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Abstract. What now is called social choice theory has ever since at-
tracted mathematicians — not least several Nobel laureates — who try
to capture the comparison relations expressed and to aggregate them.
Their results are often referred to nowadays. The purpose of this paper
is to make point-free relation-algebraic mathematics available as a tool
for the study of social choice. Thus, we provide simplification, additional
systematics, more compact relation-algebraic proofs and also an access
to solving such problems with programs in the language TituRel — at
least for the medium sized cases.
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1 Introduction

Social choice is concerned with sets of decisions expressed by individuals and
tries to aggregate these to a collective decision relation. Much of this paper
is some sort of a translation of the respective theory to a point-free relation-
algebraic form. However, it is not simply translated, but also in a non-trivial
way transferred to a shorthand form. This in turn provides new insights and
enables more compact algebraic proofs. It is, however, also a valuable scientific
step that may help understanding the highly involved concepts. Much of the
discussion runs along [Sen70, Suz83, Wri85].

2 Relation-Algebraic Preliminaries

This section is inserted to make the paper more or less self-contained, giving
[SS89, SS93, Sch11] as a general reference. We write R : V −→ W if R is a
relation with source V and target W , often conceived as a subset of V × W .
If the sets V and W are finite of size m and n, respectively, and ordered, we
may consider R as a Boolean matrix with m rows and n columns; called a
homogeneous relation when m = n.

We assume the reader to be familiar with the basic operations on relations,
namely RT (converse), R (negation), R ∪ S (union), R ∩ S (intersection),
and R ; S (composition), the predicate R ⊆ S (containment), and the special
relations1 (empty relation), (universal relation), and (identity relation).

1 Suppressing indices here.
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A heterogeneous relation algebra is a structure that

— is a category with respect to composition “ ; ” and identities ,
— has complete atomic Boolean lattices with ∪, ∩, , , ,⊆ as morphism sets,
— obeys rules for transposition in connection with the category and the lattice

aspect just mentioned that may be stated in either one of the following two
ways:

Dedekind R;S ∩ Q ⊆ (R ∩ Q;ST); (S ∩ RT ;Q) or

Schröder R;S ⊆ Q ⇐⇒ RT ;Q ⊆ S ⇐⇒ Q;ST ⊆ R.

Residuals are often introduced via A;B ⊆ C ⇐⇒ A ⊆ C ;BT =: C/B, where B
is divided from C on the right side. Intersecting such residuals in syq(R,S) :=

RT;S ∩ R
T
;S, the symmetric quotient syq(R,S) : W −→ Z of two relations

R : V −→ W and S : V −→ Z is introduced. Symmetric quotients serve the
purpose of ‘column comparison’:

[
syq(R,S)

]
wz

= ∀v ∈ V : Rvw ↔ Svz .
The symmetric quotient is not least applied to introduce membership relations

ε : X −→ P(X) between a set X and its powerset P(X) or 2X . These can be
characterized algebraically up to isomorphism demanding syq(ε, ε) ⊆ and
surjectivity of syq(ε,R) for all R. With a membership the powerset ordering is
easily described as Ω = εT;ε.

There is another point to observe, namely the transition from a subset V ⊆ X ,
conceived as a relation V : X −→ 1l, to its counterpart element eV = syq(ε, V ) ⊆
2X . It often helps if one makes this difference explicit, using membership ε in

ε =

{} {a
}

{b
}

{a
,b
}

{c
}

{a
,c
}

{b
,c
}

{a
,b
,c
}

a
b
c

(0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

) (
0
1
1

)

= ε;eV = V

eT
V = (0 0 0 0 0 0 1 0)

3 Order versus Preference

Orderings are generalized to preference structures as they have developed over
the years and partly after the tremendous success of the work by Kenneth Arrow
and Amartya Sen. Historically, orders E or strictorders C have more or less been
used at free will with the possibility in mind that with E = C ∪ and C = E ∩
everything may be freely converted from one form to the other.

However, this is not really true; with orderings E one often looses all the
consequences of the Ferrers property. A (possibly heterogeneous) relation R has

the Ferrers property if R ;R
T
;R ⊆ R, which expresses that one may find from

any situation Rij and Rkm that either Rkj or Rim; an absolutely useful condition



280 G. Schmidt

giving rise to a plethora of consequences concerning thresholds, semiorders, and
intervalorders.

Orderings do not comfortably fit into the hierarchy of order concepts (see
[Sch11] Prop. 12.1) in contrast to preorders, i.e., reflexive and transitive relations.
This together with other indications has persuaded us to prefer the irreflexive
form — not least that irreflexive Ferrers orderings are the slightly more general
concept since E Ferrers implies C Ferrers, but not vice versa.

A next problem came up when researchers started investigating preference
structures as a generalization of orderings. The by now standard way is to con-
sider a so-called weak preference relation R = ‘is not worse than’ and derive
from it strict preference P , indifference I, and incomparability J . We have col-
lected in [Sch11] Prop. 13.9 much of the dispersed information on how these
concepts are interrelated. The bijective mutual transitions α : R �→ (P, I, J) and
β : (P, I, J) �→ R can be given explicitly as

α(R) := (R ∩ R
T

, R ∩ RT, R ∩ R
T

) and β(P, I, J) := P ∪ I.

Prop. 3.1.ii justifies the ‘is not worse’-idea. Because one feels that indifference
should be reflexive, it gives reason to demand already R to be reflexive.

Proposition 3.1. i) P ⊆ for every R.

ii) R reflexive =⇒ ⊆ I.

Proof : i) R ∩ = (R ∩ )T ⊆ RT implies = R ∪ ∪ RT and R ∩ R
T ⊆ .

ii) ⊆ R =⇒ ⊆ R ∩ RT = I.

One obtains always the partition P ∪ P T ∪ I ∪ J = and observes that P is
asymmetric, I is reflexive and symmetric, and J is irreflexive and symmetric.

Then several other concepts are defined, mentioned not least in [Suz83]. The
following shows their translation into a point-free — and thus shorthand— form.
As defined above, we will always have a relation R for which its asymmetric part
is defined as

P := P (R) := R ∩ R
T
.

When R is agreed upon, we will use the respective shorter version. Since R is
in general not an ordering, one has to investigate the following concepts anew
from scratch that are concerned with cycle avoidance.

Definition 3.2. We consider the relation R and use its asymmetric part P .

i) R quasi-transitive :⇐⇒ P transitive

ii) R acyclic :⇐⇒ P+ ⊆ P
T

iii) R acyclicSen :⇐⇒ P+ ⊆ R
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iv) R consistent :⇐⇒ P ;R∗ ⊆ R
T

v) P progressively finite :⇐⇒ ε ⊆ ; (ε ∩ P ;ε)

Being progressively finite is the adequate relation-algebraic formulation that
excludes an infinite run over ever new points in the same way as running into
a circuit; cf. [SS93], p. 121. The condition is easily understood interpreting the
right side as looking for elements of the subset from which one cannot proceed
according to P to another point inside it: P ;ε.

In the following example, the two non-empty sets {3, 4} and {1, 3, 4} do not
have a maximal element so that the corresponding columns in ε ∩ P ;ε vanish.

P =

1 2 3 4

1
2
3
4

⎛
⎜⎝
0 1 0 1
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ ε ∩ P ;ε =

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{4
}

{1
,4
}

{2
,4
}

{1
,2
,4
}

{3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{1
,2
,3
,4
}

1
2
3
4

⎛
⎜⎝
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

⎞
⎟⎠

Fig. 1. Illustrating the condition of being progressively finite; P is not

Several interdependencies follow immediately. One is in particular interested in
consistent preference; that is, one does not like iterated preference with indiffer-
ences in between to result in preference in reverse direction. A lot of literature
has appeared how to avoid problems of this kind.

Proposition 3.3. Let be given the situation of the preceding definition.

i) R transitive =⇒ R quasi-transitive, i.e., P transitive
ii) R transitive =⇒ R consistent
iii) R consistent =⇒ R acyclic
iv) R quasi-transitive =⇒ R acyclic
v) R acyclicSen =⇒ R acyclic
vi) R acyclicSen ⇐=/ R acyclic

Proof : i) The proof of P ;P ⊆ P decomposes into two parts:
P ;P ⊆ R;R ⊆ R since R is assumed to be transitive

P ;P = (R ∩ R
T

); (R ∩ R
T

) ⊆ R
T

, where the latter follows via the Schröder
rule and transitivity from (RT ∩ R);RT ⊆ R ∪ RT.

ii) P ;R∗ ⊆ R
T ⇐⇒ RT;R∗T ⊆ P = R ∪ RT, which holds due to transitivity.

iii) P+ ⊆ R+ = R∗ ;R ⊆ P
T

, the last step uses consistency in Schröderized
form: RT ;R∗T ⊆ P .

iv) If P is transitive, acyclicity reads P ⊆ P
T

. This, however, is trivially satisfied
in view of the definition of P :

P = R ∩ R
T ⊆ R

T ∪ R = R ∩ R
T
T

= P
T

.
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v) since P+ ⊆ R ⊆ R
T ∪ R = P

T

vi) R =
1 2 3

1
2
3

(0 1 0
0 0 1
0 0 0

)
provides a counter-example with non-reflexive R.

4 The Mechanics of Being Greatest

Since R : X −→ X need not be an ordering, we must be very careful and avoid
any informal reasoning, because much — but not all — stays the same. With

ubdR(ε) = R
T
;ε : X −→ 2X , we obtain the set of upper bounds of all subsets in

one hit. Upper bound points may exist, or not, and there may be one or many.
Given a relation R : X −→ X , we also introduce maxR : X −→ 2X as

assigning the set of maximal elements; in the finite case, this set will always be
non-empty for a non-empty set. Executing this simultaneously,

maxR(ε) := ε ∩ (R ∩ R
T

);ε = ε ∩ P ;ε

describes columnwise those elements that belong to the set and for which it is
not the case that they are in relation R ∩ R

T

— i.e. strictly R-below — to any
element of the set.

In much a similar way, we here conceive the gre to deliver always a result;
however, the result may correspond to the empty set indicating that there is
no greatest element. In contrast to the classical case, there may occur several
greatest elements for a relation R which is not an ordering. That is, given a
relation R : X −→ X , we type this function as greR : X −→ 2X . One has to
intersect sets with their upper bound sets,

greR(ε) = ε ∩ ubdR(ε),

to get greatest element sets for all subsets ‘columnwise’ simultaneously. For the
set {1, 4} in Fig. 2, we get the result {4}, e.g. This {4} is a subset ⊆ X , for
which we will now consider the corresponding element in 2X ; and this executed
simultaneously for all greatest element sets, resulting (see the end of Sect. 2) in
a relation G, so that:

greR(ε) = ε;G and G := syq(ε, greR(ε)).

With this highly compact notation, we will now generalize a result best known
for orderings to arbitrary R. Concerning (ii) in Prop. 4.1, one often says that for
R a finite preorder in every nonempty subset S a maximal element exists.

Proposition 4.1. Let an arbitrary homogeneous relation R be given.

i) greR(ε) ⊆ maxR(ε)

ii) R finite preorder =⇒ ε ⊆ ;maxR(ε)

iii) R preorder =⇒ greR(ε) = maxR(ε) ∩ ;greR(ε).



Relational Concepts in Social Choice 283

Proof : i) We have to prove ε ∩ R
T
;ε ⊆ ε ∩ (R ∩ R

T

);ε, but this is obvious.

ii) The asymmetric part P of a finite preorder R is certainly progressively finite
(does not admit cycling), so that with Def. 3.2.v ε ⊆ ; (ε ∩ P ;ε) = ;maxR(ε).

iii) In view of (i), only maxR(S) ⊆ greR(S) needs a proof. Assume a point

x ⊆ greR(S) = S ∩ R
T
;S to exist, which is equivalent to x ⊆ S ⊆ R;x.

Now we consider an arbitrary point z ⊆ maxR(S) = S ∩ (R ∩ R
T

);S, which

implies z ⊆ S ⊆ (R ∪ R
T
);z.

Combining all this crosswise, z ⊆ S ⊆ R;x and x ⊆ S ⊆ (R ∪ R
T

); z where
the latter implies z ⊆ (RT ∪ R);x. From both follows z ⊆ [

R ∩ (R ∪ RT)
]
;x =[

(R ∩ R) ∪ (R ∩ RT)
]
;x = (R ∩ RT);x = I ;x. Shunting and transposing gives

x ⊆ I ;z, so that in total

z ⊆ S ⊆ R;x ⊆ R;I ;z ⊆ R;R;z ⊆ R;z

due to transitivity of a preorder. This means z ⊆ greR(S).

1 2 3 4

1
2
3
4

⎛
⎜⎝
1 0 0 1
0 1 1 0
0 1 1 0
0 0 0 1

⎞
⎟⎠
greR(ε) =

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{4
}

{1
,4
}

{2
,4
}

{1
,2
,4
}

{3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{1
,2
,3
,4
}

1
2
3
4

⎛
⎜⎝
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

⎞
⎟⎠

maxR(ε) =

1
2
3
4

⎛
⎜⎝
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎞
⎟⎠

Fig. 2. greR(ε) and maxR(ε) using the membership relation ε

There hold further interesting formulae in case of greatest element sets.

Proposition 4.2. For every homogeneous relation R

i) syq(greR(ε), ε) ⊆ ΩT,

ii) greR(ε);Ω
T ∩ ε = greR(ε).

Proof : i) Ω = εT;ε ⊆ εT; (ε ∪ R
T
;ε) = εT ;greR(ε)

⊆ εT ;greR(ε) ∪ εT
;greR(ε) = syq(ε, greR(ε)).

ii) This means by definition (ε ∩ R
T
;ε);ΩT ∩ ε = ε ∩ R

T
;ε. We will use ε;Ω = ε.

Direction ⊇ is clear because Ω is reflexive. For ⊆, we may restrict ourselves to
showing

R
T
;ε;ΩT ⊆ R

T
;ε ⇐⇒ R

T
;ε;Ω ⊆ R

T
;ε.
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Although R is not an ordering, the interpretation is not very far from the order-
ing case: Stepping down from some greatest element of a set via the powerset
ordering ΩT, but staying inside that set, one will remain in the set of greatest
elements. (In case R is an order, the greatest element set would be an at most
1-element set.)

5 Preferences versus Choice Functions

Choice is considered in powersets, where one indicates the — often strictly
smaller — subsets of a subset from which elements may be chosen. When look-
ing at definitions in [Sen70], e.g., one will find that the author is careful in de-
manding non-empty argument sets to which non-empty choice sets are assigned.
Suzumura [Suz83] (page 27) discussed this in detail and decided for Sen’s way.
In an appendix of Chapt. 2, however, he also discusses slightly more general
variants.

We go here even further and start from a set X of so-called conceivable
states of which we intend to form subsets ε : X −→ 2X and consider the
powerset ordering Ω : 2X −→ 2X of these. To make the distinctions in Fig. 3
clear, we define as follows:

Definition 5.1. Consider a relation C : 2X −→ 2X that is univalent and
contracting, i.e., a function which satisfies C ⊆ ΩT. We call C a

i) Sen-type choice function if C ⊆ ;ε and C ; = εT ; ,
ii) Suzumura-type choice function if C ⊆ ;ε and C ; ⊆ εT ; ,
iii) (generalized) choice mapping if C ; = .

In either case, one defines S := C ; and calls (X,S) a choice space.

Fig. 3. Typing choice functions C as opposed to weak preferences R

In this way, results in (i,ii) are assigned only to non-empty sets and results are
always non-empty subsets of the argument since C ⊆ ; ε. The C in (iii) will,
due to contraction, assign the empty set to the empty set.

Every Sen-type choice function is obviously a Suzumura choice function. None
of the two can ever be a choice mapping which is totally defined by definition.
However, both — in particular the more general Suzumura version — are easily
converted to the generalized mapping.
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Proposition 5.2. i) For C a choice function, CGen := C ∪ C ; ; εT ;
T

is a
generalized choice mapping.

ii) Given any choice mapping C, we obtain CSuz := C ∩ ; ε as a Suzumura
choice function.

Proof : The proof is obvious when looking at Fig. 4.

Researchers have always been very careful to execute all the case distinctions
that arise when admitting an empty choice, be it from a non-empty subset,
or of the empty subset. Being an empty choice might, however, smoothly be
interpreted as an abstention. We will see that when proceeding to point-free
relation-algebraic handling these problems disappear and results obtain a more
uniform shape.

CSuz =

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{}
{1}
{2}

{1,2}
{3}

{1,3}
{2,3}

{1,2,3}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

CGen =

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{}
{1}
{2}

{1,2}
{3}

{1,3}
{2,3}

{1,2,3}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 4. Toggling between Suzumura choice function and choice mapping

6 Generating Choice Functions from Preferences

Now we look at possibilities how to obtain choice functions or mappings. The
frequently applied idea is to start from any relation R on a set X and let C
map every subset of X to the subset of its R-greatest elements — recall that
the definition of the functional greR(u) above has already sailed free from the
requirement that R be an ordering.

Definition 6.1. Given any homogeneous relation R, not necessarily an order or
a preorder, we call C := syq(greR(ε), ε) its corresponding choice mapping
and speak of the corresponding choice function F of

i) Suzumura-type if F = C ∩ ;ε,
ii) Sen-type if F = C ∩ ;ε and in addition F ; = εT; . ��

The claim forC to be amapping needs a proof which is given below as Prop. 6.2.i,ii.
The side conditions in Def. 6.1.i,ii seem slightly artificial.
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The typical investigation is now to look at R and try to guarantee certain
favourable properties of C; that it generates a Sen-type choice function, e.g.
Such work has a great tradition, and we cannot report much of it; in particular,
because we have changed part of the foundation in moving to choice mappings.

1 2 3

1
2
3

(1 1 1
1 1 1
0 0 1

)

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{}
{1}
{2}

{1,2}
{3}

{1,3}
{2,3}

{1,2,3}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{}
{1}
{2}

{1,2}
{3}

{1,3}
{2,3}

{1,2,3}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 5. R, its corresponding Sen-type choice function, and choice mapping

We will soon see that we have dropped conditions for reasons of simplicity and
uniformity. The latter idea is very much supported by the following proposition.
By the way, (iv) of Prop. 6.2 has in [Sen70] been termed ‘property α’.

Proposition 6.2. Let be given a homogeneous relationR and its corresponding
choice mapping C = syq(greR(ε), ε). Then

i) C is indeed a mapping, i.e., total and univalent,
ii) C ⊆ ΩT,
iii) ε;CT = greR(ε),
iv) ε;CT = ε;CT ;ΩT ∩ ε.

Proof : i) C is a mapping by definition; cf. [Sch11] Def. 7.13.

ii) is the statement of Prop. 4.2.i.

iii) ε;CT = ε;

[
syq(greR(ε), ε)

]T
= ε;syq(ε, greR(ε)) = greR(ε) according to

[Sch11] Prop. 7.14.

iv) We start with ⊆: The first containment is trivial since Ω is reflexive, while
the second is a consequence of (ii). For ⊇, we start with

ε;Ω = ε, which implies (ε ∩ R
T
;ε);Ω ⊆ R

T
;ε;Ω = R

T
;ε = R

T
;ε ∪ ε

⇐⇒ (ε ∩ R
T
;ε);ΩT ⊆ ε ∪ R

T
;ε

⇐⇒ greR(ε);Ω
T ∩ ε = (ε ∩ R

T
;ε);ΩT ∩ ε ⊆ R

T
;ε

=⇒ ε;CT ;ΩT ∩ ε = greR(ε);Ω
T ∩ ε ⊆ ε ∩ R

T
;ε = greR(ε) = ε;CT

Normally, several groups of conditions are assembled and then the proof is given
that R defines a Sen-type choice function. We will here proceed the other way
round and first formulate the condition on C aimed at.
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Proposition 6.3. A choice mapping C corresponding to R will have a corre-
sponding Sen-type choice function precisely when the following condition on R
is satisfied

ε ⊆ ; (ε ∩ R
T
;ε).

Proof : The Sen condition on C is that it assigns non-empty subsets to non-
empty argument sets, i.e., CT ∩ ;ε ⊆ εT; , which one will verify looking at Fig. 6,
derived from Fig. 5.

The condition slightly modified is CT ; ( ∩ ; ε) = CT ∩ ; ε ⊆ εT ; . Using the
Schröder rule, since C is a mapping, and using Prop. 6.2.iii, we get

C ;εT ; = C ;εT ; = [greR(ε)]
T ; ⊆ ∩ ;ε.

Negating, transposing, and expanding gre gives

∩ ;ε ⊆ ; (ε ∩ R
T
;ε),

from which we obtain the final result as

ε ⊆ ;ε = ; ( ∩ ;ε) ⊆ ; ; (ε ∩ R
T
;ε) = ; (ε ∩ R

T
;ε).

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{}
{1}
{2}

{1,2}
{3}

{1,3}
{2,3}

{1,2,3}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

CT ∩ ;ε = ∩ εT ; εT;

Fig. 6. Condition on a choice mapping to lead to a (Sen) choice function

Once we are in this position, we may look for combinations of the widely known
conceivable properties of R that satisfy this requirement; e.g., being reflexive
and/or connex, and/or transitive etc. The homogeneous relation R will be called
connex provided = R ∪ RT; it is thus reflexive and complete, the latter
meaning = R ∪ RT.

Proposition 6.4. Whenever R is connex, and quasi-transitive on a finite set,
the corresponding choice mapping C := syq(greR(ε), ε) will give rise to a Sen-
type choice function.

Proof : Following Prop. 6.3, we have to prove

R ∪ RT = , P ;P ⊆ P =⇒ ε ⊆ ; (ε ∩ R
T
;ε).
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Since R
T ⊆ R and thus P = R ∩R

T
= R

T
, this means ε ⊆ ;(ε ∩ P ;ε). However,

this is the condition for being progressively finite according to Def. 3.2; and
indeed, as a transitive and by construction asymmetric relation on a finite set,
P is a strictorder, and thus progressively finite.

Traditionally, many more such results are proved, usually with page-long free-
style proofs. The one above written in full, in contrast, may be proof-checked.

Often the criterion is acyclicity.

Proposition 6.5. Let R be a finite connex relation. Then the corresponding
choice mapping C := syq(greR(ε), ε) will give rise to a Sen-type choice function
provided R is acyclicSen.

Proof : As in the preceding proof, we get R
T ⊆ R from connexity, and thus

P = R ∩ R
T

= R
T

, so that we have to prove ε ⊆ ; (ε ∩ P ;ε). We use that
being progressively finite is equivalent with being circuit-free P+ ⊆ in case of
finiteness; cf. [SS93] Prop. 6.3.2.

Now we proceed assuming P not to be circuit-free. Then there exists a finite at
least 2-element sequence of points x1, x2, . . . xn+1 = x1 such that xi ⊆ P ;xi+1,
counting the indices cyclically modulo n. With Sen-acyclicity P+ ⊆ R, we obtain
that they are all mutually related xi ⊆ R;xj for i, j = 1, . . . n; and therefore also
xi ⊆ I ;xj . This is a contradiction, because P, P T, I, J form a disjunction.

R =

1 2 3 4

1
2
3
4

⎛
⎜⎝
1 0 0 1
0 1 1 0
0 1 1 0
0 0 0 1

⎞
⎟⎠ C =

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{4
}

{1
,4
}

{2
,4
}

{1
,2
,4
}

{3
,4
}

{1
,3
,4
}

{2
,3
,4
}

{1
,2
,3
,4
}

{}
{1}
{2}

{1,2}
{3}

{1,3}
{2,3}

{1,2,3}
{4}

{1,4}
{2,4}

{1,2,4}
{3,4}

{1,3,4}
{2,3,4}

{1,2,3,4}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 7. A homogeneous relation R determining a generalized choice mapping C
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The above matrices visualize forming the choice mapping. (One should remember
that Sen ususally presents the matrix of an ordering with the greatest element
down to the least.) Obviously, R is not an ordering. One will recognize that there
is no greatest element in the set {1, 3} resulting in assigning the empty set via C.
On the other hand, the set {4} is at the same time the set of greatest elements
of {1, 4} and {4}.

7 Rationalization Conceived as a Galois Correspondence

Since it is always a promising situation when one finds some Galois correspon-
dence, we mention here the following result. So far, however, we have not had
the opportunity to look for all its possible consequences.

Proposition 7.1. There exists a Galois correspondence between the R- and
the C-side. It concerns arbitrary relations R and C, the latter contained in ΩT,
and looks as follows

π(C) ⊆ R ⇐⇒ C ⊆ σ(R)

with σ(R) := greR(ε)
T
;ε and π(C) := ε;C ;εT.

Proof : We will use that C ;εT ⊆ εT, which is trivial because we have C ⊆ ΩT.

C ⊆ σ(R) = greR(ε)
T
;ε

⇐⇒ greR(ε)
T
;ε ⊆ C

⇐⇒ C ;εT ⊆ [
greR(ε)

]T
= εT ∩ εT ;R

⇐⇒ C ;εT ⊆ εT ;R
⇐⇒ εT;R;ε ⊆ C
⇐⇒ R

T
;ε;C ⊆ ε

⇐⇒ ε;CT ;εT ⊆ RT

⇐⇒ ε;C ;εT ⊆ R

This correspondence seems to be related with rationalization.

Definition 7.2. We consider some choice function C : 2X −→ 2X . A relation
R : X −→ X is said to rationalize C if ε;CT = greR(ε). If such an R exists,
C is called a rational choice. If this R is in addition an ordering, C is called a
fully rational choice.

Should the choice C have been constructed starting from some relation R, this
underlying R will obviously rationalize C, since, according to [Sch11] Prop. 7.14,
X = ε;syq(ε,X) for every X . But there may exist other rationalizing relations,
not least via the above Galois mechanism. There are more Cs than Rs, so that
one may hope for an adjunction.
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8 Revealing a Preference Out of a Choice Function

Rationalization asks whether an executed choice C has followed some ‘rational’
criterion R. While we have so far defined a choice function starting from an
arbitrary relation R, we will now go in reverse direction and try to reveal (i.e.,
extract) such a relation R from an arbitrary choice function C.

Definition 8.1. For every choice function C : 2X −→ 2X , we define the
following R : X −→ X , calling it the

i) revealed preference RC := ε;C ;εT,

ii) revealed strict preference R∗
C := (ε;C ∩ ε);εT.

In [Suz83], (ii) is written as R∗
C =

⋃
S∈S

[
C(S) × {S \C(S)}], and explained

with x is R∗
C-preferred to y if and only if x is chosen and y could have been

chosen but was actually rejected from some S ∈ S. (Order reversed!)
It is certainly an important casewhen the revealedR can somehow re-determine

the C one has been starting from.
The following is mentioned in order to demonstrate that the construct of a

choice mapping — as opposed to the choice functions — is indeed a profitable
idea.

Proposition 8.2. Def. 8.1.i delivers the same relation, regardless of whether
formed of a choice mapping, its corresponding Sen-type choice function, or its
corresponding Suzumura-type choice function, i.e.,

ε;C ;εT = ε;(C ∩ ;ε);εT.

Proof : For the Suzumura-case (as well as for the Sen-case which has an addi-
tional condition on C), we apply two times obvious matrix product formulae,
which say, e.g., that annihilating columns of the second factor is equivalent to
annihilating these columns in a product:

ε; (C ∩ ;ε);εT = (ε;C ∩ ;ε);εT = ε;C ;(εT ∩ [ ;ε]T) = ε;C ;εT

We are, thus, again enabled to go back and forth between relations R : X −→ X
and relations C : 2X −→ 2X with Def. 6.1 and Def. 8.1. The question immedi-
ately arises, to which extent a revealed RC obtained from a C which is obtained
from R resembles the original relation. We have indicated this idea with the
Galois correspondence above. For reasons of time and manpower, it has not yet
been made a central point of our investigation. In any case, the main question
is, to what extent going forth and back again comes close to an identity. It is
answered below.

Proposition 8.3. i) For any R, the RC obtained from its corresponding choice
mapping satisfies RC ⊆ R.
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ii) In addition: R reflexive implies equality RC = R.

Proof : i) RC = ε;C ;εT = ε; [greR(ε)]
T = ε;(εT ∩ εT ;R) ⊆ ε;εT ;R ⊆ R.

ii) This proof, which we omit, seems to need pointwise consideration.

Fig. 8 gives an example for being unequal when R is not reflexive: Not even C
resembles R in an adequate way.

R =

1 2 3

1
2
3

(1 0 1
0 1 0
0 0 0

)
C =

{} {1
}

{2
}

{1
,2
}

{3
}

{1
,3
}

{2
,3
}

{1
,2
,3
}

{}
{1}
{2}

{1,2}
{3}

{1,3}
{2,3}

{1,2,3}

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

RC =

1 2 3

1
2
3

(1 0 0
0 1 0
0 0 0

)

Fig. 8. RC
⊂
=/ R

9 Axiomatization of Choice

Once choice functions are established, researchers usually proceed to the charac-
terization of desirable properties of choice. Many famous people have contributed
to this idea and the interdependency of all these conceivable axioms has widely
been investigated.

One usually starts with certain intuitively clear and appealing postulates and
looks in which way these may be satisfied or not. Impossibility theorems are
well known that destroy any hope for choice mechanisms that follow simple
axiomatizations. It seems that highly complicated ones are necessary.

Cycles of preference are counter-intuitive. Demanding transivity, they are ex-
cluded, but this is often considered too hard a condition; so indifference is admit-
ted. We recall postulates that are intended to prohibit cycles. See, e.g., Prop. 6.5.

Definition 9.1. Assume a choice function C and revealed preferences thereof.

i) An H-cycle from some point x to x is given when
[
R∗

C
; (RC)

+
]
xx
.

ii) An SH-cycle from some point x to x is given when
[
RC ; (R∗

C)
+
]
xx
.

The following axioms for the revealed R are often demanded to avoid cycles.
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Definition 9.2. We consider the revealed preferences of some choice function.

i) Houthakker’s axiom of revealed preference (HOA) demands that

there be no H-cycle, i.e., (RC)
+ ⊆ R∗

C

T

.
ii) The strong axiom of revealed preference (SA) demands that there be

no SH-cycle, i.e., (R∗
C)

+ ⊆ RC
T

.
iii) The weak axiom of revealed preference (WA) demands that there be

no 2-step cycle, i.e., R∗
C ⊆ RC

T

.

Corresponding axioms for the choice functions themselves have also been formu-
lated and the interrelationship has been discussed.

Definition 9.3. We consider the choice function C as well as its revealed
preference together with the membership relation. We will speak of the

i) strong congruence axiom SCA if ε;C ∩ R+
C

T
;ε ⊆ ε,

ii) weak congruence axiom WCA if ε;C ∩ RT

C
;ε ⊆ ε.

We have seen on several occasions that we need not explicitly mention S := C;

every time. Not least Prop. 8.2 has shown that the empty rows of C or those that
are non-empty, but assign an empty choice may be neglected without affecting
the overall structure. Having this in mind, we consider, e.g., the weak congruence
axiom (WCA). In [Suz83], it is presented as

∀S ∈ S : [x ∈ S& {∃y ∈ C(S) : (x, y) ∈ RC}] → x ∈ C(S).

Firstly, quantification over x is not mentioned. Another typical flaw of such
considerations is that, in this case, the S ∈ S appears — without making this
visible — as a subset that may contain elements and also as an element over
which quantification may run. Let us denote the element in the powerset corre-
sponding to S as e. (We also remember that our ordering is transposed compared
with [Suz83].)

∀x : ∀e : [εxe ∧ {∃y : (ε;CT)ye ∧ (RC)yx}
] → (ε;CT)xe

∀x : ∀e : [εxe ∨ ∃y : (ε;CT)ye ∧ (RC)yx
] ∨ (ε;CT)xe

∀x : ∀e : [ε ∪ RT

C
;ε;CT

]
xe

∨ (ε;CT)xe

ε ∩ RT

C
;ε;CT ⊆ ε;CT

ε;C ∩ RT

C
;ε ⊆ ε

At last, the function C has been multiplied from the right side, using a standard
formula. In analogy follows the strong congruence axiom (SCA).

We mention the following well-known implications without giving full proofs.

Proposition 9.4

i) HOA ⇐⇒ SCA
ii) HOA =⇒ SA =⇒ WA
iii) WA ⇐⇒ WCA

Proof : ii) is trivial since R∗
C ⊆ RC .
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iii) Condition WA demands for the revealed strict preference R∗
C = (ε;C ∩ ε);εT

R∗
C = (ε;C ∩ ε);εT ⊆ RC

T

⇐⇒ RT

C
;ε ⊆ ε;C ∪ ε

⇐⇒ ε;C ∩ RT

C
;ε ⊆ ε, i.e., WCA

10 Concluding Remark

This text is certainly just a first step directed towards a study of social choice
using relations and towards computational social choice. Lifting to a point-free
relation-algebraic treatment, we have achieved several goals. Firstly, this is a
shorthand notation that facilitates work at least for the initiated. Secondly, we
got rid of many case distinctions necessary in Sen’s or Suzumura’s approach; not
least are relational proofs more easily computer-checkable. Scientific progress by
this article may also be found in the unification of the choice concepts and
in relating them to formally manipulable formulae such as being progressively
finite, etc. Finally, writing all this down — as it has indeed been done — in the
relational reference language TituRel, an immediate execution on a computer
became possible, at least for moderately sized tasks.

Many more attempts allow a relational approach, not least centered around
the Gibbard paradox with its standard rights rules; cf. [Wri85]. One may study
the Arrow or the Chernoff Axiom relationally and many more as well as a lot of
Pareto modelling.
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