
R

ϑ
RT

Ω Ω´

ζ

R =

a b c d

1
2
3
4
5


0 1 0 1
1 0 0 0
0 0 1 0
0 0 0 1
1 0 1 0



ϑR =

{} {a
}
{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{1}
{2}
{1,2}
{3}
{1,3}
{2,3}
{1,2,3}
{4}
{1,4}
{2,4}
{1,2,4}
{3,4}
{1,3,4}
{2,3,4}
{1,2,3,4}

{5}
{1,5}
{2,5}
{1,2,5}
{3,5}
{1,3,5}
{2,3,5}
{1,2,3,5}
{4,5}
{1,4,5}
{2,4,5}
{1,2,4,5}
{3,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



ϑRT =

{} {1
}

{2
}

{1
,2
}

{3
}
{1

,3
}

{2
,3
}

{1
,2

,3
}

{4
}

{1
,4
}

{2
,4
}

{1
,2

,4
}

{3
,4
}

{1
,3

,4
}

{2
,3

,4
}

{1
,2

,3
,4
}

{5
}
{1

,5
}

{2
,5
}

{1
,2

,5
}

{3
,5
}

{1
,3

,5
}

{2
,3

,5
}

{1
,2

,3
,5
}

{4
,5
}

{1
,4

,5
}

{2
,4

,5
}

{1
,2

,4
,5
}

{3
,4

,5
}

{1
,3

,4
,5
}

{2
,3

,4
,5
}

{1
,2

,3
,4

,5
}

{}
{a}
{b}
{a,b}
{c}
{a,c}
{b,c}
{a,b,c}
{d}
{a,d}
{b,d}
{a,b,d}
{c,d}
{a,c,d}
{b,c,d}
{a,b,c,d}



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Fig. 5.1 Existential and inverse images
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5.4 Proposition. Let f : X −→ Y be an arbitrary mapping. Then

i) ϑ
T

fT
;ϑ

fT
;ϑ

f
= ϑ

T

fT
;ϑ

T

f
;ϑ

f
,

ii) ϑ
T

fT
; ∩ ϑ

f
= ϑ

T

fT ∩ ;ϑ
f
,

iii) ϑ
T

fT ⊆ ϑ
f

or syq(εX , f ;εY ) ⊆ syq(fT;εX , εY ) when f is surjective.

Proof : i) and ii) are proved together, starting with

ϑ
T

fT
; ∩ ϑ

f
⊆ (ϑ

T

fT ∩ ϑf
; ); ( ∩ ϑ

fT
;ϑ

f
) Dedekind rule

= ϑ
T

fT
;ϑ

fT
;ϑ

f
since existential images are total

⊆ ϑ
T

fT
; ∩ ϑ

f
since existential images are univalent

resulting in equality in between. Similarly

ϑ
T

fT ∩ ;ϑ
f
⊆ ( ∩ ϑT

fT
;ϑ

T

f
); (ϑ

f
∩ ;ϑ

T

fT)

= ϑ
T

fT
;ϑ

T

f
;ϑ

f

⊆ ϑ
T

fT ∩ ;ϑ
f

Thus, (i,ii) mean the same. For the remaining proof we start from

ϑ
T

f
;(ϑ

T

fT ∩ ;ϑ
f
) = ;ϑ

f
∩ ϑT

f
;ϑ

T

fT masking

⊆ ( ∩ ϑT

f
;ϑ

T

fT
;ϑ

T

f
); (ϑ

f
∩ ;ϑ

T

f
;ϑ

T

fT) Dedekind rule

⊆ ϑ
T

f
;ϑ

T

fT
;ϑ

T

f
; ϑ

f

= ϑ
T

f;fT;f
; ϑ

f
existential images are multiplicative

= ϑ
T

f
; ϑ

f
⊆ since f ;fT;f = f for a mapping

Now shunting gives the needed result ϑ
T

fT ∩ ;ϑ
f
⊆ ϑ

f
.

The following is proved mutatis mutandis:

(ϑ
T

fT
; ∩ ϑ

f
);ϑ

fT = ϑ
T

fT
; ∩ ϑ

f
;ϑ

fT ⊆ (ϑ
T

fT ∩ ϑf
;ϑ

fT
; ); ( ∩ ϑ

fT
;ϑ

f
;ϑ

fT)

= (ϑ
T

fT ∩ ϑf
;ϑ

fT
; );ϑ

fT
;ϑ

f
;ϑ

fT ⊆ ϑ
T

fT
;ϑ

fT
;ϑ

f
;ϑ

fT

= ϑ
T

fT
;ϑ

fT;f;fT = ϑ
T

fT
;ϑ

fT ⊆

iii) results simply from an application of Prop. 3.6.

These results imply not least that ϑ
T

fT is univalent, or a partial function, when f is surjective.

With (ii), we have then also ϑ
f
∩ ϑT

fT
; = ϑ

T

fT .
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a b c d

1
2
3
4
5


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0



{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{1}
{2}
{1,2}
{3}
{1,3}
{2,3}
{1,2,3}
{4}
{1,4}
{2,4}
{1,2,4}
{3,4}
{1,3,4}
{2,3,4}
{1,2,3,4}

{5}
{1,5}
{2,5}
{1,2,5}
{3,5}
{1,3,5}
{2,3,5}
{1,2,3,5}
{4,5}
{1,4,5}
{2,4,5}
{1,2,4,5}
{3,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


f ϑf ϑT

fT

Fig. 5.2 Existential and inverse image for a surjective mapping

a b c d

1
2
3

(
0 0 1 0
0 1 0 0
1 0 0 0

)

{} {a
}
{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

{}
{1}
{2}
{1,2}
{3}
{1,3}
{2,3}
{1,2,3}



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0



{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}



1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1


f ϑf ϑT

fT

Fig. 5.3 Existential and inverse image for a non-surjective mapping

5.5 Proposition. Consider a relation R : X −→ Y as well as the corresponding power relator

ζR :=
(
ε\(R;ε′)

)
∩
(
(εT;R)/ε′T

)
= εT;R;ε′ ∩ εT;R;ε′ : 2X −→ 2Y . Then
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i) R univalent =⇒ ζR univalent

ii) R surjective =⇒ ζR surjective

iii) R total =⇒ ζR total

iv) R injective =⇒ ζR injective

v) f mapping =⇒ ζf = ϑ
f

Proof : The proofs of (i,. . . ,iv) follow all the same scheme using Prop. 19.11 of [Sch11].

ζT
R

;ζR = ζRT;ζR = ζRT;R = ε′T;RT;R;ε′ ∩ ε′T;RT;R;ε′

⊆ ε′T; ;ε′ ∩ ε′T; ;ε′ = ε′T;ε′ ∩ ε′T;ε′ = Ω′ ∩ Ω′T =

v) ζf = εT;f ;ε′ ∩ εT;f ;ε′ = εT;f ;ε′ ∩ εT;f ;ε′ = syq(fT;ε, ε′) = ϑ
f

The construct ζ looks quite similar to a symmetric quotient, but it is not!

6 Relations in varying representations

When dealing with relations, we have — in principle — three incarnations of the same idea. A
relation between sets X, Y may, namely, be represented

• as R : X −→ Y corresponding to a possibly non-square Boolean matrix,

• as r : X × Y −→ 1l corresponding to a Boolean vector characterizing a subset of pairs,

• as r : 2X×Y −→ 1l corresponding to a point in the powerset of the pair set.

Their interrelationship using projections π : X × Y −→ X, resp. ρ : X × Y −→ Y , and the
membership relation ε× : X × Y −→ 2X×Y starting in the product is as follows:

r = ε×;r r = syq(ε×, r) R = rel(r) = πT; (r; 1l,Y ∩ ρ) r = vec(R) = (π;R ∩ ρ);
Y,1l

The transition from R to r is a vectorization, known also at other occasions in algebra. While
it may be considered an easy construction, one should think of a 5000 × 1000-relation and its
vectorization that may be much harder to handle in practice.

6.1 Proposition. R = rel(vec(R)) and r = vec(rel(r))

Proof : R = πT;ρ; Y ∩ R
⊆ (πT;ρ ∩ R; Y ); ( Y ∩ (πT;ρ)T;R) Dedekind
= πT; (ρ ∩ π;R); ( Y ∩ Y,X ;R)
= πT; [(ρ ∩ π;R); Y ∩ (ρ ∩ π;R); Y,X ;R)] since (ρ ∩ π;R) is univalent
= πT; [ρ ∩ π;R ∩ (ρ ∩ π;R); Y,X ;R)]
⊆ πT; [ρ ∩ (ρ ∩ π;R); Y,Y )] = πT; [(π;R ∩ ρ);

Y,1l; 1l,Y ) ∩ ρ] = rel(vec(R))

⊆ πT; ((π;R ∩ ρ) ∩ ρ; Y,Y ); ( Y,Y ∩ (π;R ∩ ρ)T;ρ) Dedekind rule
⊆ πT;π;R;ρT;ρ = R
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r = (
X×Y,1l ∩ r); 1l,1l = (ρ;

Y,1l ∩ r); 1l,1l
⊆ (ρ ∩ r; 1l,Y ); (

Y,1l ∩ ρT; r); 1l,1l
⊆ (ρ ∩ r; 1l,Y );

Y,1l
= ((r; 1l,Y ∩ ρ) ∩ ρ);

Y,1l
⊆
[
π;πT; (r; 1l,Y ∩ ρ) ∩ ρ

]
;

Y,1l = vec(rel(r))

⊆
[
π;πT ∩ ρ; (r; 1l,Y ∩ ρ)T

]
;

[
(r; 1l,Y ∩ ρ) ∩ π;πT;ρ

]
;

Y,1l
⊆
[
π;πT ∩ ρ;ρT

]
; r; 1l,Y ;

Y,1l
= r; 1l,Y ;

Y,1l = r; 1l,1l = r

It should be made clear that the relations with standard abbreviation ε×, π, ρ do not fall from
heaven. Rather, they are defined generically as characterizations up to isomorphism using the
techniques of domain construction developed in [Sch11]. They allow to formulate via a language
called TituRel

π ≈ Pi X Y ρ ≈ Rho X Y given that X = src(R) and Y = tgt(R)
ε× ≈ ElemIn (DirPro X Y )

Following the idea of the threefold ways of denoting, the identity : X −→ X gives rise to the
vector vec( ) = (π ∩ ρ); : X ×X −→ 1l and finally to the element I = syq(ε×, (π ∩ ρ); ) :
2X×X −→ 1l in the powerset of all pairs.

6.2 Proposition. Consider a set X together with the membership ε× : X ×X −→ 2X×X on
the direct product of the set with itself and define the point

I := syq(ε×, (π ∩ ρ); ) = syq(ε×, vec( )).

Then rel(ε×;I) = .

Proof : rel(ε×;I) = rel(ε×;syq(ε×, (π ∩ ρ); )) = rel((π ∩ ρ); )
= πT;

[
(π ∩ ρ); ∩ ρ

]
expanded

= πT; (π ∩ ρ) see below
= ∩ πT;ρ = ∩ =

Now the postponed transition is justified with a sequence of containments implying equality:

(π ∩ ρ); ∩ ρ ⊆ [(π ∩ ρ) ∩ ρ; ]; [ ∩ (π ∩ ρ)T;ρ] = (π ∩ ρ); (πT ∩ ρT);ρ ρ is total
= (π ∩ ρ); (πT;ρ ∩ ) = (π ∩ ρ); ( ∩ ) = π ∩ ρ ⊆ (π ∩ ρ); ∩ ρ

Much in the same way as later for M , J , we show here that it is possible to express the least
and the greatest relations as points

BOT : 2X×Y −→ 1l, T OP : 2X×Y −→ 1l.

6.3 Proposition. Consider sets X, Y together with the membership ε× : X × Y −→ 2X×Y

on the direct product of the sets and define the point

BOT := syq(ε×, vec( )) = syq(ε×, )
T OP := syq(ε×, vec( )) = syq(ε×, ).

Then rel(ε×;BOT ) = and rel(ε×;T OP) = .
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Proof : rel(ε×;BOT ) = rel(ε×;syq(ε×, vec( ))) = rel(vec( )) =

The processes of transposition and negation

T : 2X×Y −→ 2Y×X N : 2X×Y −→ 2X×Y ,

may also be conceived as bijective mappings, as well as the process of composition

C : 2X×Y × 2Y×Z −→ 2X×Z ,

as a binary mapping, i.e., all three in a pointfree fashion. While we omit discussing C, we refer
for N to Fig. 9.3. Here, we restrict to studying formally the interchange of components of a
pair, which obviously determines a bijective mapping

T : 2X×Y −→ 2Y×X ,

satisfying certain rules.

ε

π

X Y

X×Y Y×X

2
X×Y

2
Y×X

πρ  ρ

ε 

R
R T

P

T

Fig. 6.1 Illustrating transposition as an operation on relations conceived as points

6.4 Proposition. Consider two sets X, Y together with the memberships ε : X×Y −→ 2X×Y

and ε′ : Y ×X −→ 2Y×X of both their direct products and define

P := π;ρ′T ∩ ρ;π′T T := syq(P T;ε, ε′).

Then

i) P is a bijective mapping to be interpreted as sending (x, y) to (y, x).

ii) T is a bijective mapping resembling transposition.

iii) P ;ρ′ = π P ;π′ = ρ P T;π = ρ′ P T;ρ = π′

iv) T ;ε′T = εT;P , i.e., P and T bisimulate one another via the membership relations.

v) rel(P T;v) =
[
rel(v)

]T
vi) vec(RT) = P ;vec(R)

vii) rel(v) = rel(v)

viii) vec(R) = vec(R)
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Proof : i) P T;P = (ρ′;πT ∩ π′;ρT);(π;ρ′T ∩ ρ;π′T) ⊆ ρ′ ;πT;π;ρ′T ∩ π′ ;ρT;ρ;π′T = ρ′ ;ρ′T ∩ π′ ;π′T =

This shows univalency; analogously for injectivity. Therefore P multiplies distributively over
conjunction and we may proceed with

P ;P T = (π;ρ′T ∩ ρ;π′T); (ρ′;πT ∩ π′;ρT) = (π;ρ′T ∩ ρ;π′T);ρ′;πT ∩ (π;ρ′T ∩ ρ;π′T);π′;ρT

= (π ∩ ρ;π′T;ρ′);πT ∩ (π;ρ′T;π′ ∩ ρ);ρT

= (π ∩ );πT ∩ ( ∩ ρ);ρT = π;πT ∩ ρ;ρT = ,

giving totality, and in analogy also surjectivity.

ii) T is univalent, since T T
;T = syq(ε′, P T;ε);syq(P T;ε, ε′) = syq(ε′, ε′) = . It is total because

T T = syq(ε′, P T;ε) is surjective by definition of the membership ε′.

iii) is trivial.

iv) T ;ε′T = [ε′;T T]T = [ε′;syq(ε′, P T;ε)]T = [P T;ε]T = εT;P

v) rel(P T;v) = π′T; (P T;v; ∩ ρ′) = π′T; (P T;v; ∩ P T;π) = π′T;P T; (v; ∩ π) = ρT; (v; ∩ π)
=
[
(v; ∩ π)T;ρ

]T
=
[
( ;vT ∩ πT);ρ

]T
=
[
πT(v; ∩ ρ)

]T
=
[
rel(v)

]T
vi) vec(RT) = (π′;RT ∩ ρ′); = (P T;ρ;RT ∩ P T;π); = P T; (ρ;RT ∩ π);

⊆ P T;(ρ ∩ π;R);(RT ∩ ρT;π); = P T;(ρ ∩ π;R);(RT ∩ ); ⊆ P T;(ρ ∩ π;R); = P T;(π;R ∩ ρ);

⊆ P T;(π ∩ ρ;RT);(R ∩ πTρ); ⊆ P T;(π ∩ ρ;RT); implying equality everywhere in between
= P T;vec(R)

vii) = πT;ρ = πT;(ρ ∩ r; ) ∪ πT;(ρ ∩ r; ) =⇒ rel(r) = πT; (ρ ∩ r; ) ⊆ πT;(ρ ∩ r; ) = rel(r)
π;πT; (ρ ∩ r; ) ∩ ρ ⊆ (π;πT ∩ ρ; (ρ ∩ r; )T); (ρ ∩ r; ∩ π;πT;ρ) ⊆ ; r; = r; Dedekind rule

=⇒ π;πT; (ρ ∩ r; ) ⊆ ρ ∪ r; ⇐⇒ rel(r) = πT; (ρ ∩ r; ) ⊆ πT; (ρ ∩ r; ) = rel(r)

viii) vec(R) = vec(rel(vec(R))) Prop. 6.1
= vec(rel(vec(R))) according to (vii)
= vec(R) Prop. 6.1

7 Some categorical considerations

We here give relation-algebraic proofs of certain results we will use afterwards. Everything is
fully based on the generic constructions of a direct sum, or product, etc. If any two heteroge-
neous relations π, ρ with common source are given, they are said to form a direct product
if

πT;π = , ρT;ρ = , π;πT ∩ ρ;ρT = , πT;ρ = .

Thus, the relations π, ρ are mappings, usually called projections. In a similar way, any two
heterogeneous relations ι, κ with common target are said to form the left, respectively right,
injection of a direct sum if

ι; ιT = , κ;κT = , ιT; ι ∪ κT;κ = , ι;κT = .

7.1 Definition. Given any two direct products by projections

π : X × Y −→ X, ρ : X × Y −→ Y, π′ : U × V −→ U, ρ′ : U × V −→ V ,
we define as binary operations on relations
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i) (A©× B) := π;A;π′T ∩ ρ ;B;ρ′T : X × Y −→ U × V , the Kronecker product,

ii) (C©< D) := C;πT ∩ D;ρT : Z −→ X × Y , the fork-operator,

iii) (E©> F ) := π;E ∩ ρ ;F : X × Y −→ W , the join-operator.

π ρ

X

X Y

Y

×

π´
ρ´

U

U V

V

×

A,f

B,g

η

Z

WC
D

E
F

Fig. 7.1 Kronecker, fork-, and join-operators applied to relations and mappings

Obvious identities are (A©× B) T = (AT©× BT) and (C©< D) T = (CT©> DT) . The next results
are presented in some detail because they are very close to the ‘unsharpness’ situation where
model problems arise: There exist relational formulae that hold in the classical interpretation,
but cannot be derived in the axiomatization followed here; see [Sch11, Sect. 7.2].

7.2 Proposition. Let be given any two direct products by projections

π : X × Y −→ X, ρ : X × Y −→ Y, π′ : U × V −→ U, ρ′ : U × V −→ V

together with relations A : X −→ U and B : Y −→ V . Then

i) (A©× B) ;π′ = π;A ∩ ρ;B; (A©× B) ;ρ′ = π;A; ∩ ρ;B

ii) (A©× B) ;π′ = π;A in case B is total

iii) (A©× B) ;ρ′ = ρ;B in case A is total

iv) (A©× ) ;π′ = (A©> ) = π;A ( ©× B) ;ρ′ = ( ©> B) = ρ;B.

(A©< ) ;π′ = A ( ©< B) ;ρ′ = B.

v) If A,B are both univalent, then so is (A©× B) .

vi) If A,B are both mappings, then so is (A©× B) .

Proof : i) (A©× B) ;π′ = (π;A;π′T ∩ ρ;B;ρ′T);π′ by definition
= π;A ∩ ρ;B;ρ′T;π′ since π′ is univalent, [Sch11], Prop. 5.4
= π;A ∩ ρ;B; property of the direct product π′, ρ′

The second formula is derived analogously.

ii) and (iii) are trivial consequences.
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iv) ( ©× B) ;ρ′ = (π;π′T ∩ ρ;B;ρ′T);ρ′ = π;π′T;ρ′ ∩ ρ;B = π; ∩ ρ;B = ( ©> B) = ∩ ρ;B

v) (A©× B) T
; (A©× B) = (π′;AT;πT ∩ ρ′;BT;ρT); (π;A;π′T ∩ ρ;B;ρ′T) by definition

⊆ π′;AT;πT;π;A;π′T ∩ ρ′;BT;ρT;ρ;B;ρ′T monotony
⊆ π′;AT;A;π′T ∩ ρ′;BT;B;ρ′T since projections π, ρ are univalent
⊆ π′;π′T ∩ ρ′;ρ′T since A,B are assumed to be univalent
= by definition of a direct product

vi) Univalency follows from (iv). (A©× B) ; ⊇ (A©× B) ;π′; = π;A; = π; =

The results above are more or less known. It was important to execute rigorous axiomatic
proofs, i.e., not just based on Boolean matrices. Of course, analogous formulae hold in the
converse situation.

7.3 Proposition. Let be given the setting above.

i) (R©× S) ; (P ©× Q) ⊆ (R;P ©× S;Q)

(R©× S) ; (P ©> Q) ⊆ (R;P ©> S;Q) (R©< S) ; (P ©× Q) ⊆ (R;P ©< S;Q)

(R©< S) ; (P ©> Q) ⊆ R;P ∩ S;Q

ii) (f©× g) ; (A©× B) = (f ;A©× g;B) provided f, g are both univalent

iii) (f©× g) ; (A©> B) = (f ;A©> g;B) provided f, g are both univalent

(R©× S) ; (A©> B) = (R;A©> S;B) provided A,B are both injective

(R©< S) ; (A©> B) = R;A ∩ S;B provided A,B are both injective, or R, S both univalent

iv) (R©× S) ; = (R; ©> S; )

v) (A©< B) ∩ C; = (A ∩ C; ©< B ∩ C; )

vi) (A©× B) ∩ (C; ©> D; ) = (A ∩ C; ©× B ∩ D; )

vii) (A ∩ C©< B ∩ D) = (A©< B) ∩ (C©< D)

viii) (R\R ©× S\S ) ⊆ (R©< S) \ (R©< S)

ix) C; (A©< B) = (C;A©< C;B) provided C is univalent

Proof : i) See [Sch11, Prop. 7.2.ii], where it is also mentioned that a pointfree proof of equality
is impossible notwithstanding the fact that equality holds when the Point Axiom is demanded;
i.e., not least for Boolean matrices. Indeed, there exist models where equality is violated.

ii) According to Prop. 7.2.iv, (f©× g) is univalent, so that we may reason

(f©× g) ; (A©× B) = (f©× g) ;(π2;A;πT
3 ∩ ρ2;B;ρT

3) by definition
= (f©× g) ;π2;A;πT

3 ∩ (f©× g) ;ρ2;B;ρT
3 univalency

= (π1;f ∩ ρ1;g; );A;πT
3 ∩ (π1;f ; ∩ ρ1;g);B;ρT

3 Prop. 7.2.i
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= π1;f ;A;πT
3 ∩ ρ1;g; ∩ π1;f ; ∩ ρ1;g;B;ρT

3 masking

= π1;f ;A;πT
3 ∩ ρ1;g;B;ρT

3 trivial

= (f ;A©× g;B) by definition

iii) is shown similar to (ii).

iv) For clarity, we mention the ever changing typing of the universal relations explicitly:

(R©× S) ; X′×Y ′,Z = (π;R;π′T ∩ ρ;S;ρ′T); X′×Y ′,Z by definition

= (π;R;π′T ∩ ρ;S;ρ′T);π′; X′,Z since π′ is total

= (π;R ∩ ρ;S;ρ′T;π′); X′,Z since π′ is univalent, [Sch11], Prop. 5.4

= (π;R ∩ ρ;S; Y ′,X′); X′,Z property of the direct product

= π;R; X′,Z ∩ ρ;S; Y ′,Z masking

= (R; X′,Z©> S; Y ′,Z) by definition

v) (A ∩ C; Z,X©< B ∩ C; Z,Y ) = (A ∩ C; Z,X);πT ∩ (B ∩ C; Z,Y );ρT

= A;πT ∩ C; Z,X ;πT ∩ B;ρT ∩ C; Z,Y ;ρT

= A;πT ∩ C; Z,X×Y ∩ B;ρT ∩ C; Z,X×Y = A;πT ∩ B;ρT ∩ C; Z,X×Y
= (A©< B) ∩ C; Z,X×Y

vi) Assume A : X −→ Y,B : U −→ V,C : X −→ Z,D : U −→ W :

(A©× B) ∩ (C; Z,Y×V ©> D; W,Y×V ) = π;A;π′T ∩ ρ;B;ρ′T ∩ π;C; Z,Y×V ∩ ρ;D; W,Y×V
= π;A;π′T ∩ π;C; Z,Y×V ∩ ρ;B;ρ′T ∩ ρ;D; W,Y×V shuffled

= π; (A;π′T ∩ C; Z,Y×V ) ∩ ρ; (B;ρ′T ∩ D; W,Y×V )

= π; (A;π′T ∩ C; Z,Y ;π′T) ∩ ρ; (B;ρ′T ∩ D; W,V ;ρ′T)

= π; (A ∩ C; Z,Y );π′T ∩ ρ; (B ∩ D; W,V );ρ′T

= (A ∩ C; Z,Y ©× B ∩ D; W,V )

vii) (A ∩ C©< B ∩ D) = (A ∩ C);πT ∩ (B ∩ D);ρT

= A;πT ∩ C;πT ∩ B;ρT ∩ D;ρT

= A;πT ∩ B;ρT ∩ C;πT ∩ D;ρT = (A©< B) ∩ (C©< D)

viii) (R©< S) \ (R©< S) = (R©< S) T
;(R©< S) = (RT©> ST) ;R;πT ∩ S;ρT

= (RT©> ST) ;(R;πT ∪ S;ρT) = (RT©> ST) ;R;πT ∪ (RT©> ST) ;S;ρT

= (π;RT ∩ ρ;ST);R;πT ∪ (π;RT ∩ ρ;ST);S;ρT

⊇ π;RT;R;πT ∪ ρ;ST;S;ρT

= π;RT;R;πT ∩ ρ;ST;S;ρT = π;RT;R;πT ∩ ρ;ST;S;ρT = (R\R ©× S\S )

ix) trivial

As mentioned, one must not demand arbitrary products to exist, because one will then run
into model problems. To employ the Point Axiom is a requirement stronger than necessary.
When here just two additional products are requested, this means some sort of an “improved
observability” for the pairs in the product A×B via vectorization.
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π ρ

A

A B

B

×

A× C

D
R

S

P

Q

B C×

πρ
1

2

1

B C×(        )

π

ρ
2

Y
X

Fig. 7.2 The two additional products in the proof of (R©< S) ; (P ©> Q) = R;P ∩ S;Q

For better reference, we recall an important result by Hans Zierer with its difficult proof from
[Zie88, Zie91]. It shows that when these additional products are available, there will hold
equality in the third containment of Prop. 7.3.i.

7.4 Proposition. Let again be given the setting above. When products π1, ρ1 and π2, ρ2,

π1 : B × C −→ B, ρ1 : B × C −→ C

π2 : A× (B × C) −→ A, ρ2 : A× (B × C) −→ (B × C)

exist, there will in addition to Prop. 7.3.i hold

(R©< S) ; (P ©> Q) = R ;P ∩ S;Q.

Proof : The intricate point is to define the following constructs

X := ρ1;R;πT ∩ (π1 ∩ ρ1;S);ρT Y := (π2 ∩ ρ2;ρ1;R);πT ∩ ρ2; (π1 ∩ ρ1;S);ρT,

of which Y turns out to be univalent, and to show several rather simple consequences. These
follow applying the destroy and append-rule for univalent relations repeatedly.

ρT
1
;X = R;πT ∩ S;ρT

ρT
2
;Y = (π1 ∩ ρ1;S);ρT ∩ ρ1;R;πT = X

Y ;π = (π2 ∩ ρ2;ρ1;R) ∩ ρ2; (π1 ∩ ρ1;S); Y ;ρ = (π2 ∩ ρ2;ρ1;R); ∩ ρ2; (π1 ∩ ρ1;S)

Putting pieces together, we obtain

(R©< S) ; (P ©> Q) = (R;πT ∩ S;ρT); (π;P ∩ ρ;Q)

= ρT
1
;ρT

2
;Y ; (π;P ∩ ρ;Q) see above

= ρT
1
;ρT

2
; (Y ;π;P ∩ Y ;ρ;Q) since Y is univalent

= ρT
1
;ρT

2
;

[
{(π2 ∩ ρ2;ρ1;R) ∩ ρ2; (π1 ∩ ρ1;S); };P
∩ {(π2 ∩ ρ2;ρ1;R); ∩ ρ2; (π1 ∩ ρ1;S)};Q

]
see above

= ρT
1
;ρT

2
;

[
(π2 ∩ ρ2;ρ1;R);P ∩ ρ2; (π1 ∩ ρ1;S);

∩ (π2 ∩ ρ2;ρ1;R); ∩ ρ2; (π1 ∩ ρ1;S);Q
]

masking

= ρT
1
;ρT

2
;

[
(π2 ∩ ρ2;ρ1;R);P ∩ ρ2; (π1 ∩ ρ1;S);Q

]
trivial

= ρT
1
;

[
ρ1;R;P ∩ (π1 ∩ ρ1;S);Q

]
destroy and append twice, ρT

2
;π2 =

= R;P ∩ S;Q destroy and append twice, ρT
1
;π1 =
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That the two products requested are often met in practice may be seen from the discussion of
associativity in Def. 8.2 and Fig. 8.2.

It is the merit of Jules Desharnais, to have sharpened the previous result in the important
paper [Des99]; also to be retrieved in [Win98]. Now just one of the relations P,Q,R, S needs
to possess a vectorization in order to obtain equality.

7.5 Proposition. Let again be given the setting above. When the product π′, ρ′

π′ : A× C −→ A, ρ′ : A× C −→ C

exists, there will in addition to Prop. 7.3.i hold

(R©< S) ; (P ©> Q) = R;P ∩ S;Q.

Proof : Only one direction needs to be proved.

R;P ∩ S;Q = (R©< ) ;π′;P ∩ S;Q Prop. 7.2.iv
⊆
[

(R©< ) ∩ S;Q;P T;π′T
]
;

[
π′;P ∩ (R©< ) T

;S;Q
]

Dedekind rule
⊆ (R©< ) ;

[
π′;P ∩ (RT©> ) ;S;Q

]
monotony and transposition

⊆ (R©< ) ;

[
π′;P ∩ { (RT©> ) ;S;Q ∩ π′;P}

]
trivial

⊆ (R©< ) ;(π′;P ∩
{

(RT©> ) ;S ∩ π′;P ;QT
}

;Q) Dedekind rule and monotony
⊆ (R©< ) ;(π′;P ∩

{
π′;RT;S ∩ ρ′;S ∩ π′;P ;QT

}
;Q)

⊆ (R©< ) ;(π′;P ∩
{
π′; ∩ ρ′;S

}
;Q) trivial

⊆ (R©< ) ;(π′;P ∩ ( ©> S) ;Q) definition of join
⊆ (R©< ) ;(π′;P ∩ ( ©× S) ;ρ ;Q) Prop. 7.2.iv
⊆ (R©< ) ; ( ©× S) ;(ρ;Q ∩ ( ©× S) T

;π′;P ) Dedekind rule and monotony
⊆ (R©< ) ; ( ©× S) ;(π;P ∩ ρ;Q) Prop. 7.2.i
= (R©< ) ; ( ©× S) ; (P ©> Q) definition of join
= (R©< S) ; (P ©> Q) according to [Sch11] Prop. 7.5

π ρ

A

A B

B

×

C

D
R

S

P

Q

π

ρ

A C×

'

'

Fig. 7.3 The additional product in the proof of (R©< S) ; (P ©> Q) = R;P ∩ S;Q

The following proposition states that left residuation distributes over the strict fork.

7.6 Proposition. For relations typed A : W −→ X, B : X −→ Y, C : X −→ Z

A\ (B©< C) = (A\B ©< A\C )
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Proof : A\ (B©< C) = AT; (B©< C) = AT;B;πT ∩ C;ρT = AT; (B;πT ∪ C;ρT)

= AT; (B;πT ∪ C;ρT) = AT;B;πT ∪ AT;C;ρT = AT;B;πT ∩ AT;C;ρT = AT;B;πT ∩ AT;C;ρT

π ρ

×

X

ι κ

X Y+

Y

S

Z

U

VU

V

Q

R

P

syq S P( ), 

Fig. 7.4 Illustrating the addition theorem with P := ιT;Q;πT ∪ κT;R;ρT

An addition theorem, quite similar to the broadly known

sin(x+ y) = sinx · cos y + cosx · sin y,

holds for direct sum and direct product, cf. Fig. 7.4:

7.7 Proposition. Let be given any three relations Q : X −→ U , R : Y −→ V and S :
X+Y −→ Z. In addition, we consider the injections ι : X −→ X+Y , κ : Y −→ X+Y as well
as the projections π : U × V −→ U , ρ : U × V −→ V , generically given. Then the following
generalized addition theorem holds

syq(S, ιT;Q;πT ∪ κT;R;ρT) = syq(ι;S,Q);πT ∩ syq(κ;S,R);ρT.

In another notation, this looks as follows:

syq(S, ιT;Q;πT ∪ κT;R;ρT) = (syq(ι;S,Q)©< syq(κ;S,R))

Proof : In what follows, we abbreviate P := ιT;Q;πT ∪ κT;R;ρT.

syq(ι;S,Q);πT = syq(ι;S,Q;πT) = syq(ι;S, ι;P )

syq(κ;S,R);ρT = syq(κ;S,R;ρT) = syq(κ;S, κ;P )

syq(ι;S, ι;P ) ∩ syq(κ;S, κ;P ) = ST; ιT; ι;P ∩ ST; ιT; ι;P ∩ ST;κT;κ;P ∩ ST;κT;κ;P

= ST; ιT; ι;P ∩ ST; ιT; ι;P ∩ ST;κT;κ;P ∩ ST;κT;κ;P ι, κ are mappings

= ST; ιT; ι;P ∩ ST;κT;κ;P ∩ ST; ιT; ι;P ∩ ST;κT;κ;P shuffled

= ST; (ιT; ι ∪ κT;κ);P ∩ ST; (ιT; ι ∪ κT;κ);P

= ST;P ∩ ST;P = syq(S, P ) ι, κ form a direct sum

Now we relate pairs of subsets of two sets X, Y with subsets of the direct sum X + Y .
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Fig. 7.5 Converting subsets of a sum to pairs of subsets

In Prop. 7.8, it is demonstrated that 2X+Y is isomorphic to 2X × 2Y . In addition, it turns
out that ε+ : X + Y −→ 2X × 2Y satisfies the properties of a relational power, although it is
constructed differently. In largely the same sense, the mappings

syq(ι;ε′, εX) : 2X+Y −→ 2X and syq(κ;ε′, εY ) : 2X+Y −→ 2Y

establish 2X+Y as another direct product of 2X and 2Y . Since the direct product is uniquely
determined up to isomorphism, however, we are able to prove the isomorphism via the bijective
mapping ϕ.

Earlier, we have been scrupulous with regard to the existence of products; we should maintain
this here. Everything is fine, when ε′, π, ρ are available. We assume this to be the case. In
another model of relation algebra, however, π, ρ may not exist; then additional investigations
are necessary.

7.8 Proposition. Let arbitrary sets X, Y be given for which we consider their membership
relations εX : X −→ 2X , εY : Y −→ 2Y , the direct product 2X ×2Y of these powersets, as well
as the direct sum X + Y and its membership relation ε′ : X + Y −→ 2X+Y ; see Fig. 7.5. Then
the following hold

i) for the construct ε+ := ιT;εX ;πT ∪ κT;εY ;ρT

• ι;ε+ = εX ;πT ι;ε+;π = εX κ;ε+ = εY ;ρT κ;ε+;ρ = εY

• syq(ι;ε+, εX) = π syq(κ;ε+, εY ) = ρ

ii) for the construct ϕ := syq(ε′, ε+)

• ϕ = syq(ι;ε′, εX);πT ∩ syq(κ;ε′, εY );ρT, i.e. ϕ satisfies an addition theorem

• ϕ;π = syq(ι;ε′, εX) ϕ;ρ = syq(κ;ε′, εY )

• ϕ is a bijective mapping

• ε′;ϕ = ε+ ε+;ϕT = ε′

• syq(π;εTX , ε
T
+) = ι syq(ρ;εTY , ε

T
+) = κ

• ε+ satisfies the relational requirements of a membership relation.
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iii) for the construct Ω+ := ε+
T;ε+

• is an ordering.

• Ω+ = (ΩX©× ΩY )

• ϕ is an order isomorphism between the orderings

Ω′ := ε′T;ε′ : 2X+Y −→ 2X+Y and Ω+ : 2X × 2Y −→ 2X × 2Y .

Proof : i) We demonstrate the main sample cases:

ι;ε+ = ι; (ιT;εX ;πT ∪ κT;εY ;ρT) = ι; ιT;εX ;πT ∪ ι;κT;εY ;ρT = ;εX ;πT ∪ = εX ;πT

ι;ε+;π = εX ;πT;π = εX
syq(ι;ε+, εX) = syq(εX ;πT, εX) = π;syq(εX , εX) = π

ii) The first formula is an immediate consequence of the addition theorem Prop. 7.7. We have
to obey some care: Only εX , εY , ε

′ have been introduced as membership relations; ε+ is defined
differently but denoted similarly, since it will soon turn out to be one also.

Then we prove with the addition theorem

ϕ;π =
[
syq(ι;ε′, εX);πT ∩ syq(κ;ε′, εY );ρT

]
;π

= syq(ι;ε′, εX) ∩ syq(κ;ε′, εY );ρT;π
= syq(ι;ε′, εX) ∩ syq(κ;ε′, εY ); since π, ρ form a direct product
= syq(ι;ε′, εX) ∩ since syq(εY , . . .) is always surjective
= syq(ι;ε′, εX)

Now, we convince ourselves that ϕ is total, which follows with the preceding result from

ϕ; = ϕ;π; = syq(ι;ε′, εX); and the fact that εX is a membership

Univalency follows also with the addition theorem

ϕT;ϕ ⊆
[
π;syq(εX , ι;ε

′) ∩ ρ;syq(εY , κ;ε′)
]
;

[
syq(ι;ε′, εX);πT ∩ syq(κ;ε′, εY );ρT

]
⊆ π;syq(εX , ι;ε

′);syq(ι;ε′, εX);πT ∩ ρ;syq(εY , κ;ε′);syq(κ;ε′, εY );ρT

⊆ π;syq(εX , εX);πT ∩ ρ;syq(εY , εY );ρT ⊆ π;πT ∩ ρ;ρT =

Even simpler and without the addition theorem we get ϕ;ϕT ⊆ syq(ε′, ε′) ⊆ , so that ϕ is
injective. Finally, ϕ is surjective since ε′ is a membership relation.

ε′;ϕ = ε′;syq(ε′, ε+) = ε+ since ε′ is a membership relation
ε+;ϕT = ε′;ϕ;ϕT = ε′ since ϕ is already established as a bijective mapping

syq(π;εTX , ε
T
+) = syq(π;εTX , ϕ

T;ε′T) = syq(ϕ;π;εTX , ε
′T) since ϕ is a bijective mapping

= syq(syq(ι;ε′, εX);εTX , ε
′T) see above

= syq(ε′T; ιT, ε′T)
= ι;syq(ε′T, ε′T)

= ι; (ε′;ε′T ∩ ε′;ε′T)
= ι; (Ω′T ∩ Ω′) = ι; = ι

It is relatively easy to prove that the differently constructed ε+ is a membership relation:
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syq(ε+, ε+) = syq(ε′;ϕ, ε′;ϕ) = ϕT;syq(ε′, ε′;ϕ) = ϕT;syq(ε′, ε′);ϕ = ϕT; ;ϕ = ϕT;ϕ =
syq(ε+, U) = syq(ε′;ϕ,U) = ϕT;syq(ε′, U) is surjective since ε′ is a membership

according to [Sch11] Prop. 8.18.

iii) Ω+ is — consequently — indeed an ordering. It satisfies

(ΩX©× ΩY ) = π;εTX ;εX ;πT ∩ ρ;εTY ;εY ;ρT = π;εTX ;εX ;πT ∩ ρ;εTY ;εY ;ρT

= εT+; ιT; ι;ε+ ∩ εT+;κT;κ;ε+ Prop. 7.8.i
= εT+; ιT; ι;ε+ ∩ εT+;κT;κ;ε+ ι, κ are mappings
= εT+; ιT; ι;ε+ ∪ εT+;κT;κ;ε+

= εT+; (ιT; ι ∪ κT;κ);ε+ = εT+;ε+ ι, κ form a direct sum
= Ω+

First direction of the isomorphism proposition, using that ϕ is a bijective mapping:

Ω′;ϕ = ε′T;ε′;ϕ = ε′T;ε′;ϕ = ε′T;ε+ = ϕ;εT+;ε+ = ϕ;εT+;ε+ = ϕ;Ω+

Second direction:

Ω+;ϕT = εT+;ε+;ϕT = εT+;ε+;ϕT = εT+;ε′ = ϕT;ε′T;ε′ = ϕT;ε′T;ε′ = ϕT;Ω′

8 Binary operations

We now attempt to study also binary operations on a set relationally. This will already allow
a very basic look on group theory. It will turn out that such elements as the unit, e.g., will be
points. A point resembles the classic element of set theory. In the relational setting, a point is
a row-constant, injective, and surjective relation x, i.e, it satisfies

x; = x, x;xT ⊆ , ;x = .

We assume a direct product with projections π, ρ : X × X −→ X and in addition a binary
mapping A : X ×X −→ X. A first preparatory observation concerns what one might consider
as coretract or section in a category, here simply a left-inverse of the projection ρ.

8.1 Proposition. If x is any point, then f := (ρ ∩ π;x; )T is a mapping. It satisfies f ;ρ =
and ρ ⊆ f\ .

Proof : Since x is row-constant and injective, we have univalence

fT;f = (ρ ∩ π;x; ); (ρ ∩ π;x; )T ⊆ ρ;ρT ∩ π;x; ;
T
;xT;πT ⊆ ρ;ρT ∩ π;πT =

as well as totality

f ; = (ρT ∩ T
;xT;πT); = ρT; ( ∩ π;x; ) = ρT;π;x; = ;x; = since x is a point.

f ;ρ = (ρT ∩ ;xT;πT);ρ = ∩ ;xT;πT;ρ = ∩ ;xT; = ∩ =

ρ ⊆ f\ = fT; ⇐⇒ fT; ⊆ ρ ⇐⇒ f ;ρ ⊆ ⇐⇒ True
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table A relation A ρ fT

Fig. 8.1 Binary map as table and as relation, projection ρ and transposed mapping f for point c

Given x, we map with f every y to the pair (x, y). By symmetry, g := (π ∩ ρ;x; )T is also a
mapping; it satisfies g;π = and π = g\ .

8.2 Definition. Given this setting, we define as follows:

i) P := π;ρT ∩ ρ;πT flips components of a pair.
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ii) A commutative :⇐⇒ P ;A = A.

iii) The shuffling for the associative law is achieved by one version of the following

T := π′;π;πT
1 ∩ π′;ρ;πT;ρT

1 ∩ ρ′;ρT;ρT
1 or, grouped suitably,

= π′;π;πT
1 ∩ (π′;ρ;πT ∩ ρ′;ρT);ρT

1 = (π′;π©< (ρ©× ) )

= π′; (π;πT
1 ∩ ρ;πT;ρT

1) ∩ ρ′;ρT;ρT
1 = ( ( ©× πT) ©> ρT;ρT

1)

iv) A associative :⇐⇒ (A©× X) ;A = T ; ( X©× A) ;A

The associativity condition is here given in an acceptably concise form; written down without
sufficient care, it appears considerably longer.

8.3 Lemma. Several identities for P, T — correct typing assumed.

i) P, T are bijective mappings.

ii) P T = P

iii) P ; (R©× S) = (S©× R) ;P ′

iv) P ; (R©> S) = (S©> R) (R©< S) ;P ′ = (S©< R)

v) T ; (Q©× (R©× S) ) = ( (Q©× R) ©× S) ; T ′

vi) (Q©< (R©< S) ) = ( (Q©< R) ©< S) ; T ′

Proof : iii) P ; (R©× S) = (π;ρT ∩ ρ;πT); (π;R;π′T ∩ ρ;S;ρ′T) by definition
= (π;ρT ∩ ρ;πT);π;R;π′T ∩ (π;ρT ∩ ρ;πT);ρ;S;ρ′T since P is univalent
= (π;ρT;π ∩ ρ);R;π′T ∩ (π ∩ ρ;πT;ρ);S;ρ′T Prop. 7.2.ii
= ρ;R;π′T ∩ π;S;ρ′T = π;S;ρ′T ∩ ρ;R;π′T π, ρ are projections

Similarly from the other side:
(S©× R) ;P ′

= (π;S;π′T ∩ ρ;R;ρ′T); (π′;ρ′T ∩ ρ′;π′T)
= π;S;π′T; (π′;ρ′T ∩ ρ′;π′T) ∩ ρ;R;ρ′T; (π′;ρ′T ∩ ρ′;π′T)
= π;S; (ρ′T ∩ π′T;ρ′;π′T) ∩ ρ;R; (ρ′T;π′;ρ′T ∩ π′T)
= π;S;ρ′T ∩ ρ;R;π′T

iv) P ; (R©> S) = (π;ρT ∩ ρ;πT); (π;R ∩ ρ;S) by definition
= (π;ρT ∩ ρ;πT);π;R ∩ (π;ρT ∩ ρ;πT);ρ;S since P is univalent
= (π;ρT;π ∩ ρ);R ∩ (π ∩ ρ;πT;ρ);S Prop. 7.2.ii
= ρ;R ∩ π;S = π;S ∩ ρ;R π, ρ are projections
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π ρ

×XX

X

×XX ×X( )

´π
ρ ´

A

×XX( )X×

π

ρ

T





T =

(1
,(

1
,1

))
(2

,(
1,

1)
)

(1
,(

2
,1

))
(3

,(
1
,1

))
(2

,(
2
,1

))
(1

,(
1,

2)
)

(3
,(

2
,1

))
(2

,(
1
,2

))
(1

,(
3
,1

))
(3

,(
1
,2

))
(2

,(
3
,1

))
(1

,(
2
,2

))
(3

,(
3
,1

))
(2

,(
2
,2

))
(1

,(
1
,3

))
(3

,(
2
,2

))
(2

,(
1
,3

))
(1

,(
3
,2

))
(3

,(
1
,3

))
(2

,(
3
,2

))
(1

,(
2
,3

))
(3

,(
3
,2

))
(2

,(
2
,3

))
(1

,(
3
,3

))
(3

,(
2
,3

))
(2

,(
3
,3

))
(3

,(
3
,3

))

((1,1),1)
((2,1),1)
((1,1),2)
((1,2),1)
((2,1),2)
((1,1),3)
((3,1),1)
((1,2),2)
((2,1),3)
((2,2),1)
((3,1),2)
((1,2),3)
((1,3),1)
((2,2),2)
((3,1),3)
((3,2),1)
((1,3),2)
((2,2),3)
((2,3),1)
((3,2),2)
((1,3),3)
((3,3),1)
((2,3),2)
((3,2),3)
((3,3),2)
((2,3),3)
((3,3),3)



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Fig. 8.2 Illustrating the associative shuffling

v) similar to (iii) and (vi)

vi) ( (Q©< R) ©< S) ; T = ( (Q©< R) ©< S) ; ( ( ©× πT) ©> ρT;ρT
1) by definition of T

= (Q©< R) ; ( ©× πT) ∩ S;ρT;ρT
1 Prop. 7.3.iii since ( ©× πT) and ρT;ρT

1 are both injective
= (Q; ©< R;πT) ∩ S;ρT;ρT

1

= Q;πT
1 ∩ R;πT;ρT

1 ∩ S;ρT;ρT
1

= Q;πT
1 ∩ (R;πT ∩ S;ρT);ρT

1

= Q;πT
1 ∩ (R©< S) ;ρT

1

= (Q©< (R©< S) )
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Several identities are satisfied for T :

T ;π1 = π′;π, T ;ρ1 = π′;ρ;πT ∩ ρ′;ρT = (ρ©× )
π′T;T = π;πT

1 ∩ ρ;πT;ρT
1 = ( ©× πT) , ρ′T;T = ρT;ρT

1

There follow characterizations of elements as being neutral, being inverses, etc. One will observe
in (i), that the possibility of left-inversion of x, (i.e. ∀y : ∃p : πpx ∧Apy, ∀y : ∃z : x+ z = y) is
defined without mentioning the neutral element. A left-invertible element is characterized by
the fact that the corresponding row of the composition table for A contains all the elements in
some sequence.

8.4 Definition. Let be given the binary mapping A as before.

i) πT;A; the set of elements that may be left-inverted, i.e., {x | ∀y : ∃p : πpx ∧ Apy}

ii) ρT;A; the set of elements that may be right-inverted, i.e., {y | ∀x : ∃p : ρpy ∧ Apx}

iii) A allows left-inversion :⇐⇒ πT;A =

iv) A allows right-inversion :⇐⇒ ρT;A =

To identify a left-invertible point e (i.e. a transposed map) means via shunting also

e ⊆ πT;A; ⇐⇒ ⊆ AT;π;e ⇐⇒ e; ⊆ πT;A,

and relates (i) with (iii). In Fig. 8.3, for the element a, e.g., there is no element x such that
Aax = e, the fifth.

A =

a b c d e f g

a

b

c

d

e

f

g



3 2 1 4 1 6 7

1 2 5 4 3 6 7

1 3 2 4 2 6 7

1 5 4 7 4 3 6

1 2 5 4 5 6 7

1 3 6 5 2 4 7

1 2 7 4 7 6 3


πT;A; =

a
b
c
d
e
f
g



0
1
0
0
0
1
0


AT;(ρ ∩ π;f ; ) =

a b c d e f g

a
b
c
d
e
f
g



1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1



Fig. 8.3 A mapping with elements b, f posessing all left-inverses and left-division by f

Whenever one takes a point i ⊆ πT;A; , the construct f := (ρ∩ π;i; )T is a mapping, according
to Prop. 8.1. As an example, left-division by f is shown as a mapping AT; (ρ ∩ π;f ; ) on the
right: Af b = c =⇒ f\c = b or else Af d = e =⇒ f\e = d.

Invariant elements commute with every other one. In the table representation, row and column
concerning this element are equal.

8.5 Definition. Let be given the binary mapping A as before. Then
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πT; [A ∩ P ;A]; = ρT; [A ∩ P ;A]; = π\([A ∩ P ;A]; ) is the set of invariant elements,

i.e., those x with ∀y : Axy = Ayx

A =
a b c d e f g

a

b

c

d

e

f

g



3 2 1 4 5 6 7

1 3 2 4 5 6 7

1 2 3 4 5 6 7

1 5 4 7 2 3 6

1 2 5 4 3 6 7

1 3 6 5 2 4 7

1 2 7 4 5 6 3



a
b
c
d
e
f
g



1
0
1
0
0
0
0


= πT; [A ∩ P ;A];

Fig. 8.4 A hardly interesting binary mapping and its invariant elements

In case A is a group operation, the invariant elements together form the center of the group.

Next interesting are left- resp. right-neutral elements. The intention for a right-neutral element
nr : X −→ 1l is that application of A to any pair (x, nr) with x chosen arbitrarily results in x.
In the relational setting with points x, nr, this reads

AT; (x©> nr) = AT; (π;x ∩ ρ;nr); = x.

When working in a group theory environment, nr is usually called zero or unit element, depend-
ing on whether one works in an additive or multiplicative setting. A point-free formulation for
all x simultaneously is

AT; ( ©> nr; 1lX) = AT; (π; X ∩ ρ;nr; 1lX); = X .

This is a condition nr has to satisfy. Concentrating on “⊆” alone, the following equivalences
make it more explicit:

AT; (π; ∩ ρ;nr; ) ⊆ ⇐⇒ π ∩ ρ;nr; ⊆ A ⇐⇒ ρ;nr; ⊆ A ∪ π
⇐⇒ ρT; (A ∩ π) ⊆ nr; ⇐⇒ nr; ⊆ ρT; (A ∩ π)

The nr thus characterized may in arbitrarily chosen cases uninterestingly be equal to for
which ρT;π = gives a hint. We assume, however, a point e ⊆ nr and recall that according to
Prop. 8.1 g := (π ∩ ρ;e; )T is a map. From

AT;gT = AT; (π ∩ ρ;e; ) ⊆ AT; (π ∩ ρ;nr; ) ⊆
we then derive equality: The mapping g;A contained in the mapping means that they are
equal.

8.6 Definition. Let be given the binary mapping A as before. We call any point e in

ρT; (A ∩ π) a right-neutral element,

πT; (A ∩ ρ) a left-neutral element,

ρT; (A ∩ π) ∩ πT; (A ∩ ρ) a neutral element.
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In an alternative approach, we might have considered

δr := X×X ∩ A;πT : X ×X −→ X ×X
i.e., all the pairs with result and left component equal. Then one would look for points e in

nr := ρT;δr; X×X,X : X −→ X,

indicating right-neutral elements if any, and then giving rise to forming of right-inverses

ir := πT; (A;e; ∩ ρ) = rel(A;e; ) : X −→ X.

With the standard methods, it is possible to prove

AT; (ir©> ) = AT; (π; ir ∩ ρ) ⊆ e;

⇐⇒ A;e; ⊆ π; ir ∩ ρ = π; ir ∪ ρ
⇐⇒ = A;e; ∪ π; ir ∪ ρ = A;e; ∪ π; ir ∪ ρ since A is a map

⇐⇒ π; ir ⊆ A;e; ∪ ρ
⇐⇒ πT;A;e; ∪ ρ ⊆ ir

⇐⇒ ir ⊆ πT; (A;e; ∩ ρ) = rel(A;e; ) = rel(A;e; ) due to Prop. 6.4.vii

We have to show equality AT; (ir©> ) = AT; (π; ir ∩ ρ) = e; with a separate argument, based
on the fact that e is a neutral point, or else, a transposed mapping. It suffices, according to
Prop. 5.2.iii of [Sch11], when AT; (π; ir ∩ ρ) turns out to be surjective

;AT;(π; ir ∩ ρ) = ;(π; ir ∩ ρ) = ;ρT;(π; ir ∩ ρ) = ;(ρT;π; ir ∩ ) = ;( ; ir ∩ ) = , since

; ir = ;πT; (A;e; ∩ ρ) = ; (A;e; ∩ ρ) = ( ∩ ;eT;AT);ρ = ;eT;AT;ρ = ;eT; =

when A allows right-inversion and e is a point.

As an example, we show the alternating group A3 as well as a constant binary mapping.

[1
,2

,3
]

[2
,3

,1
]

[3
,1

,2
]

[1,2,3]

[2,3,1]

[3,1,2]


1 2 3

2 3 1

3 1 2



([
1,

2,
3]

,[
1,

2,
3]

)
([

2,
3,

1]
,[

1,
2,

3]
)

([
1,

2,
3]

,[
2,

3,
1]

)
([

3,
1,

2]
,[

1,
2,

3]
)

([
2,

3,
1]

,[
2,

3,
1]

)
([

1,
2,

3]
,[

3,
1,

2]
)

([
3,

1,
2]

,[
2,

3,
1]

)
([

2,
3,

1]
,[

3,
1,

2]
)

([
3,

1,
2]

,[
3,

1,
2]

)

([1,2,3],[1,2,3])
([2,3,1],[1,2,3])
([1,2,3],[2,3,1])
([3,1,2],[1,2,3])
([2,3,1],[2,3,1])
([1,2,3],[3,1,2])
([3,1,2],[2,3,1])
([2,3,1],[3,1,2])
([3,1,2],[3,1,2])



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



[1
,2

,3
]

[2
,3

,1
]

[3
,1

,2
]

[1,2,3]
[2,3,1]
[3,1,2]

(
1 1 1
0 0 0
0 0 0

) [1
,2

,3
]

[2
,3

,1
]

[3
,1

,2
]

[1,2,3]
[2,3,1]
[3,1,2]

(
1 0 0
0 0 1
0 1 0

)

A δr nr ir

Fig. 8.5 Existence of right-neutral elements

Here also the forming of inverses ir is indicated. Since nr in Fig. 8.6 is not row-constant, it
cannot contain a point, so that there is no right-neutral element.
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a b c d

a

b

c

d


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


(a

,a
)

(b
,a

)
(a

,b
)

(c
,a

)
(b

,b
)

(a
,c

)
(d

,a
)

(c
,b

)
(b

,c
)

(a
,d

)
(d

,b
)

(c
,c

)
(b

,d
)

(d
,c

)
(c

,d
)

(d
,d

)

(a,a)
(b,a)
(a,b)
(c,a)
(b,b)
(a,c)
(d,a)
(c,b)
(b,c)
(a,d)
(d,b)
(c,c)
(b,d)
(d,c)
(c,d)
(d,d)



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



a b c d

a
b
c
d

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0



a b c d

a
b
c
d

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0



A δr nr ir

Fig. 8.6 Non-existence of right-neutral elements

Right- or left-neutral elements may exist or not. In Fig. 8.7 we see what it means to be
right-neutral: The corresponding two columns correspond to the row-inscriptions.

A =

a b c d e f g

a

b

c

d

e

f

g



3 2 1 4 1 6 7

1 3 2 4 2 6 7

1 2 3 4 3 6 7

1 5 4 7 4 3 6

1 2 5 4 5 6 7

1 3 6 5 6 4 7

1 2 7 4 7 6 3



a
b
c
d
e
f
g



0
0
1
0
1
0
0


= nright

a b c d e f g
a
b
c
d
e
f
g



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 1 0 1 0 0 0
0 0 0 0 0 0 1


a b c d e f g

a
b
c
d
e
f
g



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0



Fig. 8.7 Binary map without left- but two right-neutrals c, e and right-inverses wrt. to c and e

A left-neutral element in analogy, gives rise to a row identical with the column numbering.
From this fact it will become clear that there can be at most one point as neutral element e.
The aforementioned transition to inverses

i := πT(A;e ∩ ρ).

will then be a bijective mapping, which it was neither for c nor for e in Fig. 8.7.

8.7 Proposition. For some binary mapping A we consider the left- as well as right-neutral
element sets nl, nr. If both contain points el, er, these will be equal.

Proof : We apply the result obtained before in two directions

AT; (π;Y ∩ ρ;er; ) = AT; (π ∩ ρ;er; );Y = AT;gT;Y = ;Y = Y ,

and correspondingly

AT; (π;el; ∩ ρ;Z) = AT; (ρ ∩ π;el; );Z = AT;fT;Z = ;Z = Z.
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Therefore

el; = AT; (el; ©> er; ) = AT; (π;el; ∩ ρ;er; ) = er;

Should there exist more than one in either one of nl, nr they will thus all be equal.

π ρ

×XX

×XX

X

×X( )

´π

ρ ´

MJ

Fig. 8.8 Illustrating distributivity

Also the concept of distributivity may be formulated relationally in case there are two binary
mappings J , M , as, e.g., in a lattice the join and meet.

8.8 Definition. Given two binary mappings, we say that J distributes over M , when

( (π©× ) ;J ©< (ρ©× ) ;J ) ;M = (M ©× ) ;J ,

or else, when Ĵ ; M = (M ©× ) ;J as we will later slightly abbreviate.

One might also demand in blown-up form resembling (a ∨ c) ∧ (b ∨ c) = (a ∧ b) ∨ c[
(π′;π;πT ∩ ρ′;ρT); J ;πT ∩ (π′;ρ;πT ∩ ρ′;ρT); J ;ρT

]
; M = (π′; M ;πT ∩ ρ′;ρT); J .

9 Boolean algebras

A note seems necessary concerning Boolean algebras; here supported with visualization in a
concrete example. The peculiar recursive and fractal symmetries of these examples often give
additional insight — and have already triggered secretaries to stitch such patterns for a pot
cloth.

Most people work with subsets U ⊆ X, while we distinguish between a subset in this standard
form and the corresponding element e in the powerset, considered as a point. The two are
related via the membership relation ε as shown in Fig. 9.1 together with the powerset ordering
Ω = εT;ε.

Theoreticians frequently consider Boolean algebras “with signature 〈X, · ,+,−, 0 , 1 〉”. Fol-
lowing their idea, we find on X the operations ∩, ∪, , , .
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U = ε;e e = syq(ε, U)
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
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0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
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



0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0


Fig. 9.1 Subset U and corresponding point e in the powerset via ε,Ω

There is, however, a second “lifted” form, for which the elements are taken from 2X with
corresponding operations consisting of

M , J , N, (εT; =) syq(ε, ), (εT; =) syq(ε, ),

as defined below. Easiest to observe are the 0-ary operators or elements εT; ≈ 0 , εT; ≈ 1
for which obviously, looking at Fig. 9.1,

= ε;εT; = ε;syq(ε, ), = ε;εT; = ε;syq(ε, ).

Next we study the unary operator

N := syq(ε, ε) N : 2X −→ 2X ,

visualized in Fig. 9.2, for which we show in advance

ε;N = ε;syq(ε, ε) = ε ε;N = ε;syq(ε, ε) = ε;syq(ε, ε) = ε

⊆ Ω = εT;ε = εT;ε;N =⇒ N ⊆ εT;ε.

Multiplying a relation with N from the left flips this relation upside/down, while multiplying
from the right side flips it left/right. Sometimes, we have to apply N to both sides of a pair,
for which purpose we also introduce

N := (N©× N) = π;N ;πT ∩ ρ;N ;ρT : 2X × 2X −→ 2X × 2X .

We identify here disjointness εT;ε which is shown in Fig. 9.2. It looks as if the powerset ordering
Ω of Fig. 9.1 were rotated by an angle of −90 degrees, which may more mathematically be
expressed as Ω;N = εT;ε; this time flipping left/right.
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 9.2 Negation N and disjointness εT;ε = Ω;N in the powerset

At last, we consider the binary operations meet M and join J which we mainly obtain special-
izing the result of Prop. 7.8 to the case X = Y and integrate them into the relational mechanism
using the least upper, resp. greatest lower, bound taken rowwise according to [Sch11] Prop. 9.10.

ε

π ρ

X
2

X
2 × X

2

X

ι κ

X X+

2
X X+

ε ϕ

J
M

ε

Ώ

Ω+

+

´

N

N
Ω

Fig. 9.3 Converting subsets of a sum to products of subsets with join J and meet M

A first step is the investigation of the bijection ϕ of Figs. 9.3 and 9.4. We show the relation
indicating with >a, respectively a< whether an element has been injected to the left or to the
right. Only when restricting to somehow coherent visualizations of 2X+X and 2X × 2X , this
will show a ‘diagonal’.

9.1 Proposition. We assume the setting of Prop. 7.8, however with X = Y , so that additional
formulae may be formulated including join and meet.

i) J = syq(ι;ε+ ∪ κ;ε+, ε) = syq(ε;πT ∪ ε;ρT, ε) = lubRΩ(π ∪ ρ) = syq(ε; [π ∪ ρ]T, ε)

= syq( (ε©< ε) , ε) = syq(ε;πT ∩ ε;ρT, ε)
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ii) M = syq(ι;ε+ ∩ κ;ε+, ε) = syq(ε;πT ∩ ε;ρT, ε) = glbRΩ(π ∪ ρ) = syq(ε; [π ∪ ρ]T, ε)

= syq( (ε©< ε) , ε)

iii) ε; J T = ι;ε+ ∪ κ;ε+ = ε;πT ∪ ε;ρT

iv) ε; M T = ι;ε+ ∩ κ;ε+ = ε;πT ∩ ε;ρT = (ε©< ε)
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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
Fig. 9.4 Relation ϕ converting subsets of a sum to products of subsets for X := {a, b}

Proof : i) We formulate the join J as a least upper bound and recall Prop. 9.10 of [Sch11]

J T = lubΩ([π ∪ ρ]T) = syq(ε, ε; [π ∪ ρ]T) = syq(ε, ε;πT ∪ ε;ρT) = syq(ε, ι;ε+ ∪ κ;ε+)

ii) M T = glbΩ([π ∪ ρ]T) = syq(ε, ε; [π ∪ ρ]T) = syq(ε, ε;πT ∩ ε;ρT) = syq(ε, ι;ε+ ∩ κ;ε+)

M = glbRΩ(π ∪ ρ) by definition
=
[
glbΩ([π ∪ ρ]T)

]T
by definition

=
[
syq(ε, ε; [π ∪ ρ]T)

]T
Prop. 9.10 of [Sch11]

= syq(ε;πT ∪ ε;ρT, ε)
= syq(ε;πT ∪ ε;ρT, ε) Prop. 8.10.i of [Sch11]
= syq(ε;πT ∩ ε;ρT, ε)
= syq(ε;πT ∩ ε;ρT, ε)
= syq(ε;πT ∩ ε;ρT, ε)

J = lubRΩ(π ∪ ρ) by definition
=
[
lubΩ([π ∪ ρ]T)

]T
by definition

=
[
syq(ε, ε; [π ∪ ρ]T)

]T
Prop. 9.10 of [Sch11]

= syq(ε;πT ∪ ε;ρT, ε)

iv) M ;εT =
[
ε; M T

]T
=
[
ε;syq(ε, ε;πT ∩ ε;ρT)

]T
=
[
ε;πT ∩ ε;ρT

]T
= π;εT ∩ ρ;εT = (ε©> ε)

iii) The proof for J ;εT is established in a similar way.
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We convince us formally that M is commutative:

P ; M = P ;syq( (ε©< ε) , ε) by definition
= syq( (ε©< ε) ;P, ε) since P is a bijective mapping
= syq(ε;πT;P ∩ ε;ρT;P, ε)
= syq(ε;ρT ∩ ε;πT, ε)
= syq( (ε©< ε) , ε) = M

A trivial remark is in order, namely that a pair with coinciding first and second component
will have precisely this coinciding set as its meet, i.e.

π ∩ ρ ⊆ M or ( ©> ) ⊆ M .

The proof can also be carried out in a fully formal way:

⇐⇒ π ∩ ρ ⊆ syq(ε;πT ∩ ε;ρT, ε)
⇐⇒ ε;πT ∩ ε;ρT

T
;ε ∪ (ε;πT ∩ ε;ρT)T;ε ⊆ π ∪ ρ

⇐⇒ (π ∩ ρ);εT ⊆ (ε;πT ∩ ε;ρT)T and (π ∩ ρ);εT ⊆ ε;πT ∩ ε;ρT
T

⇐⇒ (π ∩ ρ);εT ⊆ π;εT ∩ ρ;εT and (π ∩ ρ);εT ⊆ π;εT ∪ ρ;εT = π;εT ∪ ρ;εT which is true.

Some other helpful formulae:

9.2 Proposition.

i) N ;π = π;N, N ;ρ = ρ;N, N ; M = J ;N, N ; J = M ;N

ii) M T;π = Ω M T;ρ = Ω

iii) J T;π = ΩT J T;ρ = ΩT

iv) M ;ΩT = π;ΩT ∩ ρ;ΩT = (ΩT©> ΩT) J ;Ω = π;Ω ∩ ρ;Ω = (Ω©> Ω)

v) (ε;πT ∩ ε;ρT); M = ε (ε;πT ∪ ε;ρT); J = ε variant form (ε©< ε) ;M = ε

vi) (ε©< ε) ; (Ω©× Ω) = (ε©< ε)

vii) M T;syq((ε;πT ∩ ε;ρT), X) = syq((ε;πT ∩ ε;ρT); M , X)

M T;syq( (ε©< ε) , X) = syq( (ε©< ε) ;M , X)

viii) π;Ω ∩ ρ ⊆ J ρ;Ω ∩ π ⊆ J or in variant form

(Ω©> ) ⊆ J ( ©> Ω) ⊆ J

Proof : i) Since N,N are mappings, we may apply Prop. 7.2.ii to the first two and then proceed
with, e.g.

N ; M ;N = N ;syq(ε;πT ∩ ε;ρT, ε);N = syq([ε;πT ∩ ε;ρT];N T, ε;N)
= syq(ε;πT;N T ∩ ε;ρT;N T, ε) = syq(ε;πT;N ∩ ε;ρT;N , ε)
= syq(ε;N ;πT ∩ ε;N ;ρT, ε) = syq(ε;πT ∩ ε;ρT, ε)
= syq(ε;πT ∩ ε;ρT, ε) = syq(ε;πT ∪ ε;ρT, ε) = syq(ε;πT ∪ ε;ρT, ε) = J

ii) M T = syq(ε, ε;πT ∩ ε;ρT) = εT; (ε;πT ∩ ε;ρT) ∩ εT;ε;πT ∩ ε;ρT
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= εT; (ε;πT ∩ ε;ρT) ∩ εT;ε;πT ∩ εT;ε;ρT = εT; (ε;πT ∩ ε;ρT) ∩ Ω;πT ∩ Ω;ρT

Now

M T;π =
[
εT; (ε;πT ∩ ε;ρT) ∩ Ω;πT ∩ Ω;ρT

]
;π

=
[
Ω;πT ∩

{
εT; (ε;πT ∩ ε;ρT) ∩ Ω;ρT

}]
;π = Ω ∩

{
εT; (ε;πT ∩ ε;ρT) ∩ Ω;ρT

}
;π = Ω ∩ = Ω

since{
εT; (ε;πT ∩ ε;ρT) ∩ Ω;ρT

}
;π ⊇

{
εT;ε;ρT ∩ Ω;ρT

}
;π =

{
εT;ε;ρT ∩ Ω;ρT

}
;π =

{
εT;ε ∩ Ω

}
;ρT;π

=
{

ΩT ∩ Ω
}

;ρT;π = ; =

iii) J T;π = N ; M T;N ;π = N ; M T;π;N = N ;Ω;N = N ;εT;ε;N = N ;εT;ε;N = εT;ε = εT;ε = ΩT

iv) From Prop. 9.1.iv, we have M ;εT = π;εT ∩ ρ;εT. Negation and multiplication with ε from
the right side gives

M ;εT;ε = π;εT;ε ∪ ρ;εT;ε
⇐⇒ M ;εT;ε = π;εT;ε ∩ ρ;εT;ε
⇐⇒ M ;εT;ε = π;εT;ε ∩ ρ;εT;ε
⇐⇒ M ;ΩT = π;ΩT ∩ ρ;ΩT meaning the intersection of lower cones

Alternative proof:

Ω; M T = Ω;syq(ε, (ε©< ε) ) = εT;ε;syq(ε, (ε©< ε) )

= εT;ε;syq(ε, (ε©< ε) ) since every syq(ε, . . .) is a transposed mapping

= εT; (ε©< ε) = ε\ (ε©< ε) = (ε\ε ©< ε\ε ) due to Prop. 7.6
= (Ω©< Ω)

v) (ε;πT ∩ ε;ρT); M = (ε;πT ∩ ε;ρT);syq(ε;πT ∩ ε;ρT, ε) = ε,

since M is surjective according to Prop. 9.4.ii and [Sch11] 8.12.iii; for J similarly.

vi) The following is shown in two steps:

(ε©< ε) ; (Ω©× Ω) = (ε;πT ∩ ε;ρT); (π;Ω;πT ∩ ρ;Ω;ρT)
⊆ ε;πT;π;Ω;πT ∩ ε;ρT;ρ;Ω;ρT isotony
⊆ ε;Ω;πT ∩ ε;Ω;ρT π, ρ are univalent
= ε;πT ∩ ε;ρT = (ε©< ε) since ε;Ω = ε

Short alternative proof:

(ε©< ε) ; (Ω©× Ω) ⊆ (ε;Ω©< ε;Ω) = (Ω©< Ω) using Prop. 7.3.i

On the other hand side

(Ω©× Ω) = π;Ω;πT ∩ ρ;Ω;ρT ⊇ π;πT ∩ ρ;ρT = ,

so that also

(ε©< ε) ; (Ω©× Ω) ⊇ (ε©< ε) ; = (ε©< ε) .

vii) We apply Prop. 8.18 of [Sch11] and, therefore, prove just

(ε;πT ∩ ε;ρT); M ; M T = (ε;πT ∩ ε;ρT);syq(ε;πT ∩ ε;ρT, ε); M T = ε; M T = (ε;πT ∩ ε;ρT)

viii) π;Ω ∩ ρ; = π;Ω ∩ ρ; (Ω ∩ ΩT) = π;Ω ∩ ρ;Ω ∩ ρ;ΩT

= J ;Ω ∩ ρ;ΩT due to (iv)
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⊆ J ;Ω ∩ J ;ΩT = J ;(Ω ∩ ΩT) = J since ρ;ΩT ⊆ J ;ΩT ⇐⇒ J T;ρ;ΩT = ΩT;ΩT ⊆ ΩT

Of course, the traditional reasoning with orderings, e.g., a ≤ c, a ≤ d =⇒ a ≤ c ∩ d, assumes
another shape.

9.3 Proposition. i) For points a, c, d we have

a ⊆ Ω;c
a ⊆ Ω;d

=⇒ a ⊆ Ω; M T; (c©> d) = (Ω©< Ω) ; (c©> d)

ii) For points b, c, d we have

b ⊆ ΩT;c
b ⊆ ΩT;d

=⇒ b ⊆ ΩT; J T; (c©> d) = (ΩT©< ΩT) ; (c©> d)

Proof : i) M T; (c©> d) = syq(ε, (ε;πT ∩ ε;ρT)); (π;c ∩ ρ;d) by definition
= syq(ε, (ε;πT ∩ ε;ρT); (π;c ∩ ρ;d)) since (π;c ∩ ρ;d) is a point
= syq(ε, ε;πT; (π;c ∩ ρ;d) ∩ ε;ρT; (π;c ∩ ρ;d)) again since (π;c ∩ ρ;d) is a point!
= syq(ε, ε; (c ∩ πT;ρ;d) ∩ ε; (ρT;π;c ∩ d))
= syq(ε, ε; (c ∩ ) ∩ ε; ( ∩ d))
= syq(ε, ε;c ∩ ε;d) =: s, which is a point!

Now, we may continue

Ω; M T; (c©> d) = Ω;s = εT;ε;s = εT;ε;s = εT;ε;syq(ε, ε;c ∩ ε;d) = εT;ε;c ∩ ε;d
= εT; (ε;c ∪ ε;d) = εT;ε;c ∪ εT;ε;d = εT;ε;c ∩ εT;ε;d = εT;ε;c ∩ εT;ε;d = Ω;c ∩ Ω;d ⊇ a

Short alternative proof:

Ω; M T; (c©> d) = (Ω©< Ω) ; (c©> d) = Ω;c ∩ Ω;d Prop. 7.3.iii

ii) is proved in a similar way.

One will understand Prop. 9.2.iv when interpreting it with cone intersection: Lower cone of
a meet means intersecting the lower cones of the projections. Upper cone of the join is the
intersection of the upper cones of the projections. Prop. 9.2.i resembles the De Morgan rule.

9.4 Proposition. Given any direct product with projections π, ρ : X ×X −→ X, and meet-
or join-forming M , J ,

i) the construct p := π ∩ ρ is univalent and surjective,

ii) meet-forming M and join-forming J are surjective mappings,

iii) concerning meet- and join-forming, J distributes over M ,

iv) meet-forming M is a homomorphism and, even stronger, (Ω©× Ω) ;M = M ;Ω.
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Proof : i) We use that the direct product encompasses every pair and that projections are
surjective before applying the Dedekind formula

= ∩ = πT;ρ ∩ ρT;ρ ⊆ (πT ∩ ρT;ρ;ρT); (ρ ∩ π;ρT;ρ) = (πT ∩ ρT); (ρ ∩ π)

ii) M = syq(ε;πT ∩ ε;ρT, ε) = (ε;πT ∩ ε;ρT)T;ε ∩ (ε;πT ∩ ε;ρT)T;ε =: A ∩ B
A = π;εT;ε ∪ ρ;εT;ε = π;εT;ε ∩ ρ;εT;ε = π;εT;ε ∩ ρ;εT;ε = π;ΩT ∩ ρ;ΩT

B ⊇ (π;εT ∪ ρ;εT);ε = π;εT;ε ∪ ρ;εT;ε = π;εT;ε ∩ ρ;εT;ε = π;εT;ε ∩ ρ;εT;ε = π;Ω ∩ ρ;Ω
M = A ∩ B ⊇ (π;ΩT ∩ ρ;ΩT) ∩ (π;Ω ∩ ρ;Ω) = π;(ΩT ∩ Ω) ∩ ρ;(ΩT ∩ Ω) = π; ∩ ρ; = π ∩ ρ

The latter is surjective owing to (i). The proof for J is rather similar.

iii) ( (π©× ) ; J ©< (ρ©× ) ;J ) ;M where the first factor is a mapping
= ( (π©× ) ; J ©< (ρ©× ) ;J ) ;syq( (ε©< ε) , ε) definition of M
= syq( (ε©< ε) ; ( (π©× ) ; J ©< (ρ©× ) ;J ) T, ε)
= syq( (ε©< ε) ; ( J T; (πT©× ) ©> J T; (ρT©× ) ) , ε) transposed
= syq(ε; J T; (πT©× ) ∩ ε; J T; (ρT©× ) , ε) Prop. 7.3.i
= syq((ε;πT ∪ ε;ρT); (πT©× ) ∩ (ε;πT ∪ ε;ρT); (ρT©× ) , ε) Prop. 9.1.iii
= syq((ε;πT; (πT©× ) ∪ ε;ρT; (πT©× ) ) ∩ (ε;πT; (ρT©× ) ∪ ε;ρT; (ρT©× ) ), ε)
= syq((ε;πT;π′T ∪ ε;ρ′T) ∩ (ε;ρT;π′T ∪ ε;ρ′T), ε)
= syq((ε;πT;π′T ∩ ε;ρT;π′T) ∪ ε;ρ′T, ε)
= syq((ε;πT ∩ ε;ρT);π′T ∪ ε;ρ′T, ε)
= syq([ε; M T;π′T ∪ ε;ρ′T], ε)
= syq([ε; (M T;π′T ∩ πT;ρ;ρ′T) ∪ ε; (ρT;π; M T;π′T ∩ ρ′T)], ε)
= syq([ε;πT; (π; M T;π′T ∩ ρ;ρ′T) ∪ ε;ρT; (π; M T;π′T ∩ ρ;ρ′T)], ε)
= syq([ε;πT ∪ ε;ρT]; (π; M T;π′T ∩ ρ;ρ′T), ε)
= syq(ε; [πT ∪ ρT]; (M T©× ) , ε)
= syq(ε; [π ∪ ρ]T; (M ©× ) T, ε)
= (M ©× ) ;syq(ε; [π ∪ ρ]T, ε) since (M ©× ) is a mapping
= (M ©× ) ;J Prop. 9.1.i

iv) “⊆” follows with shunting (Ω©× Ω) ;M ⊆ M ;Ω ⇐⇒ (Ω©× Ω) ⊆ M ;Ω; M T from

M ;Ω; M T = M ;εT;ε; M T = (εT©> εT) ;(ε©< ε) = (ε©< ε) T
;(ε©< ε) = (ε©< ε) \ (ε©< ε)

⊇ (ε\ε ©× ε\ε ) following Prop. 7.3.viii
= (Ω©× Ω)

The other direction “⊇” applies distributivity (iv):

M ;Ω = π′T;ρ′ ∩ M ;Ω π′, ρ′ form a direct product
= π′T; ( ∩ ρ′) ∩ M ;Ω from now on using the abbreviation of Def. 8.8
= π′T; ( Ĵ ;π′T;ρ′ ∩ ρ′) ∩ M ;Ω Ĵ is total and π′, ρ′ form a direct product
= π′T; ( Ĵ ;π′T ∩ ρ′;ρ′T);ρ′ ∩ M ;Ω destroy and append
=
[
π′T; ( Ĵ ;π′T ∩ ρ′;ρ′T) ∩ M ;Ω;ρ′T

]
;ρ′ again destroy and append

= π′T;
[
Ĵ ;π′T ∩ ρ′;ρ′T ∩ π′; M ;Ω;ρ′T

]
;ρ′ again destroy and append

= π′T;
[
Ĵ ;π′T ∩ (M ©× ) ; (Ω©> ) ;ρ′T

]
;ρ′ due to Prop. 7.3.iii

⊆ π′T;
[
Ĵ ;π′T ∩ (M ©× ) ;J ; ρ′T

]
;ρ′ due to Prop. 9.2.viii

⊆ π′T;
[
Ĵ ;π′T ∩ ( (π©× ) ; J ©< (ρ©× ) ; J ) ;M ; ρ′T

]
;ρ′ due to Def. 8.8, (iv)

⊆ π′T;
[
Ĵ ;π′T ∩ Ĵ ; M ; ρ′T

]
;ρ′

⊆ π′T; Ĵ ;

[
π′T ∩ M ; ρ′T

]
;ρ′
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⊆ π′T; Ĵ ;

[
π′T;ρ′ ∩ M

]
⊆ π′T; Ĵ ; M
= π′T; ( (π©× ) ; J ©< (ρ©× ) ;J ) ;M expanded
⊆ (π′T; (π©× ) ; J ©< π′T; (ρ©× ) ; J ) ;M
= (π;πT; J ©< ρ;πT; J ) ;M
= (π;Ω©< ρ;Ω) ;M
= (Ω©× Ω) ; M

When we proceed according to (iii) from a pair of sets to a set of possibly bigger ones and form
their meet, we might also first form the meet and then increase.

{} {a
}

{b
}

{a
,b
}

{c
}
{a

,c
}

{b
,c
}

{a
,b

,c
}

{d
}

{a
,d
}

{b
,d
}

{a
,b

,d
}

{c
,d
}

{a
,c

,d
}

{b
,c

,d
}

{a
,b

,c
,d
}

({},{})
({a},{})
({},{a})
({b},{})

({a},{a})
({},{b})

({a,b},{})
({b},{a})
({a},{b})

({},{a,b})
({c},{})

({a,b},{a})
({b},{b})

({a},{a,b})
({},{c})

({a,c},{})
({c},{a})

({a,b},{b})
({b},{a,b})

({a},{c})
({},{a,c})
({b,c},{})

({a,c},{a})
({c},{b})

({a,b},{a,b})
({b},{c})

({a},{a,c})
({},{b,c})

({a,b,c},{})
({b,c},{a})
({a,c},{b})
({c},{a,b})
({a,b},{c})
({b},{a,c})
({a},{b,c})

({},{a,b,c})
({d},{})



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


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

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Fig. 9.5 The initial ones of 256 rows of the relations J , M : 2X × 2X −→ 2X

One will identify the commutative law in (ii,iii), where it is expressed that the collection of
results doesn’t change when starting from the first as opposed to the second component. The
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other laws may be found later in Prop. 9.5.
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abc

{d}

{a,d}

{b,d}

abd

{c,d}

acd

bcd
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

{} {a} {b} {a,b} {c} {a,c}{b,c} abc {d} {a,d}{b,d} abd {c,d} acd bcd all

{a} {a} {a,b}{a,b}{a,c} {a,c} abc abc {a,d}{a,d} abd abd acd acd all all

{b} {a,b} {b} {a,b}{b,c} abc {b,c} abc {b,d} abd {b,d} abd bcd all bcd all

{a,b}{a,b}{a,b}{a,b} abc abc abc abc abd abd abd abd all all all all

{c} {a,c}{b,c} abc {c} {a,c}{b,c} abc {c,d} acd bcd all {c,d} acd bcd all

{a,c} {a,c} abc abc {a,c} {a,c} abc abc acd acd all all acd acd all all

{b,c} abc {b,c} abc {b,c} abc {b,c} abc bcd all bcd all bcd all bcd all

abc abc abc abc abc abc abc abc all all all all all all all all

{d} {a,d}{b,d} abd {c,d} acd bcd all {d} {a,d}{b,d} abd {c,d} acd bcd all

{a,d}{a,d} abd abd acd acd all all {a,d}{a,d} abd abd acd acd all all

{b,d} abd {b,d} abd bcd all bcd all {b,d} abd {b,d} abd bcd all bcd all

abd abd abd abd all all all all abd abd abd acd all all all all

{c,d} acd bcd all {c,d} acd bcd all {c,d} acd bcd all {c,d} acd bcd all

acd acd all all acd acd all all acd acd all all acd acd all all

bcd all bcd all bcd all bcd all bcd all bcd all bcd all bcd all

all all all all all all all all all all all all all all all all


Fig. 9.6 J as function table J ∈

[
2X
]2X×2X

; abbreviated notation for 3- and 4-element sets

9.5 Proposition. J , M satisfy

i)
[
πT ∩ ρT; M ;ρT

]
; J = ,

[
πT ∩ ρT; J ;ρT

]
; M = , i.e., the absorption laws

ii) (M ©× ) ;M = T ; ( ©× M ) ;M i.e., the associative law, where

T : (X ×X)×X −→ X × (X ×X) is the brace rearrangement bijection of Def. 8.2.

Proof : i) We start the proof of “⊆” with Prop. 9.2.i, Prop. 9.1.i and shunting.[
πT ∩ ρT; M ;ρT

]
; J =

[
πT ∩ ΩT;ρT

]
; J ⊆ ⇐⇒ πT ∩ ΩT;ρT ⊆ J T
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⇐⇒ J ⊆ π ∪ ρ;Ω ⇐⇒ ε;πT ∪ ε;ρT
T
;ε ∪

[
ε;πT ∪ ε;ρT

]T
;ε ⊆ π ∪ ρ;εT;ε

The first term is contained in π, because

(π;εT ∩ ρ;εT);ε ⊆ π;εT;ε ⊆ π

The second term is also contained in π, owing to univalency of π

π;εT;ε ⊆ π ⇐⇒ ε;πT;π ⊆ ε

Finally, the third term is equal to the right-most one. This was the proof of containment only;
but this suffices because the total (see Prop. 9.4.ii) term

[
πT ∩ ρT; M ;ρT

]
; J contained in the

univalent , so that both must be equal.

ii) T ; ( ©× M ) ;M = T ; ( ©× M ) ;syq( (ε©< ε) , ε) Prop. 9.1.ii
= T ;syq( (ε©< ε) ; ( ©× M ) T, ε) since ( ©× M ) is a mapping
= T ;syq( (ε©< ε) ; ( ©× M T) , ε) transposed
= T ;syq( (ε©< ε; M T) , ε) Prop. 7.3.iii
= T ;syq( (ε©< (ε©< ε) ) , ε) Prop. 9.1.iv
= (π′;π©< (ρ©× ) ) ;syq( (ε©< (ε©< ε) ) , ε) expanding T according to Def. 8.2.iii
= syq( (ε©< (ε©< ε) ) ; (π′;π©< (ρ©× ) ) T, ε) T is a map
= syq( (ε©< (ε©< ε) ) ; (πT;π′T©> (ρT©× ) ) , ε) transposed
= syq(ε;πT;π′T ∩ (ε©< ε) ; (ρT©× ) , ε) Prop. 7.4
= syq(ε;πT;π′T ∩ (ε;ρT©< ε) , ε) Prop. 7.3.iii
= syq(ε;πT;π′T ∩ ε;ρT;π′T ∩ ε;ρ′T, ε)
= syq((ε;πT ∩ ε;ρT);π′T ∩ ε;ρ′T, ε)
= syq( (ε©< ε) ;π′T ∩ ε;ρ′T, ε)
= syq( ( (ε©< ε) ©< ε) , ε)
= syq( (ε; M T©< ε) , ε) Prop. 9.1.iv
= syq( (ε©< ε) ; (M T©× ) , ε)
= syq( (ε©< ε) ; (M ©× ) T, ε)
= (M ©× ) ; syq( (ε©< ε) , ε)
= (M ©× ) ; M

10 Concluding Remarks

These additions have already been broadly applied, not least in studies of relational topology.
The relational language TituRel reflecting all these ideas in functional programming style
has made it possible to successfully explore discrete topologies, concepts of nearness, proximity
that have been studied by logicians.

These investigations further support our firm creed: Mankind seems hardly capable of handling
intellectually more than linear situations!
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[SS89] Gunther Schmidt and Thomas Ströhlein. Relationen und Graphen. Mathematik für
Informatiker. Springer-Verlag, 1989. ISBN 3-540-50304-8, ISBN 0-387-50304-8.
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projection, 16

quotient, 7

residual, 3
residue cancellation, 3
right-invertible, 29
right-neutral element, 30
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