Exploring (Finite) Relation Algebras
Using ToolsWritten in Haskell

WoLFram KAHL
GuUNTHER SCHMIDT

BerichtNr. 2000-02
Oktober2000

Universitatder BundeswehMiinchen

Fakultatfir

INFORMATIK

WernerHeisenbeg-Weg 39+ 85577Neubibeg « Germaly

Exploring (Finite) Relation Algebras
Using Tools Written in Haskell

WOLFRAM KAHL GUNTHER SCHMIDT

Institute for Software Technology
Department of Computing Science
Federal Armed Forces University Munich
e-Mail: {Kahl|Schmidt}@Informatik.UniBw-Muenchen.DE

31 October 2000

Abstract

During the last few years, relational methods have been gaining more and
more acceptance and impact in computer science. Besides applications
of concrete relations, also non-standard models of the relation algebraic
axioms are important in fields as far apart as artificial intelligence and
distributed computing. Also weaker structures have been considered,
such as Dedekind categories in connection with fuzzy reasoning, and
different kinds of allegories.

In this report we present a library of Haskell modules that allows to
explore relation algebras and several weaker structures by providing dif-
ferent means to construct and test such algebras.

The kernel of our library is strictly conformant to the Haskell 98 standard,
and can therefore be expected to be usable on future Haskell systems,
too. For ease of use, we additionally provide a more elegant interface
using non-standard extensions.

Contents

Introduction

1 Relation Algebra Definition and Exploration

1.1 From Categories to Relation Algebras
1.1.1 Categories o oL e e
1.1.2 Allegories oL
1.1.3 Distributive Allegories e
1.1.4 Division Allegories
1.1.5 Dedekind Categories
1.1.6 Relation Algebras.
1.2 Data Structures and Tests L e
1.2.1 Preliminaries
1.2.2 Testing e
1.23 Categories
1.24 Functors e
1.2.5 Allegories oL
1.2.6 Distributive Allegories L
1.2.7 Division Allegories L
1.2.8 Dedekind Categories e
1.2.9 Relation Algebras
1.2.10 Simple Example Algebras Lo
1.3 Properties and Interesting Configurations
1.3.1 Simple Morphism Properties,
1.3.2 Homogeneous Relations o L.
1.3.3 Uniformity
134 Units. o e e
1.3.5 Tabulations L
1.3.6 Direct Products L
1.3.7 Standard Iterations
1.4 Interoperability With the Class Interface,
1.4.1 Instantiating the Class Interface
142 Reverse Instances Lo
1.4.3 Transfer of Tests
2 Relation Algebra Construction
2.1 Product Algebras L
2.2 Sub-Algebras
2.3 Matrix Algebra Construction Lo
2.3.1 DMatrix Categories L e

CONTENTS

24

2.3.2
2.3.3
2.34
2.3.5

Matrix Allegories
Distributive Allegories L
Division Allegories e
Dedekind Categories and Relation Algebras

Construction Based on Atom Sets e e

24.1
2.4.2
2.4.3
244
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13

Atom Category Definitions o oL
Building Categories from Atom Category Definitions
Atom Category Definition Testing
From Allegories to Relation Algebras
Atom Allegory Definition for B L.
Atom Allegory Definition Testing
Atom Allegory Definition Qutput
Generating Atom Set Definitions for Boolean Matrix Algebras
Cycles o e
Building Atom Category Definitions from Distributive Allegories
Equivalence for Matrix Atom Set Descriptions
Matrix Atom Category Definitions
Example Atom Sets

3 Non-Standard Relation Algebras
3.1 The McKenzie Relation Algebra
3.2 Maddux

3.3

3.4
3.5

3.6

Mereology o o i e e e e e

3.3.1

NI e

An Interval Algebra

Compass Algebras L

3.5.1
3.5.2

CompPass .« -+« vt e e e e e
Refined Compass Algebra

Non-Uniform Relation Algebras
3.7 LRNnoc

Conclusion and Outlook

A Accessories
A1 Interface Modules o
A2 Test Program e
A3 Prelude Extensions Lo
A4 Drawingo

Bibliography

Index

79
81
83
84
85
86
87
89
91
93
94
95
100
102
105
106
107
108

109
109
111
115
115
117
118
121
126
126
129
131
133

136

137
137
139
144
146

152

155

Introduction

All of us are accustomed to a bit of reasoning with relations such as is greater than, s
equal to, is the brother of, is the father of, etc. The mechanics of such reasoning have long
been traced back to their algebraic laws, yielding the concept of (heterogeneous) relation
algebra. In addition it has been shown that suitable products, sub-algebras and matrix
algebras with coefficients taken from given relation algebras are relation algebras again.

Often, also slightly weaker structures are studied such as allegories, distributive allegories,
division allegories, and Dedekind categories.

Here, a common framework is presented for calculational work with all the structures
mentioned. It takes into account that they share concepts and properties so as to be able
to, e.g., introduce the idea of division only once for division allegories and to directly reuse
it for the more specific Dedekind allegories as well as for relation algebras. Chapter 1 is
mainly devoted to the presentation of a Haskell program in literate style to administer
any given structure of the kinds mentioned and to scrupulously test for all mathematical
properties such structures should fulfil to be well-defined. The underlying source of the
whole report constitutes executable Haskell code and is available from the RATH home
page:
URL: http://ist.unibw-muenchen.de/relmics/tools/RATH/

The classical model of abstract relation algebra is given by all the relations on a set or
between sets. For the tools presented in Chapter 2, this is just one specific case. The tools
are also designed to handle product algebras, sub-algebras, and matrix algebras on or over
relation algebras.

As often experienced in other application fields, however, while going back to the algebraic
laws for relations, it turned out that other models one had not thought of so far obeyed
the same laws. So one has in addition to the classical ones non-standard models of relation
algebra. To cope with these, Chapter 2 provides a toolbox to construct arbitrary relation
algebras from atom sets.

To give an impression of possible behaviour of non-standard relation algebras, we present
a few examples in Chapter 3, among these there are mereological considerations in spa-
tial reasoning (see Sect. 3.3), interval algebras (see Sect. 3.4), and compass algebras (see
Sect. 3.5), abstracting several fields of everyday life. In addition, the McKenzie model is
recalled together with the proof that it cannot be represented in an algebra of relations,
(see Sect. 3.1) — the first non-representbale relation algebras were found by Roger Lyndon,
who published one of them in 1950 |[Lyn50]. Another small example gives relation algebras
with a surprising property: The product of two universal relations need not itself be a
universal relation, (see Sect. 3.6).

The investigation of this diversity of small models is justified as these are candidates for
being basic blocks of products and matrices to form bigger relation algebras later on.

4

Introduction 9

That relations in the classical sense cannot be given a finite axiom system has been known
for a long time. The axiom system presented, therefore, allows the additional models al-
ready mentioned. On the other hand side, there is a formula that is obviously satisfied for
relations in the classical sense, but has for a very long time not been deduced from the ax-
ioms. While proofs have often been tried introducing additional assumptions, e.g. [Des99],
here a model is given where this formula does not hold, (see Sect. 1.3.6, Sect. 3.2).

As this formula more or less describes that composition distributes over parallel execu-
tion, the presentation of a non-standard model where this formula fails to hold is not
uninteresting.

In studying this question, other useful relation algebras have been found that model non-
strict situations. Information on an object that is a pair of two elementary items is now
conceived as having 4 possible values with an obvious ordering between them resembling
increasing information: Both elements known, left object known while the other is not,
right object known while the other is not, none of them is known. It is still possible to
handle this case with abstract relation algebra.

A Few Historical Remarks

Relations may not be traced back to Aristotle (384-322 b.C.). Namely, given a horse —
which certainly is an animal — we are unable to infer (by the method of syllogism attributed
to him) that the head of a horse is the head of an animal. However, much of our topic
dates back to 1847, when George Boole started publishing his The mathematical analysis
of logic, being an essay toward a calculus of deductive reasoning and later articles such as
the famous An investigation on the laws of thought of 1854. Already in 1859, Augustus
De Morgan, in parallel to his inventing of the broadly known rule PV Q = P A Q [DM50],
proved a so-called “Theorem K” [DM60]. For more than a century, people obviously never
read thus far in his papers. If they had, they might have recognised the importance of
this theorem. It was only since 1990 that researchers as Roger Maddux seem to have
traced modern developments back to this theorem which is the Schréder rule in a different
notation; interestingly, De Morgan already seemed to give it an essentially axiomatic role.

Around 1870, Charles Sanders Peirce looked for a suitable Algebra of Logic. His books
and his biography may be found even today in first class book stores oriented towards
philosophy and logic.

Later in 1895, Ernst Schroder published his gigantic 3-volume-collection on the algebra of
logic [Sch95]. This huge pile of formulae is by no means exhausted today.

One should keep in mind that at that time matrix notation for linear algebra had not
yet been developed, or at least was not commonly being used. Matrices seem to have
their origin in work on geometry and group theory by Artur Cayley, Hermann Giinther
Grafmann, August Ferdinand M&bius, and Sir William Rowan Hamilton. Later, Otto
Toeplitz worked extensively with matrices. While algebra of logic seemed to be on a good
way, more or less in parallel to inventing set theory, the turmoil on set paradoxes and the
brilliant performance of Bertrand Russell and Alfred North Whitehead along their Principia
Mathematica prevented people from working on relations for nearly half a century.

6 Introduction

It was the great Alfred Tarski in 1941, who revitalised relation algebra, who educated schol-
ars, and who raised the contemporary interest in this field from the theoretical side. With
a paper of 1948, Jacques Riguet studied and collected relations in a way that anticipated
many of the applications of today.

With seminars in Schlof Dagstuhl (Germany, January 1994), in Paraty (Rio de Janeiro,
August 1995), in Hammamet (Tunisia, January 1997), in Warsaw (September 1998), in
Valcartier (Québec, January 2000) followed by a seminar planned for autumn 2001, an
international group of scientists has now been formed, meeting regularly in a one-and-a-
half year rhythm. So, a much more rapid development may be expected from now on.

Related Work

Computer support for relation algebraic explorations mostly follows one of two approaches:
the theorem proving approach and the simulation approach.

For the first approach, let us mention the interactive proof assistant RALF [HBS94, BH94,
Hat97, KH98|, the Isabelle theory RALL [vOG97|. Also the PhD thesis of Peter Jipsen
[Jip92] essentially belongs into this camp, since it employs theorem proving methods to
automatically explore candidate algebras.

In the simulation approach, the most well-known system is RelView [ATBS89, BBS97],
which allows sophisticated manipulation of concrete relations.

To some extent, the present work might be considered as an attempt to provide a RelView-
like exploration interface for non-standard relation algebras.

The Use of Haskell

Haskell [HPJW92] is a purely functional programming language and is currently widely
accepted in research and university teaching. The fact that Haskell is a referentially trans-
parent programming language makes it particularly suitable for dealing with mathematical
structures and treating them as immutable entities.

This safety together with the abstraction support provided by higher-order functions make
Haskell an ideal language for the definition and exploration of new structures. The cur-
rent report strives to provide a toolkit that lends itself easily to this task. Every special
investigation will of course need its own extensions; even with only superficial knowledge
of Haskell it should be possible to build customised tools.

For more information about Haskell see the Haskell WWW site at http://www.haskell.org/
(there you also find links to implementations), or the Journal of Functional Programming.

Acknowledgements

We gratefully acknowledge the input from our friends and colleagues from the RelMiCS
community that greatly helped shaping this report, in particular Michael Winter, who
pioneered with precursors of the current toolkit.

Chapter 1

Relation Algebra Definition and Exploration

Since the tool-set described in in this report is geared towards working with non-standard
models of relation algebras, we decided to also support weaker mathematical structures,
since something that is almost-but-not-quite a relation algebra might still prove useful in
the search for relation algebras with unusual properties.

The obvious candidates for these structures may be taken from the hierarchy of allegories
defined by Freyd and Scedrov [FS90], including categories as the basis.

1.1 From Categories to Relation Algebras

In this section we review the necessary definitions and a few of their properties; the notation
we use is that agreed upon for the book [BKS97].

Alongside, we introduce Haskell identifiers that shall serve to access the different compo-
nents of these mathematical structures in our Haskell-based exploration system. As most
sections of this report, the file containing the present section is therefore at the same time
a literate Haskell module.

This present module offers a uniform interface to categories of all levels, but at the cost
of employing a non-standard extension to Haskell 98, namely multi-parameter type classes
with functional dependencies between parameters [Jon00| — these are currently supported
by the Haskell interpreter Hugs'.

For Haskell, this module begins with the following heading:
module RelAlgClasses where

The absence of an explicit export list before the keyword where implies that everything
defined in this module is also exported.
1.1.1 Categories

We recall the definition of a category, the construct that we have chosen to model hetero-
geneity of relation algebras.

Definition 1.1.1 A category C is a tuple (Objc, Morc, _: _ — _,1,5) where
e Objc is a collection of objects.

'To load this module, Hugs needs to be started with the command line option “-98” which enables
Hugs-specific extensions; this option cannot be changed while the interpreter is running.

7

8 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

e Morc is a collection of arrows or morphisms.

11

° : _ — 7 is ternary relation relating every morphism f univalently with two
obJects A and B, written f : A — B, where A is called the source of f, and B the
target of f.

The collection of all morphisms f with f : A — B is denoted as Homg[A, B] and
also called a homset.

2

13 77

) is the binary composition operator, and composition of two morphisms f : A — B
and g : B — C is defined iff B = B, and then (fig) : A — C; composition is
associative.

e I associates with every object A a morphism I 4 which is both a right and left unit
for composition. O

13 ’7

Composition operators like “s” will bind with a higher priority than all other binary oper-

ators.

For being able to manipulate categories as data in Haskell programs, we define a multi-
parameter class Category with three parameters: The type variable cat stands for the type
of categories-as-data, and we do not parameterise this type for the time being. Next, obj
is the type of objects, but this type need not exclusively comprise objects of the categories
in question, so we add a member predicate isObj that checks whether some item of the
object type is an object of the category in question. Last, mor is the type of morphisms,
and the test whether some item of the morphism type is in fact a morphism is specialised
to directly check membership in the homset spanned by two objects, i.e., membership in
the relation _: — . This is more useful than a global morphism test (which could
be defined using “the source and target functions), and the obligation to provide the
additional source and target arguments seems not to be molesting in our experience.

Since we do exhaustive exploration rather than symbolic proofs, we want to treat only
finite categories, i.e., categories where both Obj and Morg are finite sets. Therefore we
demand an enumeration objects of the object set and, for every two objects s and t, an
enumeration homset s t of the corresponding homset.

For theoretical purposes, the important restriction here is only that homsets should be
finite, so we define:

Definition 1.1.2 When all homsets of a category are restricted to be sets, the category
is called locally small. A locally small category is called locally finite if every homset is a
finite set. O

The remaining two class members are in direct correspondence to items of the mathematical
definition; given the enumerations of objects and homsets it is of course possible to derive
the identities from the other information, but we shall generally postpone such decisions to
the implementation. The interface is much easier to use if certain derived components are
included directly in the interface, and this way, also the implementation has more freedom
to use more efficient definitions.

1.1. FROM CATEGORIES TO RELATION ALGEBRAS 9

class Category cat obj mor | cat -> obj, cat -> mor where

isObj :: cat -> obj -> Bool

isMor :: cat -> obj -> obj -> mor -> Bool
objects :: cat -> [obj]

homset :: cat -> obj -> obj -> [mor]
source :: cat -> mor -> obj

target :: cat -> mor -> obj

idmor :: cat -> obj -> mor

comp :: cat -> mor -> mor -> mor

The functional dependencies “cat -> obj, cat -> mor” correspond to the fact that ev-
ery category C brings with it the type of its objects and morphisms. These functional
dependencies are necessary because the parameter variable obj does not occur in the type
of comp, and mor does not occur in the type of objects.

1.1.2 Allegories

The simplest abstraction of the behaviour of relations among those presented in [FS90] only
reflects transposition (converse) and intersection (meet) (and therewith also inclusion) of
relations on top of the category structure:

Definition 1.1.3 An allegory is a tuple C = (Objc, Morgy, _: _ > _,1,57,1M) where:

i) The tuple (Objc, Morg, _ @ _ « _,1,5) is a category, the so-called underlying
category of C.2 The morphisms are usually called relations.

ii) Every homset Homc|.A, B] carries the structure of a lower semi-lattice with M4z for
meet, and inclusion ordering T 4 5, all usually written without indices.

iii) 7 is the total unary operation of conversion of morphisms, where for R : A <> B we
have R™ : B <+ A, and the following properties hold:

(@) (R =R,
(b) (@R)" = R3Q™,
(€ (@NE) = NQ" .

iv) For all Q : A+ B and R, R': B +» C, meet-subdistributivity holds:

Q(RNMR)C QRMNQR" .
v) ForallQ: A< B, R: B+ C,and S : A+ C, the modal rule holds:

QRMNSC (QNSR)HR . O

M orc may be a class in [FS90], meaning that there, allegories are not restricted to be locally small.
The price of this generality, however, is that join, meet, etc. need to be characterised at a more elementary
level, while we can introduce these as lattice operators. Since we mostly have finite categories in mind,
anyway, we may sacrifice that generality for the sake of brevity and readability.

10 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

We define the type class Allegory as a sub-class of Category, adding the converse and
meet operators, and the inclusion relation between morphisms:

class Category all obj mor => Allegory all obj mor | all -> obj, all -> mor where
converse :: all -> mor -> mor
meet :: all -> mor -> mor -> mor
incl :: all -> mor -> mor -> Bool

The following basic properties are easily deduced from the definition of allegories:

e Conversion is an isotone and involutive contravariant functor: In addition to the
properties from the definition, this comprises also [;=I4and QC Q' < Q" C Q".

e Composition is monotonic: If Q@ C Q' and R C R’, then sR C Q"R'.

From the modal rule listed among the allegory axioms, we may — using properties of
conversion — obtain the other modal rule

QRNSCQRNQSS)

which is used by Olivier and Serrato for their axiomatisation of Dedekind categories [OS80,
0S95] (see also the next section) and there called Dedekind formula — by Jacques Riguet,
however, this name had much earlier been attached to the formula proved in the next
proposition [Rig48|. Paul Lorenzen called it Bund-Aziom [Lor54].

Proposition 1.1.4 Both modal rules
QRNS C Q(RNQ™S) (m1)
QRNS T (QNSR)R (m2)
together are equivalent to the Dedekind rule

QRMNSC (QNSR)(RNQSS) .

Proof: The modal rules follow immediately from the Dedekind rule:

| v o | @ISR
ernscnsmyrngs)c{ GRS

Conversely, assume that the modal rules hold. Then we have
@QRMS Q:(RMNQsS)NS (m1)

(@NS(RMNQ:S))(RMQTS) (m2)

(QMNSR)(RMQSS) . YO, V:UNVCV O

M I

1.1. FROM CATEGORIES TO RELATION ALGEBRAS 11

1.1.3 Distributive Allegories

To the structure presented so far, we now add the possibility of finding joins and a zero
together with distributivity of composition over joins.

Definition 1.1.5 A distributive allegory is a tuple

C = (Objc, Morgy, _: _+ _,1,57,M,U, 1) where the following hold:
i) The tuple (Objc, Morcy, _: _ <+ _,1,57,1) is an allegory, the so-called underlying

allegory of C.

—

ii) Every homset Home[A, B] carries the structure of a distributive lattice with Li4 5 for
join, and zero element I 4 5.

iii) For all objects A, B and C and all morphisms @ : A < B, the zero law holds:
Qlpe=1Lac -
iv) For all Q : A+ B and R, R': B <> C, join-distributivity holds:

Q(RUR)=QRUQR . O

We mention a few easily derivable facts.

Proposition 1.1.6 Let Q,Q" : A < B and R : B +> C be morphisms in a distributive
allegory. Then:

i) Lip=Lpa.
i) LapR=Lac.
iil) (QUQ) =Q LUQ". =

For our Haskell module, the new class DistribAllegory only needs to add two components:

class Allegory all obj mor =>
DistribAllegory all obj mor | all -> obj, all -> mor where
join :: all -> mor -> mor -> mor

bottom :: all -> obj -> obj -> mor

Distributive allegories with only finite homsets are locally complete, according to the defi-
nition of [FS90, 2.22|:

Definition 1.1.7 A distributive allegory is locally complete if every homset is a complete
lattice, and if composition and finite intersection distribute over arbitrary unions: that is,
given R : A <+ B and {S; : B <+ C}ics one has Ri(| |,c; Si) = | ;e (R:S;). For empty I we
understand this to mean R 1L = 1. |

12 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

1.1.4 Division Allegories

Demanding properties usually attributed to a division operation characterises division al-
legories among distributive allegories.

Definition 1.1.8 [FS90| A division allegory is a distributive allegory where for arbitrary
relations S : A <> C and R : B +» C, the left residual S/R exists, defined by

QRCS < QLCS/R forallQ: A<~ B . O

On top of the left residual we may continue to define:

Definition 1.1.9 In a division allegory, the right residual may be defined via the left
residual:

Q\S:=(5/Q)

and fulfils a corresponding specification:
QRCS < RLCQ\S forall R: B+ C

The symmetric quotient is defined as the intersection of two residuals: For P : A «» B and
Q : A<+ C we have syq(P, Q) : B <> C with

syq(R,S) = R\SNR/S™ . O

This symmetric quotient has originally been defined in the context of heterogeneous relation
algebras [BSZ86, BSZ89| and is — modulo conversion of the arguments — exactly the
symmetric division as introduced by Freyd and Scedrov for division allegories [FS90, 2.35].

For concrete relations R and S, the symmetric quotient relates elements r from the range
of R with elements s from the range of S exactly if the inverse image of r under R is the
same as the inverse image of s under S, or, in the language of predicate logic:

(r,s) € syq(R, S) = Vr:(xz,r) € R (z,5) €S

(Riguet had introduced the unary operation of “noyeau” in the homogeneous setting, which
can now be seen as defined by noy(R) = syq(R, R), in [Rig48].)

class DistribAllegory all obj mor =>
DivisionAllegory all obj mor | all -> obj, all -> mor where

rres :: all -> mor -> mor -> mor
lres :: all -> mor -> mor -> mor
syq :: all -> mor -> mor -> mor

The conditions of meet-subdistributivity, join-distributivity and zero law listed for dis-
tributive allegories are not required in the axiomatisation of division allegories, since here
they can be deduced using the residuals.

On the other hand, residuals always exist in a locally complete distributive allegory, so
every locally finite distributive allegory is a division allegory.

1.1. FROM CATEGORIES TO RELATION ALGEBRAS 13

1.1.5 Dedekind Categories

Independent of Freyd and Scedrov, Olivier and Serrato defined a kind of relation categories
in [OS80] which differs from division allegories precisely by being what is called “locally
complete” in [FS90, 2.22]:

Definition 1.1.10 [OS80] A Dedekind category is a division allegory C where every homset
Homc[A, B] is a complete lattice with greatest element T 4 g, called universal relation. O

class DivisionAllegory ded obj mor =>
DedCat ded obj mor | ded -> obj, ded -> mor where
top :: ded -> obj -> obj -> mor

In contrast to [F'S90, 2.22|, the infinite variants of meet-subdistributivity and join-distribu-
tivity, which form part of the definition of local completeness, need not be listed here, since
they follow from the complete lattice structure via the presence of residuals. On the other
hand, the full definition of local completeness implies the existence of residuals [FS90,
2.315], such that a Dedekind category is just a locally complete distributive allegory.

We still separate the Haskell definitions of distributive allegories, division allegories and
Dedekind categories since these Haskell definitions themselves are equally adequate to deal
with infinite structures, and may also prove useful for that purpose. It is only our tests
that rely on finiteness.

1.1.6 Relation Algebras

If all morphisms of a Dedekind category have complements, the Dedekind category is
equivalent to a Schréder category:

Definition 1.1.11 A Schrider category [OS80, Jon88| is a Dedekind category where every
homset is a Boolean lattice. O

The complement of a relation R is written R.

It is well-known that in a distributive allegory with Boolean lattices as homsets, the
Dedekind rule is equivalent to the Schroder equivalences:

QRC S = Q35SCR = SR CQ
for all relations Q) : A <> B, R: B <> Cand S : A > C. For the first direction, it is sufficient
to show that with the Dedekind rule, @:R C S implies ()5S C R: assume R C S, then
that is equivalent to QsRM S = I, and we have

QSSTTRCEQH(SMQR) = 1L .

14 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

Conversely, assume that the Schroder equivalences hold. Then [SS85b]| shows:
QR

(QNSRHIU(QMSR))((RNQ:S)U(RMQS)) Boolean lattice
(QNSRB(RMNQSS) U (QMS:R)(RMNQ™S)

U (QNSR)B(RNQSS)U(QNSR)(RMQSS) join-distributivity
C (QHS;RV);(RHQV;S) UQ:QsS U SRR YU,V :UNVCU
C (QNSR):(RNQ:S)US Schréder

yielding the Dedekind rule @Q:RMS C (QMS:R)s(RMQ™S) via Boolean lattice properties.

Furthermore, the Schroder equivalences allow us to calculate:

Q:RC S = SSRCQ = QC SR

Therefore, we have S/R = SR, so that in Schréder categories the residual is defined a
priori and need not be listed in the axiomatisation.

The concept of Schroder categories can be considered as a slightly relaxed variant of the
following, older, concept of heterogeneous relation algebras:

Definition 1.1.12 A heterogeneous relation algebra [Sch77, Sch8la, SS89, SS93| is a
Schroder category where every homset is an atomic and complete Boolean lattice. O

In many contexts, non-triviality of the Boolean lattices is also demanded, namely T 45 #
1 4 for all objects A and B, and also the following rule:

Definition 1.1.13 The Tarsk:i rule holds in a heterogeneous relation algebra iff
R#ELyp <= TeuRTep=Tcop

holds for all A, B,C,D : Obj, and R : A+ B. O

Both of these constraints, however, are inappropriate for our search for computationally
relevant non-standard relation algebras, so they are not included in the definition here.

Obviously, a Schroder category with finite homsets is always a heterogeneous relation
algebra, so we directly introduce an interface for the latter:

class DedCat ra obj mor => RelAlg ra obj mor | ra -> obj, ra -> mor where
compl :: ra -> mor -> mor

1.2 Data Structures and Tests

Although the multi-parameter-class interface presented in the last section might look quite
attractive at first sight, it has several drawbacks. Most obviously, the use of a non-standard
extension to Haskell brings about portability problems. Also, since there is not yet a

1.2. DATA STRUCTURES AND TESTS 15

universally accepted design for multi-parameter classes, their use is always prone to future
changes of supporting implementations.

The natural solution would be an ML-style module system. Since this is not available in
Haskell, we resort to a translation of module types into record data types, where types
contained in the module become type parameters of the record type constructor.

This approach makes the translation of the classes of the last section into explicit dictionary
records straightforward. We use prefixes to separate the name spaces, and to ease a class-
like use, we explicitly import superclass members into subclasses by straightforward selector
composition.

We use abbreviated type names in order to avoid name conflicts with the class names of
the previous section, since, in Sect. 1.4, we are going to enable access to the constructions
presented here via those class interfaces. In implementations that support multi-parameter
type classes with functional dependencies (such as Hugs), we can therefore seamlessly
integrate the class view of the last section and the explicit dictionary view of this section.

1.2.1 Preliminaries

This is the central module of our relation algebra library, and there is nothing to hide here.
We do, however, import a few utilities from Haskell’s standard libraries, on from our own
prelude extensions ExtPrel listed in Sect. A.3:

module RelAlg where

import qualified IO(hFlush, stdout)
import Maybe (listToMaybe)
import ExtPrel(listEqAsSet)

1.2.2 Testing

We shall define numerous tests that allow to check whether the structures we introduce
are well-defined, or whether certain laws hold or not.

In either case, a negative result should indicate in which way the test failed, so we define
a uniform test result structure that can hold all information for a single failure case in the
context of a single category or relation algebra:

type Instance obj mor = (String, [obj], [mor])

The semantics of such an Instance does of course heavily depend on its production site.
But we find that this is detailed and simple enough both for the test programmer and for
the test user.

We display Instances with every component on a line of its own:

showsInstance :: (Show obj, Show mor) => Instance obj mor -> ShowS

16 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

showsInstance (s,os,ms) r = foldr (\s’ r> -> 8’ ++ ’\n’ : r’) r
(s : case os of [1 -> []
[o] -> [" Object: " ++ show o]

_ -> " Objects:" : map (indent . show) os
++ case ms of [] -> []
[m] -> [" Morphism: " ++ show m]
_ -> " Morphisms:" : map (indent . show) ms)
where indent s’ =" " ++ g’
showInstance :: (Show obj, Show mor) => Instance obj mor -> String

showInstance i = showsInstance i ""

A simplistic approach would let individual test cases produce results of type [Instancel
and then concatenate these to the complete test result. Since concatenation may incur
quadratic running time costs, we use the standard technique to replace concatenation with
function composition and let individual test cases return results of the following type (in
analogy to the prelude type ShowS = String -> String):

type TestResult obj mor = [Instance obj mor] -> [Instance obj mor]

As in the case of ShowS, function composition now acts as a low-cost binary concatenation
operator on expressions of type TestResult.

Typically, we shall generate TestResults via the following function:

test :: Bool -> [obj] -> [mor] -> String -> TestResult obj mor
test b os ms s =\ is -> if b then is else (s,os,ms) : is

Sometimes, however, presence of a result is an indication that certain other tests need not
be performed; for these circumstances we provide a variant operating on lazy TestResult
lists:

testX :: Bool -> [obj] -> [mor] -> String ->
[TestResult obj mor] -> [TestResult obj mor]
testX b os ms s = \ crs -> if b then crs else [((s,0s,ms):)]

As in the case of ShowS, functions of type TestResult never inspect their argument, but
return it with maybe some additional Instances consed onto its beginning.

For testing any individual property, usually a whole list of TestResults is produced, and
we concatenate them with the following instance of foldr:

ffold :: [a -> al] -> a -> a
ffold 1 r = foldr idr 1

In our tests, we then use this at the type

ffold :: [TestResult obj mor] -> TestResult obj mor.

1.2. DATA STRUCTURES AND TESTS 17

For tests that check structures like categories or relation algebras for consistency or for
occurrence of certain special configurations, we then may use the following type, where s
is a binary type constructor:

type Test s obj mor = s obj mor -> TestResult obj mor

The most frequent use of tests will be to perform them interactively for inspecting the
results:

perform :: (Show obj, Show mor) => Test c¢c obj mor -> c obj mor -> I0 ()
perform t ¢ = printTestResults (t c)

Since the output for every instance may be quite verbose, we currently only output the
first three test result Instances:

printTestResults :: (Show obj, Show mor) => TestResult obj mor -> I0 ()
printTestResults t = case map showsInstance $ t [] of

[-> putStrLn "No results."

1 -> putStr $ ffold (take 3 1) ""

For situations where all results are needed, we also provide:

performAll :: (Show obj, Show mor) => Test ¢ obj mor -> ¢ obj mor -> I0 ()
performAll t ¢ = printAllTestResults (t c)

printAllTestResults :: (Show obj, Show mor) => TestResult obj mor -> I0 ()
printAllTestResults t = do

putStrLn "=== Test Start ==="
mapM_ (putStrFlush . showInstance) (t [1)
putStrLn "=== Test End ==="

putStrFlush s = putStr s >> I0.hFlush I0.stdout
Sometimes, however, we are only interested whether there are any results or not:

noResults :: Test ¢ obj mor -> ¢ obj mor -> Bool
noResults t ¢ = null (t ¢ [1)

1.2.3 Categories

We now turn to the data structures representing categories etcetera. We define them as
record data types, using as field labels (i.e. also as selector functions) the corresponding
method names prefixed with a lower-case variant of the type name (which we also use as
the constructor name):

18 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

data Cat obj mor = Cat

{cat_isObj :: obj -> Bool

,cat_isMor :: obj -> obj -> mor -> Bool
,cat_objects :: [obj]

,cat_homset :: obj -> obj -> [mor]
,cat_source :: mor -> obj

,cat_target :: mor -> obj

,cat_idmor :: obj -> mor

,cat_comp ! mor -> mor -> mor

}

We organise the consistency test for categories into four groups:

i) One object: Consistency of object list and of identity as a morphism

)
ii) Two objects, one morphism: Consistency of morphism list, identity properties
)

iii) Three objects, two morphisms: Well-definedness of composition

iv) Four objects, three morphisms: Associativity of composition

We generate the result lists via do expressions in the list monad; with respect to list
comprehension this has the advantage that local variables are introduced before they are
used. Since return in the list monad is just the singleton function, we usually directly write
singletons instead of return since this saves space and serves as an additional reminder that
the do expressions are in the list monad.

Keeping the tests in separate do expressions has the advantage of better readability, and
also the advantage that different failures of one property are grouped closer together.
However it incurs a slight runtime cost. Later we will usually join the tests of different
complexity into nested do expressions. Then, failures will be grouped essentially according
to the objects and morphisms involved in them.

All the tests included in this report are decision procedures for finite categories. Although it
is perfectly possible to use diagonalisation to obtain semi-decision procedures for countable
categories, the overhead would incur significant running-time and readability costs for the
finite case, which is the case we are interested in.

cat_TEST :: (Eq obj, Eq mor) => Test Cat obj mor
cat_TEST ¢ =
let isObj = cat_isObj c
isMor = cat_isMor c¢
objs = cat_objects ¢
homset = cat_homset c
source = cat_source C
target = cat_target ¢
idmor = cat_idmor c¢
(") = cat_comp ¢
in ffold (let al = "identity "

1.2. DATA STRUCTURES AND TESTS

a2 = al ++ "has inconsistent " in
do o <- objs

let i = idmor o

[test (isObj o) [o] [1 "object

test (source i == o) [o] [i] (a2 ++

test (target i == o) [o] [i] (a2 ++

test (isMor o o i) [o] [i] (a1l ++
)

ffold (let al = "homset contains "

19

list contains non-object"
"source")

"target")

"is non-morphism")]

a2 = al ++ "morphism with inconsistent " in

do s <- objs
let sId = idmor s
t <- objs
let os = [s,t]
let tId = idmor t
m <- homset s t

[test (source m == s) os [m] (a2 ++ "source")

test (target m == t) os [m] (a2 ++ "target")

test (isMor s t m) os [m] (al ++ "non-morphism")

test (sId ~ m == m) os [sId,m] "left-identity violated"
test (m ~ tId == m) os [m,tId] "right-identity violated"]

)
ffold (let al = "composition yields "

a2 = al ++ "morphism with inconsistent " in

do ol <- objs

02 <- objs
f <- homset ol 02
03 <- objs

let os = [01,02,03]
g <- homset 02 03
letm=f " g

let ms = [f,g,m]

[test (source m == o0l1) os ms (a2 ++ "source")
test (target m == 03) os ms (a2 ++ "target")
test (isMor ol 03 m) os ms (al ++ "non-morphism")]

) .
ffold (do ol <- objs
02 <- objs
f <- homset ol 02
03 <- objs

g <- homset 02 03

let fg=1f ~ g

04 <- objs

let os = [01,02,03,04]
h <- homset 03 o4

let gh=g "~ h

let k1 = f =~ gh

let k2 = fg "~ h

20 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

[test (k1 == k2) os [f,g,h,fg,gh,kl,k2]
"non-associative composition"]

1.2.4 Functors

Functors are category homomorphisms and therefore an important tool for establishing
relations between different categories. Unfortunately, the prelude defines “Functor” as
class name for endofunctors in the category of Haskell types and Haskell functions — we
resolve the name clash with the prelude class Functor by using the abbreviation Fun.

Furthermore, for the time being we want to work with the Test datatype from above, and
we want the objects and morphisms of the source category to appear in the TestResults
— this determines the reversed order of the type arguments to the Fun type constructor:

data Fun obj2 mor2 objl morl = Fun
{fun_obj :: objl -> obj2
,fun_mor :: morl -> mor2

}

Since we align the direction of functor composition with the direction of our categorical
composition, the twisted type of functors “recovers” the usual twisted type of composition:

funcomp :: Fun obj2 mor2 objl morl ->
Fun obj3 mor3 obj2 mor2 ->
Fun obj3 mor3 objl moril
Fun fol fml ‘funcomp‘ Fun fo2 fm2 = Fun (fol $$$ fo2) (fml $$$ fm2)

(8) :: (@ ->Db) -> (b ->¢c) -> (a -> ¢)
f$$g=\x->g (f x)

Testing whether a functor data structure does indeed represent a functor is divided into
three steps:

i) One object: Testing well-formedness of the object mapping, and preservation of
identities

ii) Two objects, one morphism: Testing well-formedness of the morphism mapping

iii) Three objects, two morphisms: Testing preservation of composition.

functor_TEST :: Eq mor2 => Cat objl morl -> Cat obj2 mor2 ->
Test (Fun obj2 mor2) objl morl
functor_TEST cl1 c2 fun =
let objectsl = cat_objects cil
homsetl = cat_homset cl
idmorl = cat_idmor cl

1.2. DATA STRUCTURES AND TESTS 21

(*) = cat_comp cli

is0bj2 = cat_isObj c2
isMor2 = cat_isMor c2
idmor2 = cat_idmor c2

(=") = cat_comp c2

fo = fun_obj fun
fm = fun_mor fun

in ffold (do

sl <- objectsl

let 82 = fo s1

let isl = idmorl sl

let is2 = idmor2 s2

testX (is0bj2 s2) [s1] [] "functor yields non-object" §

[test (fm isl == is2) [s1] [is1l] "functor does not preserve identity"]

) . ffold (do

sl <- objectsl

let s2 = fo sl

tl <- objectsl

let t2 = fo t1

f1 <- homsetl s1 t1

[test (isMor2 s2 t2 (fm f1)) [s1, t1] [f1] "functor yields non-morphism"]
) . ffold (do

sl <- objectsl

tl <- objectsl

f1 <- homsetl s1 t1

let £f2 = fm f1

ul <- objectsl

gl <- homsetl t1 ul

let g2 = fm gl

let hl1 = f1 =~ gl

[test (fm hl == (f2 ~~ g2)) [s1,t1,ul] [f1,gl]

"functor does not preserve composition"]

We also implement a straightforward test for checking whether some other functor £2 is
right-inverse with respect to ‘funcomp‘ to the test argument f1:

functor_rightinv_test :: (Eq morl, Eq objl) =>
Cat objl morl -> Cat obj2 mor2 ->
Fun objl morl obj2 mor2 ->
Test (Fun obj2 mor2) objl morl
functor_rightinv_test cl ¢c2 f2 f1 =
let objectsl = cat_objects cil
homsetl = cat_homset cl
fol = fun_obj f1
fo2 = fun_obj f2

22 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

fmil fun_mor f1
fm2 fun_mor £2
in ffold (do
ol <- objectsl
let 02 = fol ol
let ola = fo2 02
[test (ol == ola) [ol,o0lal [] "not right-inverse on objects"]
) . ffold (do
ol <- objectsl
02 <- objectsl
f1 <- homsetl o0l 02
let f2 = fm1 f1
let fla = fm2 £f2
[test (f1 == fla) [ol,02] [f1,fla] "not right-inverse on morphisms"]

1.2.5 Allegories

We already mentioned that records like those of the Cat obj mor datatype correspond to
method dictionaries. We now proceed to define the first subclass of categories, and we
include the Cat dictionary as first entry in the subclass dictionary, or, mathematically,
explicitly include the base category as such:

data All obj mor = All

{all_cat :: Cat obj mor
,all_converse :: mor -> mor
,all_meet :: mor -> mor -> mor
,all_incl :: mor -> mor -> Bool
}

For transparent access to all parts of the mathematical structure (corresponding to the
flat tuples in the definitions) we transfer the superclass methods into the subclass via
composition with the superclass dictionary selector:

all_isObj = cat_isObj . all_cat -- :: obj -> Bool

all_isMor = cat_isMor . all_cat -- :: obj -> obj -> mor -> Bool
all_objects = cat_objects . all_cat -- :: [obj]

all_homset = cat_homset . all_cat -- :: obj -> obj -> [mor]
all_source = cat_source . all_cat -- :: mor -> obj

all_target = cat_target . all_cat -- :: mor -> obj

all_idmor = cat_idmor . all_cat -- :: obj -> mor

all_comp = cat_comp . all_cat -- !: mor -> mor -> mor

The consistency tests for allegories are organised into two large groups:

i) Two objects:

1.2. DATA STRUCTURES AND TESTS

ii)

(a) One morphism: Consistency of converse and idempotency of meet

23

(b) Two morphisms: Consistency and commutativity of meet, monotony of converse

and consistency with meet

(c) Three morphisms: Associativity and sub-distributivity of meet

Three objects:

(a) Two morphisms: Preservation of composition by converse

(b) Three morphisms: modal rule

The tests that are commented out are for properties that are implied by the other tests.

all_TEST ::

all_TEST c =
let (°) = all_comp ¢

in

conv = all_converse ¢
(<<==) = all_incl c
(&&&) = all_meet c
homset = all_homset c
objs = all_objects ¢
idmor = all_idmor c

(Eq obj, Eq mor) => Test All obj mor

convNPres = "converse does not preserve "

-- ffold (do s <- objs
-- let i = idmor s
- let i’ = conv i

-- [test (i == i?) [s] [i,i’] (convNPres ++ "identity")]

—-) .
ffold (let ci

"converse yields

¢2 = c1 ++ "morphism with inconsistent "

a2 = al ++ "morphism with inconsistent "

al = "meet yields "
a3 = "meet is not " in
do s <- objs
t <- objs

let os = [s,t]
f <- homset s t
let £fC = conv f
let ms_C = [f,fC]
(test (all_source c fC
test (all_target c fC
test (all_isMor c t s
let £CC = conv fC in
test (fCC == f) os
let £2 = f &&& £ in
test (f == f?)
) : do
g <- homset s t
let gC = conv g

== t) os ms_C
== g) os ms_C
fC) os ms_C
(ms_C++[fCC])

os [f,f’]

(c2
(c2
(c1
(c1

(a3

++

++

"source'")
"target")
"non-morphism")

"no involution")

"idempotent")

24 CHAPTER 1.

)

let m=f && g

let m”> = g &&& £

let ms = [f,g,m]

let mC = conv m

let cm = fC &&& gC

(test (all_source ¢ m == 8) o8 ms (a2 ++ "source")

test (all_target ¢ m == t) os ms (a2 ++ "target")
test (all_isMor ¢ s t m) os ms (al ++ "non-morphism")
test (m == m’) os (ms ++ [m’]) (a3 ++ "commutative")
test ((f == m) == (f <<== g)) os ms

(al ++ "inclusion inconsistency")

test (mC == cm) os (ms_C++[g,gC,mC,cm]) (convNPres ++ "meet")

test ((£C <<== gC) == (f <<== g)) os (ms_C++[gC])
"non-monotone conversion"
) : do
h <- homset s t
let m1 = m &&& h
let msl = [f,g,m,h,ml]
[let m2 = g &&& h
m2’? = f &&& m2 in

test (m2’ == m1) os (msl ++ [m2,m2’]) (a3 ++ "associative")

]
++ do
03 <- objs
k <- homset 03 s
let kf =k ~ f
let kg =k ~ g
let km =k " m
let mk = kf &&& kg
[test (km <<== mk) (03:0s) [k,f,g,km,mk]
"meet-subdistributivity violated"]

ffold (do ol <- objs

02 <- objs

03 <- objs

let os = [01,02,03]

g <- homset ol 02

let gC = conv g

h <- homset 02 03

let gh=g "~ h

let ghC = conv gh

let hC = conv h

let hCgC = hC =~ gC

test (ghC == hCgC) os [g,h,ghC,hCgC] "converse is no functor" :
f <- homset ol 03
[test ((f &&& gh) <<== (((f ~ hC) &&& g) ~ ((gC ~ f) &&& h)))

os [f,g,h] "Dedekind violation"]

[test ((f &&& gh) <<== (g ~ ((gC ~ £) &&& h)))

RELATION ALGEBRA DEFINITION AND EXPLORATION

do

1.2. DATA STRUCTURES AND TESTS 25

os [f,g,h] "violation of modal rule"]

|[FS90| define a representation of allegories to be a functor that preserves converse and
meet — preservation of meet implies monotony.

Other sources, including [BDM97|, define a relator to be a monotone functor between
tabular allegories — there, monotony implies preservation of converse.

Since we are particularly interested in non-tabular allegories, we still employ the name of
the latter, but define:

Definition 1.2.1 A relator is a monotone functor between allegories that preserves con-
verse. A representation of allegories is a relator that also preserves meets. a

relator_TEST, allrepr_TEST :: Eq mor2 => All objl morl -> All obj2 mor2 ->
Test (Fun obj2 mor2) objl morl

relator_TEST
allrepr_TEST

relator_TEST_frame False
relator_TEST_frame True

relator _TEST_frame :: Eq mor2 => Bool -> All objl morl -> All obj2 mor2 ->
Test (Fun obj2 mor2) objl morl
relator_TEST_frame allrepr cl c2 fun =
let objectsl = all_objects cil
homsetl = all_homset cil
(&&&) = all_meet ci
(&&&&) = all_meet c2
convl = all_converse cl
conv2 = all_converse c2
fo = fun_obj fun
fm = fun_mor fun
ident = if allrepr then "allegory representation" else "relator"
message s = ident ++ " does not preserve " ++ s
in ffold $ do
sl <- objectsl
t1l <- objectsl
let os = [s1,t1]
f1 <- homsetl s1 t1
let f2 = fm f1
let £1C = convl f1
let £2C = conv2 £2
test (f2C == fm f1C) os [f1,f1C] (message "converse")
(do gl <- homsetl sl t1
let g2 = fm gl
if allrepr
then let hl = f1 &&& gl
in [test (fm hl == (f2 &&&& g2)) os [fl,gl,hl] (message "meet")]
else let b = all_incl c2 f2 g2 || not (all_incl cl f1 gl)

26 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

in [test b os [f1,gl] (message "inclusion")]

We shall sometimes need to test whether two allegories are equivalent; for this we assemble
all relevant tests, creating a pair of TestResults of different types:

all_equiv_TESTS :: (Eq objl, Eq morl, Eq obj2, Eq mor2) =>
A1l objl morl -> All obj2 mor2 ->
Fun obj2 mor2 objl morl -> Fun objl morl obj2 mor2 ->
(TestResult objl morl, TestResult obj2 mor2)
all_equiv_TESTS al a2 f1 f2 =
let ¢l = all_cat al
c2 = all_cat a2
in (functor_TEST cl c2 f1 .
allrepr_TEST al a2 f1 .
functor_rightinv_test cl c2 f2 f1
,functor_TEST c2 c1 f2 .
allrepr_TEST a2 al f2 .
functor_rightinv_test c2 ¢l f1 £2
)

This naive procedure tends, however, to bind too much space; therefore we also define the
corresponding sequence of perform actions:

all_equiv_perform al a2 f1 f2 =
let cl1 = all_cat al
c2 = all_cat a2
in do perform (functor_TEST cl c2) f1
perform (functor_TEST c2 cl) f2
perform (allrepr_TEST al a2) f1
perform (allrepr_TEST a2 al) f2
perform (\ f1 -> functor_rightinv_test cl c2 f2 f1) f1
perform (\ f2 -> functor_rightinv_test c2 c1 f1 f2) f2

1.2.6 Distributive Allegories

Since all finite partial orders with a least element contain atoms, we include access to the
atoms already in the interface of distributive allegories. Since this is a derived concept, we
shall provide default definitions below.

data DistrAll obj mor = DistrAll

{distrAll_all :: All obj mor
,distrAll_bottom :: obj -> obj -> mor
,distrAll_join I! mor -> mor -> mor
,distrAll_atomset :: obj -> obj -> [mor]
,distrAll_atoms :: mor -> [mor]

}

1.2. DATA STRUCTURES AND TESTS

27

We introduce an abbreviation that allows to directly access the bottom relation from the
homset of a given morphism:

distrAll_bot da f

distrAll_isObj = cat_isObj
distrAll_isMor = cat_isMor
distrAll_objects = cat_objects
distrAll_homset = cat_homset
distrAll_source = cat_source
distrAll_target = cat_target
distrAll_idmor = cat_idmor
distrAll_comp = cat_comp
distrAll_cat = all_cat
distrAll_converse = all_converse
distrAll_meet = all_meet
distrAll_incl = all_incl

let s
t

distrAll_source da f
distrAll_target da f

in distrAll_bottom da s t

. distrAll_cat
. distrAll_cat
. distrAll_cat
. distrAll_cat
. distrAll_cat
. distrAll_cat
. distrAll_cat
. distrAll_cat

. distrAll_all
. distrAll_all
. distrAll_all
. distrAll_all

i1 obj ->
:: obj >
:: [obj]

11 obj ->
11 mor ->
:: mor ->
:: obj >
: mor ->
11 mor ->
:: mor ->
11 mor ->

Testing distributive allegories is organised in the following way:

Bool
obj

obj
obj
obj
mor
mor

mor
mor
mor

mor -> Bool

[mor]

mor

mor
Bool

i) Two objects, one morphism: Bottom consistency inside one homset, idempotency of

join

ii) Three objects one morphism: Zero law

iii) Two objects, two morphisms: Homset closed under join, commutativity and absorp-
tion laws

iv) Two objects, three morphisms:

v) Three objects, two morphisms:

distrAll_TEST ::

distrAll_TEST c¢ =
let objects =

(&&&)

crrn

(<<==

(Eq obj, Eq mor)

distrAll_objects c
distrAll_meet c
distrAll_join c

= distrAll_incl c

(~) = distrAll_comp c

homset = distrAll_homset ¢
= distrAll_isMor c
bottom = distrAll_bottom c

isMor

al
a2

"join yields

Distributivity of composition over join

al ++ "morphism with inconsistent "

=> Test DistrAll obj mor

Associativity of join, lattice distributivity

28 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

a3 = "join is not "
in ffold $ do
s <- objects
t <- objects
let os = [s,t]
let bot = bottom s t
testX (isMor s t bot) [s,t] [bot] "bottom is non-morphism"

$ do
f <- homset s t
let f2 =f ||| f
(test (bot <<== f) os [bot,f] "inconsistency of bottom wrt. inclusion" .
test ((bot ||| f£) == f) os [bot,f] "bottom not a unit for join" .
test (f == £’) os [f,f’] (a3 ++ "idempotent")
) : do

u <- objects

let botTU = bottom t u

let botSU = bottom s u

let fbot = £ =~ botTU

[test (fbot == botSU) os [f,botTU,fbot,botSU]

"zero-law violated"]
++ do
g <- homset s t
let j =1 |ll g
let j> =g |l £
let ms = [f,g,]j]
(test (distrAll_source ¢ j == s) os ms (a2 ++ "source")

test (distrAll_target ¢ j == t) os ms (a2 ++ "target")
test (isMor s t j) os ms (al ++ "non-morphism")
test (j == j’) os (ms ++ [j’]) (a3 ++ "commutative")
test (f &&& j == f) os ms "meet is not absorbing" .
test (f ||| (f &&& g) == f) os ms (a3 ++ "absorbing")
) : do

h <- homset s t

let ji =3 Ill h

let msl = [f,g,j,h,j1l]

let ml = j &&& h

let m2 = (f &&& h) ||| (g &&& h)
[let j2 = g lll h
j2r = £ |l j2 in

test (j2° == j1) os (ms1++[j2,j2’]1) (a3 ++ "associative")
test (ml == m2) os [f,g,h,ml,m2] "lattice not distributive"
]
++ do
03 <- objects
k <- homset 03 s
let kf =k =~ £
let kg =k " g
let kj = k = j

1.2. DATA STRUCTURES AND TESTS 29

let jk = kf ||| kg
[test (kj == jk) (03:0s) [k,f,g,kj,jk] "join-distributivity violated"]

From the above test, together with the allegory test, it follows that ' C G < F UG = G,
but this can also be tested separately:

distrAll_join_incl_TEST :: Eq mor => Test DistrAll obj mor
distrAll_join_incl_TEST c =
let objects = distrAll_objects c¢
(I'l11) = distrAll_join c
(<<== distrAll_incl c
homset = distrAll_homset ¢
in ffold $ do
8 <- objects
t <- objects
f <- homset s t
g <- homset s t
let j =1 |ll g
[test ((j == g) == (f <<==g)) [s,t] [f,g]
"inconsistency of join wrt. inclusion"]

A test for atomicity of a morphism only has to check all morphisms from the homset of
the morphism in question for inclusion in that morphism:

distrAll_isAtom :: Eq mor => DistrAll obj mor -> obj -> obj -> mor -> Bool
distrAll_isAtom da s t m =
let b = distrAll_bottom da s t
homs = distrAll_homset da s t

(<<==) = distrAll_incl da
in distrAll_isMor da s t m &&
m/=Db &&
all (\ m> -> (m> ==m) || (m’> == Db) || not (m’> <<== m)) homs

Filtering homsets with this test provides the default definition for atom lists:

distrAll_atomset_default all s t = filter (distrAll_isAtom all s t)
(distrAll_homset all s t)

It is a fact that every finite Boolean lattice is atomic, i.e., every lattice element is the join
of all atoms below it. Therefore, in a relation algebra the atom lists obtained by filtering
the global atom sets with inclusion are, when considered as sets, a unique representation
of the morphism in question. We provide these atom lists already here:

distrAll_atoms_default all m =
let s = distrAll_source all m
t = distrAll_target all m

in filter (\ at -> distrAll_incl all at m) $ distrAll_atomset all s t

30 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

Our separate test for the atom components assumes an ordering on morphisms for being

able to use a more efficient comparison:

distrAll_atomTEST :: Ord mor => Test DistrAll obj mor
distrAll_atomTEST da =
let objects = distrAll_objects da
in
ffold $ do
s <- objects
t <- objects
let os = [s,t]
let atoms = distrAll_atomset_default da s t
let atoms’ = distrAll_atomset da s t
test (atoms ‘listEqAsSet‘ atoms’) os atoms’ "inconsistent atom set"
do f <- distrAll_homset da s t
let ats = distrAll_atoms_default da f
let ats’ = distrAll_atoms da f
[test (ats ‘listEqAsSet¢ ats’) os (f : ats?)
"inconsistent atom representation"]

1.2.7 Division Allegories

Division allegories only add three division operators:

data DivAll obj mor = DivAll
{divAll_distrAll :: DistrAll obj mor

,divAll_rres :: mor -> mor -> mor
,divAll_lres :: mor -> mor -> mor
,divAll_syq :: mor -> mor -> mor
}

The symmetric quotient is defined on top of the residuals, which gives us the default

definition:

divAll_syq_default :: DivAll obj mor -> mor -> mor -> mor
divAll_syq_default da f g = let conv = divAll_converse da in
divAll_meet da (divAll_rres da f g)
(divAll_lres da (conv f) (conv g))

Each residual may be defined in terms of the other, i.e., f\g = (¢7/f") and g/h = (h"\g") ™

divAll_rres_lresDefault :: DivAll obj mor -> mor -> mor -> mor
divAll_rres_lresDefault da f g =

let conv = divAll_converse da

in conv (divAll_lres da (conv g) (conv f))

1.2. DATA STRUCTURES AND TESTS 31

divAll_lres_rresDefault :: DivAll obj mor -> mor -> mor -> mor
divAll_lres_rresDefault da g h =

let conv = divAll_converse da

in conv (divAll_rres da (conv h) (conv g))

For giving a default definition based on the residual properties, we need to be able to
find the inclusion-maximal element of a set of morphisms; for this purpose we define the
following auxiliary function:

poMax :: (a -> a -> Bool) -> a -> [a]l] -> a

-- Preconditions: ‘po‘ is a partial order

-- bot 1is the least element wrt. ‘po
-- the list contains a maximal element
poMax po bot [] = bot

poMax po bot [x] = x

poMax po bot (x:y:ys)

¢ [3

| x ‘po¢* y = poMax po y ys
| y ‘po¢ x = poMax po x ys
| otherwise = poMax po x ys -- Neither of x or y is the maximum,

-- but we do not try to catch errors.
-- Alternatively, we could use join here.

Translation of the residual specifications is now straightforward:

divAll_rres_inclDefault da f g =
let () = divAll_comp da
(<<==) = divAll_incl da
target = divAll_target da
s = target f
t = target g
ms = divAll_homset da s t
check m = (f ~ m) <<==
in poMax (<<==) (divAll_bottom da s t) (filter check ms)
divAll_lres_inclDefault da g h =
let () = divAll_comp da
(<<==) = divAll_incl da
source = divAll_source da
s = source g
t = source h
ms = divAll_homset da s t
checkm = (m ~ h) <<==g
in poMax (<<==) (divAll_bottom da s t) (filter check ms)

We provide separate tests for the different components, so that one may selectively test
only those not defined via default definitions:

divAll_rres_TEST :: Test DivAll obj mor

32 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

divAll_rres_TEST da =

let objects = divAll_objects da
homset = divAll_homset da
isMor = divAll_isMor da
(*) = divAll_comp da
(<<==) = divAll_incl da
rres = divAll_rres da

in ffold $ do
s <- objects

t <- objects
g <- homset s t
m <- objects
f <- homset s m

let r = f ‘rres‘ g
testX (isMor m t r) [s,m,t] [f,g,r] "right residual yields non-morphism" $
do
h <- homset m t
let tTh =f -~ h
[test ((h <<== r) == (fh <<== g)) [s,m,t] [g,f,r,h,fh]
"right residual property violated"]

Although the corresponding test for left residuals textually differs only in minor points, the
fact that these minor points affect the dependencies of the inner-most quantification and
several places depending on it implies that factoring out the common parts would incur
unreasonable costs in at least one of running time and readability.

divAll_l1res_TEST :: Test DivAll obj mor
divAll_lres_TEST da =
let objects = divAll_objects da
homset = divAll_homset da
isMor = divAll_isMor da
(*) = divAll_comp da
(<<==) = divAll_incl da
lres = divAll_lres da
in ffold $ do
s <- objects
t <- objects
g <- homset s t
m <- objects
h <- homset m t
let r = g ‘lres‘ h
testX (isMor s m r) [s,m,t] [r,g,h] "left residual yields non-morphism" §
do
f <- homset s m
let tTh =f -~ h
[test ((f <<==r) == (fh <<== g)) [s,m,t] [g,f,r,h,fh]
"left residual property violated"]

1.2. DATA STRUCTURES AND TESTS 33

The obvious and fast way to check the symmetric quotient is by verifying that its results
correspond to the definition via residuals:

divAll_syq_resTEST :: Eq mor => Test DivAll obj mor
divAll_syq_resTEST da =
let objects = divAll_objects da
homset = divAll_homset da
isMor = divAll_isMor da
conv = divAll_converse da
(&&&) = divAll_meet da
lres = divAll_lres da
rres = divAll_rres da
syq = divAll_syq da
in ffold $ do
s <- objects
m <- objects
f <- homset m s
t <- objects
let os = [s,m,t]
g <- homset m t
let g =8syq fg
let 1 rres f g
let r = lres (conv f) (conv g)
let ms = [f,g,q,1,r]
testX (isMor s t q) os ms "syQ yields non-morphism"
[test (@ == (1 &&& r)) os ms "syQ is not meet of residuals"]

However, the following definition of symmetric quotients also makes sense in the absence
of residuals (see [FK98|):

Definition 1.2.2 In an allegory, the symmetric quotient syq(Q@,S) : B <> C of two rela-
tions @ : A< B and S : A < C is defined by

X Csyq(@,S) <= @XLCS and X:S C Q" forall X : B+ C . O

This kind of symmetric quotient is of course usually a partial operation (it is obviously
univalent). The following function calculates this operation:

all_syq :: All obj mor -> mor -> mor -> Maybe mor
all_syq af g=
let objects = all_objects a
homset = all_homset a
isMor = all_isMor a
conv = all_converse a
(*) = all_comp a

34 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

(k== all_incl a
target = all_target a
s = target f
t = target g
check g x = (x <<==q) == (((f =~ x) <<==g) & ((g ~ conv x) <<== f))
syq q = all (check q) (homset s t)
in listToMaybe $ filter syq $ homset s t

A given binary partial operation on morphisms can be tested for inclusion in this symmetric
quotient by the following function:

all_syq_directTEST :: (mor -> mor -> Maybe mor) -> Test All obj mor
all_syq_directTEST syq a =
let objects = all_objects a
homset = all_homset a
isMor = all_isMor a
conv = all_converse a
() = all_comp a
(<<==) = all_incl a
in ffold $ do
s <- objects
m <- objects
f <- homset m s
t <- objects
let os = [s,m,t]
g <- homset m t
case syq f g of
Nothing -> []
Just q -> do
let ms = [f,g,q]
testX (isMor s t q) os ms "syQ yields non-morphism" $
do x <- homset s t

let 1 =£f ~ x <K== g
let r = x ~ conv g <<== conv f
[test ((x <<==q) == (1 && r)) os ms "syQ property violated"]

Finally, here is the definition of the expanded interface:

divAll_isObj = cat_isObj . divAll_cat -- :: obj -> Bool

divAll_isMor = cat_isMor . divAll_cat -- :: obj -> obj -> mor -> Bool
divAll_objects = cat_objects . divAll_cat -- :: [obj]

divAll_homset = cat_homset . divAll_cat -- :: obj -> obj -> [mor]
divAll_source = cat_source . divAll_cat -- :: mor -> obj

divAll_target = cat_target . divAll_cat -- :: mor -> obj

divAll_idmor = cat_idmor . divAll_cat -- :: obj -> mor

divAll_comp = cat_comp . divAll_cat -- :: mor -> mor -> mor

divAll_cat = all_cat . divAll_all

1.2. DATA STRUCTURES AND TESTS 35

divAll_converse = all_converse . divAll_all -- :: mor -> mor
divAll_meet = all_meet . divAll_all -- :: mor -> mor -> mor
divAll_incl = all_incl . divAll_all -- :: mor -> mor -> Bool
divAll_all = distrAll_all . divAll_distrAll

divAll_bottom = distrAll_bottom . divAll_distrAll -- :: obj -> obj -> mor
divAll_bot = distrAll_bot . divAll_distrAll -- :: mor -> mor
divAll_join = distrAll_join . divAll_distrAll -- :: mor -> mor -> mor
divAll_atomset = distrAll_atomset . divAll_distrAll -- :: obj -> obj -> [mor]
divAll_atoms = distrAll_atoms . divAll_distrAll -- :: mor -> [mor]

1.2.8 Dedekind Categories

data Ded obj mor = Ded
{ded_divAll :: DivAll obj mor
,ded_top :: obj -> obj -> mor
}

Note that, as mentioned above, every finite distributive allegory is already a Dedekind
category, so we can provide a default definition for top:

ded_top_default :: Ded obj mor -> obj -> obj -> mor
ded_top_default d s t = poMax (ded_incl d) (ded_bottom d s t) (ded_homset d s t)

In the same way as for bottom, we introduce an abbreviation that allows to directly access
the top relation from the homset of a given morphism:

ded_tp ded f = let s = ded_source ded f
t = ded_target ded f
in ded_top ded s t

The only item to test here is whether every morphism is indeed included in the top element
of its homset:

ded_top_incl_TEST :: Eq mor => Test Ded obj mor
ded_top_incl_TEST c¢ =
let objects = ded_objects ¢
top = ded_top ¢
(<<== ded_incl c
homset = ded_homset ¢
in ffold $ do
s <- objects
t <- objects
let tp = top s ¢t
test (ded_isMor c¢c s t tp) [s,t] [tp] "top is non-morphism" : do
f <- homset s t
[test (f <<== tp) [s,t] [f,tp] "inconsistency of top wrt. inclusion"]

36

CHAPTER 1.

Finally, here is the expanded interface:

ded_isObj
ded_isMor
ded_objects
ded_homset
ded_source
ded_target
ded_idmor
ded_comp

ded_cat
ded_converse
ded_meet
ded_incl

ded_distrAll

ded_all
ded_bottom
ded_bot
ded_join
ded_atomset
ded_atoms
ded_rres
ded_1lres
ded_syq

cat_is0bj
cat_isMor
cat_objects
cat_homset
cat_source
cat_target
cat_idmor
cat_comp

all_cat
all_converse .
all_meet
all_incl

divAll_distrAll

divAll_all
divAll_bottom

= divAll_bot

divAll_join
divAll_atomset
divAll_atoms
divAll_rres
divAll_lres
divAll_syq

. ded_cat
. ded_cat
. ded_cat
. ded_cat
. ded_cat
. ded_cat
. ded_cat
. ded_cat

. ded_all

ded_all

. ded_all
. ded_all

. ded_divAll

. ded_divAll
. ded_divAll
. ded_divAll
. ded_divAll
. ded_divAll
. ded_divAll
. ded_divAll
. ded_divAll
. ded_divAll

1.2.9 Relation Algebras

Not even every finite Dedekind category is a relation

complement is again a real step in advance:

data RA obj mor
:: Ded obj mor

{ra_ded

,ra_compl ::

}

= RA

mor -> mor

:: obj

11 mor
{1 mor
:: obj
{1 mor

. mor
.. mor
. mor

:: obj

11 mor
: obj
11 mor
! mor
11 mor
! mor

->
: obj ->
: [obj]
: obj ->
->
->
->
->
->
->
->
->
: mor ->
->
->
->
->
->
->

Bool
obj ->
obj ->
obj
obj
mor
mor ->
mor
mor ->
mor ->
obj ->
mor
mor ->
obj ->
[mor]
mor ->
mor ->
mor ->

RELATION ALGEBRA DEFINITION AND EXPLORATION

mor -> Bool

[mor]

mor

mor
Bool

mor

mor
[mor]

mor
mor
mor

algebra, so the introduction of the

The presence of the complement allows more concise default definitions for the residuals:

ra_rres_default ra f g =

let compl =

ra_lres_default ra f g =

let compl =

ra_compl ra in compl (ra_comp ra (ra_converse ra f) (compl g))

ra_compl ra in compl (ra_comp ra (compl f) (ra_converse ra g))

Testing the complement is straightforward testing of the properties FIF = I and FUF =

T

1.2. DATA STRUCTURES AND TESTS 37

ra_compl_TEST :: Eq mor => Test RA obj mor
ra_compl_TEST c =
let objects = ra_objects c

homset = ra_homset ¢

bot ra_bottom c

top = ra_top ¢

not = ra_compl c

(&&&) = ra_meet c

(I11) = ra_join ¢

in ffold $ do

s <- objects

t <- objects

let tp = top s ¢t

let bt = bot s ¢t

f <- homset s t

let fN = not £

testX (ra_isMor c¢ s t fN) [s,t] [fN] "complement yields non-morphism"
(let m = £ &&& fN

j=1f Il fN in

[test (m == bt) [s,t] [f,fN,m,bt] "meet with complement is not bottom"
test (j == tp) [s,t] [f,fN,j,tp] "join with complement is not top"

]
)

For relation algebras with default definitions for all division operators the following is
sufficient:

ra_TEST :: (Eq obj,Eq mor) => Test RA obj mor
ra_TEST ra =
cat_TEST (ra_cat ra)
all_TEST (ra_all ra)
distrAll_TEST (ra_distrAll ra)
ded_top_incl_TEST (ra_ded ra)
ra_compl_TEST ra

Otherwise, there is also a variant with the atom tests (which require Ord mor) and the
division tests included:

ra_TEST_ALL :: (Eq obj,0rd mor) => Test RA obj mor
ra_TEST_ALL ra =

cat_TEST (ra_cat ra)

all_TEST (ra_all ra)

distrAl11_TEST (ra_distrAll ra)

distrAll_atomTEST (ra_distrAll ra)

let da = ra_divAll ra in

divAll_rres_TEST da .

divAll_lres_TEST da .

divAll_syq_resTEST da .

38 CHAPTER 1.

ded_top_incl_TEST (ra_ded ra)
ra_compl_TEST ra

Finally, here is the expanded interface:

RELATION ALGEBRA DEFINITION AND EXPLORATION

ra_isObj = cat_isObj . ra_cat :: obj -> Bool
ra_isMor = cat_isMor . ra_cat : obj -> obj -> mor -> Bool
ra_objects = cat_objects . ra_cat :: [obj]

ra_homset = cat_homset . ra_cat : obj -> obj -> [mor]
ra_source = cat_source . ra_cat :: mor -> obj
ra_target = cat_target . ra_cat :: mor -> obj

ra_idmor = cat_idmor . ra_cat :: obj -> mor

ra_comp = cat_comp . ra_cat {: mor -> mor -> mor
ra_cat = all_cat . ra_all

ra_converse = all_converse . ra_all ! mor -> mor

ra_meet = all_meet . ra_all :: mor -> mor -> mor
ra_incl = all_incl . ra_all :: mor -> mor -> Bool
ra_all = ded_all . ra_ded

ra_bottom = ded_bottom . ra_ded :: obj -> obj -> mor
ra_bot = ded_bot . ra_ded :: mor -> mor

ra_join = ded_join . ra_ded :: mor -> mor -> mor
ra_atomset = ded_atomset . ra_ded : obj -> obj -> [mor]
ra_atoms = ded_atoms . ra_ded :: mor -> [mor]

ra_top = ded_top . ra_ded : obj -> obj -> mor
ra_tp = ded_tp . ra_ded ! mor -> mor

ra_rres = ded_rres . ra_ded :: mor -> mor -> mor
ra_lres = ded_1res . ra_ded :: mor -> mor -> mor
ra_syq = ded_syq . ra_ded ! mor -> mor -> mor
ra_divAll = ded_divAll . ra_ded

ra_distrAll = ded_distrAll . ra_ded

1.2.10 Simple Example Algebras

The following four algebras are not studied because they are interesting themselves. Rather,
we need them as coefficients of matrix algebra constructions. So they are defined in a very
detailed way so as to be able to proceed smoothly to more complex structures.

Trivial Relation Algebras

The smallest relation algebra has just one object and one morphism. Sometimes the
definition of relation algebras requires that homsets be non-trivial Boolean lattices, but,
as already mentioned, we do not follow this here.

1.2. DATA STRUCTURES AND TESTS 39

Since we want to be able to talk about embedded relation algebras, we do not fix the object
and morphism type. Instead, we build a trivial relation algebra from arbitrary objects and
morphisms, as long as their types allow equality to be tested.

catl :: (Eq obj, Eq mor) => obj -> mor -> Cat obj mor
catl obj mor = Cat

{cat_isObj = (obj ==

,cat_isMor = const $ const $§ (mor ==

,cat_objects = [obj]

,cat_homset = const $ const [mor]
,cat_source = const obj
,cat_target = const obj
,cat_idmor = const mor

,cat_comp = const $ const mor
}

alll :: (Eq obj, Eq mor) => obj -> mor -> All obj mor
alll obj mor = All

{all_cat = catl obj mor

,all_converse = id

,all_meet = const $ const mor

,all_incl = const $ const True

}

distrAlll :: (Eq obj, Eq mor) => obj -> mor -> DistrAll obj mor
distrAlll obj mor = DistrAll

{distrAll_all = alll obj mor

,distrAll_bottom = const $ const mor

,distrAll_join = const $ const mor

,distrAll_atomset = const $ const []

,distrAll_atoms = const []

}

divAll1l :: (Eq obj, Eq mor) => obj -> mor -> DivAll obj mor
divAlll obj mor = DivAll

{divAll_distrAll = distrAllil obj mor

,divAll_rres = const $ const mor

,divAll_lres = const $ const mor

,divAll_syq const $ const mor

}

dedl :: (Eq obj, Eq mor) => obj -> mor -> Ded obj mor
dedl obj mor = Ded

{ded_divAll = divAlll obj mor

,ded_top = const $ const mor

}

40 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

ral :: (Eq obj, Eq mor) => obj -> mor -> RA obj mor
ral obj mor = RA

{ra_ded = dedl obj mor

,ra_compl = id

}

Two-Element Relation Algebras

In the same way, we may define two-element relation algebras, where one morphism is
bottom and the other morphism is identity and top at the same time:

cat2 :: (Eq obj, Eq mor) => obj -> mor -> mor -> Cat obj mor
cat2 obj bot id = Cat

{cat_isObj = (obj ==

,cat_isMor = comnst $ const $§ (\ mor -> bot == mor || id == mor)

,cat_objects = [obj]

,cat_homset = const $ const [bot,id]

,cat_source = const obj

,cat_target = const obj

,cat_idmor = const id

,cat_comp = (\ f g ->if f == id then g else bot)

}

all2 :: (Eq obj, Eq mor) => obj -> mor -> mor -> All obj mor
all2 obj bot i = let c2 = cat2 obj bot i
in All
{all_cat = c2
,all_converse = id
,all_meet = cat_comp c2
,all_incl = (\ f g -> f == bot || g == i)
X

distrAll2 :: (Eq obj, Eq mor) => obj -> mor -> mor -> DistrAll obj mor
distrAll2 obj bot i = DistrAll

{distrAll_all = all2 obj bot i

,distrAll_bottom = const $ const bot

,distrAll_join = (\ £ g -> if f == bot then g else i)

,distrAll_atomset = const $ const [i]

,distrAll_atoms (\ f -> if £ == i then [i] else [])

}

divAl112 :: (Eq obj, Eq mor) => obj -> mor -> mor -> DivAll obj mor
divAll2 obj bot i = DivAll

{divAll_distrAll = distrAll2 obj bot i

,divAll rres = (\ f g -> if f == bot || g == i then i else bot)

1.2. DATA STRUCTURES AND TESTS

,divAll_lres =
,divAll_syq
3

|
~
~
0q
|
A\
[
Hh
Hh
|
Il
[

Il g == bot then i else bot)
then i else bot)

|
~
~
1
\4
.
Hh
Hh
1l
Il
0q

ded2 :: (Eq obj, Eq mor) => obj -> mor -> mor -> Ded obj mor

ded2 obj bot i = Ded
{ded_divAll = divAll2 obj bot i
,ded_top = const $ const i
}
ra2 :: (Eq obj, Eq mor) => obj -> mor -> mor -> RA obj mor

ra2 obj bot i = RA
{ra_ded = ded2 obj bot i
,ra_compl = (\ f -> if f == bot then i else bot)
}

The Relation Algebra B

41

The relation algebra B of truth values might now be defined as cat2 () False True. For

efficiency’s sake, we also give a direct definition:

catB :: Cat () Bool

catB = Cat
{cat_isObj = const True
,cat_isMor = const $ const $ const True
,cat_objects = [(O]
,cat_homset = const $ const [False, True]
,cat_source = const ()
,cat_target = const ()
,cat_idmor = const True
,cat_comp = (&&)
}

allB :: A1l () Bool
allB = All
{all_cat = catB
,all_converse = id
,all_meet = (&&)
,all_incl = (\ £ g -> g || not £f)
}

distrAllB :: DistrAll () Bool
distrAllB = DistrAll
{distrAll_all = allB

42 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

,distrAll_bottom = const $ const False

,distrAll_join = (|])

,distrAll_atomset = const $ const [Truel
,distrAll_atoms (\ £ -> if f then [True] else [])
}

divAl1lB :: DivAll () Bool

divAl1lB = DivAll
{divAll_distrAll = distrAllB
,divAll _rres = (\ f g -> not £ || g)
,divAll_1lres = (\ f g -> not g || £)
,divAll_syq (==
}

dedB :: Ded () Bool

dedB = Ded
{ded_divAll = divAl1lB
,ded_top = const $ const True
}

raB :: RA () Bool
raB = RA
{ra_ded = dedB
,ra_compl = not

}

(n+ 1)-Element Linearly Ordered Dedekind Categories

We now give a set of examples of “discretely fuzzy” Dedekind categories which are not
relation algebras. As in B, there is only one object and the identity is the maximum mor-
phism, but there is a linearly ordered set of morphisms below the identity. For simplicity,
we use initial segments [0 .. n] of the natural numbers as homsets.

Composition coincides with meet and is the minimum:

catN :: Eq obj => obj -> Int -> Cat obj Int

catN obj n = Cat
{cat_isObj = (obj ==
,cat_isMor = const $ const $ (\ k -=> 0 <= k && k <= n)
,cat_objects = [obj]

,cat_homset = const $ const [0 .. n]
,cat_source = const obj

,cat_target = const obj

,cat_idmor = const n

,cat_comp = min

}

1.2. DATA STRUCTURES AND TESTS 43

Conversion is the identity function on morphisms:

allN :: Eq obj => obj -> Int -> All obj Int
allN obj n = All

{all_cat = catN obj n

,all_converse = id

,all_meet = min

,all_incl = (=)

}

Join is of course maximum, and the only atom is 1:

distrAllN :: Eq obj => obj -> Int -> DistrAll obj Int
distrAllN obj n = da where
da = DistrAll

{distrAll_all = allN obj n
,distrAll_bottom = const $ const O
,distrAll_join = max
,distrAll_atomset = (\ s t -> if n > O then [1] else [])
,distrAll_atoms = (\f -> if £ > 0 then [1] else [])
}

For residuals, we use the defaults:

divAllN :: Eq obj => obj -> Int -> DivAll obj Int
divAllN obj n = da where
da = DivAll

{divAll_distrAll = distrAllN obj n
,divAll_rres = divAll_rres_inclDefault da
,divAll_lres divAll_lres_inclDefault da
,divAll_syq divAll_syq_default da
}

Maximum morphisms are trivial again:

dedN :: Eq obj => obj -> Int -> Ded obj Int
dedN obj n = Ded

{ded_divAll = divAllN obj n

,ded_top = const § const n

}

Just for fun, we also define a relation algebra constructor with a bogus complement function
which will only work for n € {0, 1}.

raN :: Eq obj => obj -> Int -> RA obj Int
raN obj n = RA

{ra_ded = dedN obj n

,ra_compl = (n -)

}

44 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

Consequently, ra_TEST_ALL (raN () 2) fails in ra_compl_TEST, exhibiting the middle
morphism which has no complement.

1.3 Properties and Interesting Configurations

We start the definition of tests with some very simple ones, since it is important to look
for all the details, too.

module Properties where

import RelAlg

1.3.1 Simple Morphism Properties

The following tests for the categorical definition of monomorphisms:

cat_isMono :: Eq mor => Cat obj mor -> mor -> Bool
cat_isMono ¢ m = noResults (cat_mono_TEST m) ¢

cat_mono_TEST :: Eq mor => mor -> Test Cat obj mor
cat_mono_TEST h ¢ =
let objects = cat_objects ¢
homset = cat_homset c
() = cat_comp ¢
s cat_source c h
t = cat_target c h
in ffold $ do
a <- objects
let homs = homset a s
f <- homs
g <- homs
let th=f ~h
let gh=g "~ h
[test ((fh == gh) == (f == g)) [a,s,t] [f,g,h,fh,gh] "mono counterexample'"]

The dual then tests for epimorphisms:

cat_isEpi :: Eq mor => Cat obj mor -> mor -> Bool
cat_isEpi ¢ m = noResults (cat_epi_TEST m) c

cat_epi_TEST :: Eq mor => mor -> Test Cat obj mor
cat_epi_TEST h c =
let objects = cat_objects ¢
homset = cat_homset c
(*) = cat_comp c
8 = cat_source ¢ h

1.3. PROPERTIES AND INTERESTING CONFIGURATIONS

t = cat_target c h
in ffold $ do
c <- objects
let homs = homset t ¢
f <- homs
g <- homs
let hf = h = £
let hg =h " g

45

[test ((hf == hg) == (f == g)) [s,t,c] [h,f,g,hf , hg] "epi counterexample"]

In allegories, we already have the usual relational definitions of univalence, totality, injec-

tivity, and surjectivity:

all_univalent_TEST m a =
let mC = all_converse a m

t = all_target am

iT = all_idmor a t
mCm = all_comp a mC m

in test (all_incl a mCm iT) [all_source a m, t] [m,mC,mCm,iT]

all_injective_TEST m a =
let mC = all_converse a m

s = all_source a m

iS = all_idmor a s
mmC = all_comp a m mC

in test (all_incl a mmC iS) [s, all_target a m] [m,mC,mmC,iS]

all_total _TEST m a =
let mC = all_converse a m
s = all_source a m
iS = all_idmor a s
mmC = all_comp a m mC

in test (all_incl a iS mmC) [s, all_target a m] [m,mC,mmC,iS]

all_surjective_TEST m a =
let mC = all_converse a m
t = all_target a m
iT = all_idmor a t
mCm = all_comp a mC m

in test (all_incl a iT mCm) [all_source a m, t] [m,mC,mCm,iT]

Of these, we also provide Boolean variants:

= noResults (all_univalent_TEST
= noResults (all_injective_TEST
noResults (all_total_TEST

all_isUnivalent
all_isInjective
all_isTotal
all_isSurjective
all_isMapping

[R N VA
B B B BB
I

m)
m)
m)

= noResults (all_surjective_TEST m)
= all_isUnivalent a m && all_isTotal a m

a
a
a
a

"not univalent"

"not injective"

"not total"

"not surjective"

46 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

Sometimes it may be interesting what the non-trivial mappings in an allegory are; here
we offer an accordingly restricted version of all_homset and a function that collects all
non-trivial mappings of an allegory into a TestResult:

all_mappings a s t = let
in filter (all_isMapping a) $ all_homset a s t

all_mapTest :: (Eq obj, Eq mor) => Test All obj mor

all_mapTest a = let
objects = all_objects a

in ffold $ do
s <- objects
t <- objects
let nold = if s /= t then id else let i = all_idmor a s in filter (/= i)
let ms = nold $ all_mappings a s t
case ms of [] -> []
_ -> [test False [s,t] ms "mappings"]

The same can be done for functions; since we consider not only identities, but also empty
relations as trivial functions, the test has a separate variant for distributive allegories:

all_functions a s t = let
in filter (all_isUnivalent a) $ all_homset a s t

all_funTest :: (Eq obj, Eq mor) => Test All obj mor
all_funTest a = let
objects = all_objects a
in ffold $ do
s <- objects
t <- objects
let noId = if s /= t then id else let i = all_idmor a s in filter (/= i)
let ms = nold $ all_functions a s t
case ms of [1 -> []
_ -> [test False [s,t] ms "functions"]

distrAll_funTest :: (Eq obj, Eq mor) => Test DistrAll obj mor
distrAll_funTest a = let
objects = distrAll_objects a
in ffold $ do
s <- objects
t <- objects
let nold = if s /= t then id
else let i = distrAll_idmor a s in filter (/= i)
let ms = filter (/= (distrAll_bottom a s t)) $ nold
$ all functions (distrAll_all a) s t
case ms of [] -> []
_ -> [test False [s,t] ms "functions"]

1.3. PROPERTIES AND INTERESTING CONFIGURATIONS 47

If R: A<« B is injective and total, then RsR~ = I 4, so R is obviously mono. It is also
trivial that every mono has to be total. But it is not so easy to see that, in general, not
every mono has to be injective, so we write a quick test:

all_mono_inj_TEST a =

let objects = all_objects a
homset = all_homset a
isMono m = cat_isMono (all_cat a) m
isTot m = all_isTotal a m
isInj m = all_isInjective a m

in ffold $ do

s <- objects

t <- objects

m <- homset s t

let mono = isMono m

let inj = isInj m

[test (mono <= inj) [s,t] [m] "mono, but not injective"]

A monomorphism which is not injective is the following Boolean 2 x 3-matrix:

This is one of the smallest Boolean matrices with this property; in most of the relation
algebras of the third chapter, all monomorphisms are injective.

1.3.2 Homogeneous Relations

We also provide a few tests for frequently-used properties of homogeneous relations (all
without checking for homogeneity):

all_reflexive_TEST m a
let s = all_source a m
iS = all_idmor a s

in test (all_incl a iS m) [s] [m,iS] "not reflexive"

all_coreflexive TEST m a =
let s = all_source a m
iS = all_idmor a s
in test (all_incl a m iS) [s] [m,iS] "not coreflexive"

all_symmetric_TEST m a =
let mC = all_converse a m
in test (all_incl a m mC) [all_source a m] [m,mC] "not symmetric"

all_transitive_TEST m a =
let mm = all_comp amm

48 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

in test (all_incl a mm m) [all_source a m] [m,mm] "not transitive"

all_antisymmetric_TEST m a =
let mC = all_converse a m
x = all_meet a m mC
s = all_source a m
iS = all_idmor a s
in test (all_incl a x iS) [s] [m,mC,x,iS] "not antisymmetric"

all_reflexive_TEST m a . all_transitive_TEST m a
all_preorder_TEST m a . all_antisymmetric_TEST m a
all_preorder TEST m a . all_symmetric_TEST m a

all_preorder_TEST ma
all_order_TEST m a
all_equivalence_TEST m a

all_isReflexive a m = noResults (all_reflexive_TEST m) a
all_isCoreflexive a m = noResults (all_coreflexive_TEST m) a
all_isSymmetric a m = noResults (all_symmetric_TEST m) a
all_isTransitive a m = noResults (all_transitive_TEST m) a
all_isAntisymmetric a m = noResults (all_antisymmetric_TEST m) a
all_isOrder a m = noResults (all_order_TEST m) a
all_isPreorder a m = noResults (all_preorder_TEST m) a
all_isEquivalence a m = noResults (all_equivalence_TEST m) a

1.3.3 Uniformity

Definition 1.3.1 A Dedekind category is called uniform if for all objects A, B, and C we
have
TasTee=Tac 0

In heterogeneous relation algebras, uniformity is implied by the Tarski rule. It is, however,
cheaper to test:

ded_uniform_TEST :: Eq mor => Test Ded obj mor
ded_uniform_TEST d =
let objects = ded_objects d
top = ded_top d
in ffold $ do
ol <- objects
02 <- objects
let t12 = top ol 02
03 <- objects
let t23 = top 02 03
let t13 = top ol 03
let t = ded_comp d t12 t23
[test (t == t13) [o01,02,03] [t12,t23,t13,t] "non-uniform"]

1.3. PROPERTIES AND INTERESTING CONFIGURATIONS 49

1.3.4 Units

According to [FS90, 2.15]:

Definition 1.3.2 An object U in an allegory is a partial unit if [;; is its maximum endo-
morphism. i is a unit if, further, every object is the source of a total morphism targeted
at U. An allegory is said to be unitary if it has a unit. |

Testing for partial units can be done in allegories, but is (usually) much more efficient in
Dedekind categories where there is immediate access to the maximum morphisms:

all_partialUnit_TEST :: obj -> Test All obj mor
all_partialUnit_TEST u a =
let iU = all_idmor a u
(<<==) = all_incl a
in ffold (do m <- all_homset a u u
[test (m <<== iU) [u] [iU,m] "identity is not maximal"])

ded_partialUnit_TEST :: Eq mor => obj -> Test Ded obj mor
ded_partialUnit_TEST u a =
let iU = ded_idmor a u
tU = ded_top a u u
in (test (iU == tU) [u] [iU,tU] "identity is not maximal")

For the unit test, we first of all need a totality test:
ded_isTotal d = all_isTotal (ded_all d)
Given a partial unit, we can test whether it is a unit with the following test:

all_partialUnit_unit_TEST :: obj -> Test All obj mor
all_partialUnit_unit_TEST u a = -- Precondition: u is partial unit
let objects = all_objects a
homset = all_homset a
check s = any (all_isTotal a) (homset s u)
in ffold $ do
s <- objects
[test (check s) [s,u] [] "no total morphism to unit"]

We integrate this test directly into the unit search functions; because of the different
complexity of the partial unit test we again provide this function both for allegories and
for Dedekind categories:

all_units :: All obj mor -> [obj]
all_units a =
let objects = all_objects a

20 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

homset = all_homset a
check u s = any (all_isTotal a) (homset s u)
punit u = noResults (all_partialUnit_TEST u) a
unit u = punit u && all (check u) objects

in filter unit objects

ded_units :: Eq mor => Ded obj mor -> [obj]
ded_units a =
let objects = ded_objects a
homset = ded_homset a
check u s = any (ded_isTotal a) (homset s u)
punit u = noResults (ded_partialUnit_TEST u) a
unit u = punit u && all (check u) objects
in filter unit objects

1.3.5 Tabulations

According to [FS90], a pair f, g of maps tabulates a morphism R iff
f5g=R and fif Mgg =1 .

Actually, it is sufficient to demand that f and g be univalent, since the second condition
implies their totality.

The heart of the tabulation test therefore has the following precondition: R : s <> t,
fip+s,g:p+t

is_tabulation :: (Eq mor) => All obj mor ->
obj -> obj -> mor ->
obj -> mor -> mor -> TestResult obj mor
is_tabulation a st rp f g =
let (°) = all_comp a
(&&&) = all_meet a
conv = all_converse a
os = [s,t,p]

fC = conv f
gC = conv g
fCg = fC ~ g

cc = (f ~ £C) &&& (g ~ g0
ip = all_idmor a p
in test (fCg == r) os [r,f,g,fCg]l "tabulation not correct"
. test (cc == ip) os [r,f,g,cc,ip] "tabulation not precise"

Since the non-standard algebras we are looking for are certainly not tabular, we do not
provide a test for tabularity.

1.3. PROPERTIES AND INTERESTING CONFIGURATIONS 51

1.3.6 Direct Products

It is well-known that the self-duality of categories of relations implies that categorical sums
are at the same time categorical products — in relation algebras with sets and concrete
relations, categorical sums are disjoint unions.

However, Cartesian products can be axiomatised appropriately on the relational level
[ZSB86, SS93]:

Definition 1.3.3 A direct product for two objects A and B is a triple (P, m, p) consisting
of an object P and two projections, i.e., relations 7w : P <> A and p : P <> B for which the
following conditions hold:

mom =1, pip=1, Tip=T , mr Npp =1 . O

In our product data type, we explicitly mention all three objects involved:
type Product obj mor = (obj,obj,obj,mor,mor)

The last two conditions for direct products are equivalent to saying that the projections
tabulate T 45, and we use this in our test:

ded_isNonemptyProduct :: (Eq obj, Eq mor) =>
obj -> obj -> obj -> mor -> mor -> Test Ded obj mor
ded_isNonemptyProduct a b p pA pB d =
let alleg = ded_all d
source = ded_source d
target = ded_target d
top = ded_top d
() = ded_comp d
-- (&&&) = ded_meet d
conv = ded_converse d
pAC = conv pA
pBC = conv pB
idmor = ded_idmor d
iA = idmor a
iB = idmor b
-- iP = idmor p

in

test (source pA == p) [p,al [pA] "inconsistent source of first projection" .
test (target pA == a) [p,al [pA] "inconsistent target of first projection" .
test (source pB == p) [p,b] [pB] "inconsistent source of second projection" .

test (target pB == a) [p,b] [pBl "inconsistent target of second projection" .
test (pAC ~ pA == iA) [a,p] [pA,pAC,iA]

"first projection not {univalent and surjectivel}" .
test (pBC ~ pB == iB) [b,p] [pB,pBC,iB]

52 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

"second projection not {univalent and surjectivel}" .
is_tabulation alleg a b (top a b) p pA pB
--test (pAC ~ pB == top a b) [a,p,b] [pAC,pB] "non-comprehensive product" .
--test ((pA ~ pAC) &&& (pB ~ pBC) == iP) [a,p,b] [pA,pAC,pB,pBC,iP]
-~ "product not {univalent and total}"

For the sake of speed, we use an integrated version of these tests when searching for
products; we also demand an ordering on objects and only return products over pairs of
objects inside that ordering:

ded_NonemptyProducts :: (Eq obj, Ord obj, Eq mor) =>
Ded obj mor -> [Product obj mor]
ded_NonemptyProducts d =
let objects = ded_objects d
homset = ded_homset d
top = ded_top d
() = ded_comp d
(&&&) = ded_meet d
conv = ded_converse d
idmor = ded_idmor d
in do p <- objects
let iP = idmor p
a <- objects
let iA = idmor a
pA <- homset p a
let pAC = conv pA
if pAC =~ pA /= iA then []
else do
b <- objects
let iB = idmor b
pB <- homset p b
let pBC = conv pB
if b < a || pBC ~ pB /= iB then []
else
if (pAC ~ pB == top a b)
&& ((pA ~ pAC) &&& (pB ~ pBC) == iP)
then [(a,b,p,pA,pB)]
else []

A simpler variant only checks whether two projections can be found for a given triple of
objects:

ded_NonemptyProductsl :: (Eq obj, Eq mor) => obj -> obj -> obj ->
Ded obj mor -> [Product obj mor]
ded_NonemptyProductsl a b p d =
let homset = ded_homset d
top = ded_top d
() = ded_comp d

1.3. PROPERTIES AND INTERESTING CONFIGURATIONS 53

(&&&) = ded_meet d
conv = ded_converse d
idmor = ded_idmor d
iP = idmor p
iA idmor a
iB = idmor b
in do pA <- homset p a
let pAC = conv pA
if pAC ~ pA /= iA then []
else do
pB <- homset p b
let pBC = conv pB
if pBC ~ pB /= iB then []
else
if (pAC ~ pB == top a b)
&& ((pA =~ pAC) &&& (pB ~ pBC) == iP)
then [(a,b,p,pA,pB)]
else []

For all direct products in relation algebras, the following inclusion holds:
PsROQS O (P MQsp)s(mRM pS).

The opposite inclusion
PsROQS C (P NQsp)s(mR M psS)

does not always hold. It is, however, trivial to prove it in the context of relations in the
classical sense. The inability to prove it relation-algebraically first came up in 1981, when
Rodrigo Cardoso prepared his diploma thesis [Car82| under the supervision of the second-
named author who convinced himself that this might indeed be impossible, who named
it the sharpness condition, and who conjectured that there might be “unsharp” models of
relation algebra.

For a relation algebra with an unsharp product, together with its history, see Sect. 3.2.
Since the search for computationally relevant models with unsharp products constitutes
a main motivation for our current endeavour, we need a test whether a given product is
unsharp:

ded_unsharp :: (Eq obj, Eq mor) => Product obj mor -> Test Ded obj mor
ded_unsharp (a,b,_,pA,pB) d =
let objects = ded_objects d
homset = ded_homset d
(=) = ded_comp d
(&&&) = ded_meet d
conv = ded_converse d
pAC = conv pA
pBC = conv pB
in ffold (do

o4 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

x <- objects
xA <- homset x a

let xAP = xA =~ pAC
xB <- homset x b
let xBP = xB ~ pBC

let xP = xAP &&& xBP
y <- objects

aY <- homset a y

let xAY = xA ~ aY
let pAY = pA =~ aY

bY <- homset b y

let xBY = xB ~ bY
let pBY = pB ~ bY
let pY = pAY &&& pBY
let xPY = xP = pY
let xY = xAY &&& xBY
[test (xPY == xY) [x,y] [xA,xB,aY,bY,xPY,xY] "unsharpness example"]

1.3.7 Standard Iterations

There is a well-developed theory of standard iterations for boolean matrices to be found
along with matching, assignment, games, correctness, etc. We will present tools for exe-
cuting these iterations in the general framework studied here.

To this end, we concentrate on pairs of antitone mappings occurring in relation algebras.
These mappings are usually determined by an obviously antitone relational construct, e.g.,
w — m(w) := Bsw based on the relation B : V «+ W. Many other antitone mappings are
conceivable.

Such pairs lead to interesting Galois correspondences of their fixed-points, and give rise to
iteration procedures. From the numerous application areas studied with relations in the
classical sense we mention the following:

given relations olv)= w(w)=
bi-matrix games B: W+ V,BVeW B Blsw
correctness B: V&V Bw w
minorants, majorants E :V <V Ew Ew
coverings Q:VeW Qv Qsw
independence Q:VeW Q75w Qw
assignment ACQRQ: Ve W Qv Aw

The antitone mappings are related to study questions such as the following:

1.3. PROPERTIES AND INTERESTING CONFIGURATIONS 95

BgqC q contraction partial correctness
q C Biq complement expansion total correctness
Bz T stability kernels, games
T C Bx absorption

Some of these classical iterations are presented in [SS85a, SS93|. Here, they are schemati-
cally transferred into the present setting.

O

fixedpoints

O
« O \%4 < - I W
. 7r(bOC) o . U(aoc)
O » O

O

fixedpoints

O

@«

Qg

Bounds and fixed-points of antitone mappings

We express o, m with the elementary operations of the respective algebra and apply them
to an appropriate starting configuration ag, by. Appropriate means that ay C 7(by) C a
and b C o(ag) C by, where a is the least fixed-point of p = Av.7(0(v)) and b is the greatest
fixed-point of ¢ = Aw.o(m(w)). This complicated condition is usually satisfied rather
trivially with ag = L and by = T . Nested iterations will then start with ag on the left and
by on the right:

a1 :=7(b;) biy1 :=0(a;) .

These iterations will end up in the following two sequences, one of which is ascending while

the other descends.
W a1 C...Caw Em(beo) Ea, bC 0(G0o) Cboo E ... C by C by.

The effect of the iteration is that the least fixed-point a of v — 7(c(v)) on the side started
with ag is related to the greatest fixed-point b of w — o(7(w)) on the side started from by.
The final situation obtained will be characterised by a = 7(b) and o(a) = b. It will always
produce another admissible starting configuration af := aeo, b := boo.

It is not clear from the beginning whether the iteration will reach the fixed-points in a finite
number of steps, as the mapping w — 7 (w), e.g., might not be continuous. In interesting
applications, however, this is the case; in particular in the finite case. (Of course this
iteration may also be executed the other way round, i.e., starting with T on the left and
with L on the right.)

The configuration is more specific in the homogeneous case. The sequences may meet each
other or may fail to do so.

o6 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

In any case, interesting investigations have been possible in the case of relations in the
classical sense. It is challenging to look for interpretations of similar results in the context
of the more general examples of relation algebras presented here.

The program module for standard iterations starts with a module heading.

module Iterations where

import RelAlg
import Matrix
import ExtPrel

Then the basic iterations along the well-known until-construct of Haskell with 1r for o
and rl for 7 are formulated.

antiFix :: (Eq a, Eq b) => (b -> a) -> (a -> b) -> (b,a) -> (b,a)
antiFix 1lr rl = untilFix f
where f (v,w) = (rl w, 1r v)

For reasons of monotony, the iteration will always terminate at the fixed-points in the finite
case; see [SS93, A.3.11].

The start may often be determined from the row and column number of the given basic
relations inserting | and T as appropriate.

startVector :: MatMor obj mor -> (obj -> obj -> mor’) -> MatMor obj mor’
startVector b tf = let (m,s,t) = unMatMor b
t? = head s

m’> = map ((:[1) . flip tf t?) t
in MatMor (m’,t,[t’])

We will now apply this general scheme to several applications.

Initial Part

A nice example for a fixed-point of antitone functionals is determining the initial part of a
relation along the lines of [SS93, 6.3.4]. (Remember, however, that for nonfinite relations
the concepts of being progressively finite and progressively bounded will be different.) The
two antitone functionals v — Bsv and w — W are given as follows:

antitoneFctlCorrl ra b = \ v -> ra_comp ra b $ ra_compl ra v
antitoneFctlCorr2 ra b = \ w -> ra_compl ra w -- independent of b!

Applying the general scheme, we obtain the initial part in the resulting pair of

initialPart ra b = antiFix (antitoneFctlCorrl ra b)
(antitoneFctlCorr2 ra b)
(startVector b ccFalse, startVector b ccTrue)

1.3. PROPERTIES AND INTERESTING CONFIGURATIONS 57

Bi-Matrix Games

Next, we look for solutions of bi-matrix games. Let two matrices B: V « W, B': W +& V
be given. The antitone functionals based on these relations are formed in quite a similar
manner.

antitonFctlGame ra = \ b -> (\ x -> ra_compl ra (ra_comp ra b x))

The solution of the game is then again determined following the general scheme.

antiFix (antitonFctlGame ra b)
(antitonFctlGame ra b?)
(startVector b’ ccTrue, startVector b ccFalse)
gameSolutINV ra b b’ = antiFix (antitonFctlGame ra b)
(antitonFctlGame ra b’)
(startVector b’ ccFalse, startVector b ccTrue)

gameSolution ra b b’

The final situation is characterised by the formulae a = Bsb and B’a = b for the game
iteration as well as for the inverted iteration. The respective smaller resulting relation gives
loss positions, while the larger ones indicate loss positions together with draw positions.

Matching and Assignment

An additional antimorphism situation is known to exist in connection with matching and
assignment. Let two matrices @, A : V <> W be given where A C () is univalent.

antitoneFctlAssign ra = \ b -> (\ x -> ra_compl ra (ra_comp ra b x))

assignSolution ra q lambda
= antiFix (antitoneFctlAssign ra (ra_converse ra q))
(antitoneFctlAssign ra lambda)
(startVector g ccFalse
,startVector (ra_converse ra lambda) ccTrue)

assignSolutINV ra q lambda
= antiFix (antitoneFctlAssign ra (ra_converse ra q))
(antitoneFctlAssign ra lambda)
(startVector q ccTrue
,startVector (ra_converse ra lambda) ccFalse)

In the classical case, the results of these iterations produce appropriate starting points, if
any, where to apply successfully the alternating chain procedure.

o8 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

Bounds wrt. Orderings
The following functions offer the possibility to calculate the majorants and the minorants

of a relation as well as least upper and greatest lower bounds, provided the corresponding
ordering is given as a first argument.

mi, ma, lub, glb :: DivAll obj mor -> mor -> mor -> mor

mi da ord m
ma da ord m

divAll_lres da ord (divAll_converse da m)
let conv = divAll_converse da
in divAll_lres da (conv ord) (conv m)

lub da ord m
glb da ord m

divAll_meet da maom (mi da ord maom) where maom = ma da ord m
divAll_meet da miom (ma da ord miom) where miom

mi da ord m

This might also be done using the antiFix-scheme presented in this section. From theo-
retical considerations, however, it is clear that these iterations will be stationary after one
step back and forth. This makes a direct computation the better choice.

Conclusion

It seems extremely interesting, to find out how these standard iterations behave if matrices
are taken the coefficients of which are drawn from other relation algebras. Do, e.g., matrices
over an interval algebra lead to steering algorithms? Will game algorithms over matrices
with pairs (interval, compass) give hints to escape games? Will there be targeting games?

1.4 Interoperability With the Class Interface

Although the class interface of Sect. 1.1 and the dictionary records of Sect. 1.2 are com-
pletely independent of each other, it is easy to obtain interoperability between the two
interfaces.

In this section we first instantiate the classes of Sect. 1.1 for the dictionary types of Sect. 1.2
in 1.4.1. We then show in 1.4.2 how to obtain explicit dictionaries from class interfaces,
and apply this to transfer the test functions defined in Sect. 1.2 from the dictionary setting
to the class setting in 1.4.3.

module RelAlgInstances where

import RelAlg

import RelAlgClasses
import Properties
import Atomset

1.4. INTEROPERABILITY WITH THE CLASS INTERFACE

1.4.1 Instantiating the Class Interface
Categories

instance Category (Cat obj mor) obj mor where

isObj = cat_is0bj
isMor = cat_isMor
objects = cat_objects
homset = cat_homset
source = cat_source
target = cat_target
idmor = cat_idmor
comp = cat_comp

instance Category (All obj mor) obj mor where

isObj = all_isO0bj
isMor = all_isMor
objects = all_objects
homset = all_homset
source = all_source
target = all_target
idmor = all_idmor
comp = all_comp

instance Category (DistrAll obj mor) obj mor where
isObj = distrAll_isObj
isMor = distrAll_isMor
objects = distrAll_objects
homset = distrAll_homset

source = distrAll_source
target = distrAll_target
idmor = distrAll_idmor
comp = distrAll_comp

instance Category (DivAll obj mor) obj mor where
isObj = divAll_isObj
isMor = divAll_isMor
objects = divAll_objects
homset = divAll_homset

source = divAll_source
target = divAll_target
idmor = divAll_idmor

comp divAll_comp

instance Category (Ded obj mor) obj mor where

isObj = ded_is0bj
isMor = ded_isMor
objects = ded_objects
homset = ded_homset

29

60 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

source = ded_source
target = ded_target
idmor = ded_idmor
comp = ded_comp

instance Category (RA obj mor) obj mor where

is0bj = ra_isObj
isMor = ra_isMor
objects = ra_objects
homset = ra_homset
source = ra_source
target = ra_target
idmor = ra_idmor
comp = ra_comp
Allegories

instance Allegory (All obj mor) obj mor where
converse = all_converse
meet = all_meet
incl all_incl

instance Allegory (DistrAll obj mor) obj mor where
converse = distrAll_converse
meet distrAll_meet
incl distrAll_incl

instance Allegory (DivAll obj mor) obj mor where
converse = divAll_converse
meet divAll_meet
incl divAll_incl

instance Allegory (Ded obj mor) obj mor where
converse = ded_converse
meet = ded_meet

ded_incl

incl

instance Allegory (RA obj mor) obj mor where
converse = ra_converse
meet ra_meet
incl ra_incl

Distributive Allegories

instance DistribAllegory (DistrAll obj mor) obj mor where
join = distrAll_join
bottom = distrAll_bottom

1.4. INTEROPERABILITY WITH THE CLASS INTERFACE

instance DistribAllegory (DivAll obj mor) obj mor where
join = divAll_join
bottom = divAll_bottom

instance DistribAllegory (Ded obj mor) obj mor where
join = ded_join
bottom = ded_bottom

instance DistribAllegory (RA obj mor) obj mor where
join = ra_join
bottom = ra_bottom

Division Allegories

instance DivisionAllegory (DivAll obj mor) obj mor where
rres = divAll_rres
lres = divAll_lres
syq = divAll_syq

instance DivisionAllegory (Ded obj mor) obj mor where
rres = ded_rres
lres = ded_lres

syq = ded_syq
instance DivisionAllegory (RA obj mor) obj mor where

rres = ra_rres
lres = ra_lres

syq = ra_syq
Dedekind Categories

instance DedCat (Ded obj mor) obj mor where
top = ded_top

instance DedCat (RA obj mor) obj mor where
top = ra_top

Relation Algebras

instance RelAlg (RA obj mor) obj mor where
compl = ra_compl

1.4.2 Reverse Instances

catDict :: Category cat obj mor => cat -> Cat obj mor
catDict ¢ = Cat

61

62 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

{cat_isObj = isObj c
,cat_isMor = isMor c
,cat_objects = objects ¢
,cat_homset = homset ¢
,cat_source = source c
,cat_target = target ¢
,cat_idmor = idmor c
,cat_comp = comp C

}

allDict :: Allegory all obj mor => all -> All obj mor
allDict a = All

{all_cat = catDict a

,all_converse = converse a

,all_meet = meet a

,all_incl

}

incl a

distrAllDict :: (DistribAllegory da obj mor, Eq mor) => da -> DistrAll obj mor
distrAllDict da = da’ where
da’ = DistrAll

{distrAll_all = allDict da

,distrAll_bottom = bottom da

,distrAll_join = join da

,distrAll_atomset = distrAll_atomset_default da’

,distrAll_atoms = distrAll_atoms_default da’

}

divAllDict :: (DivisionAllegory da obj mor, Eq mor) => da -> DivAll obj mor
divAllDict da = DivAll
{divAll_distrAll = distrAllDict da

,divAll_rres = rres da
,divAll_lres = lres da
,divAll_syq = syq da
}

dedDict :: (DedCat ded obj mor, Eq mor) => ded -> Ded obj mor
dedDict ded = Ded

{ded_divAll = divAllDict ded

,ded_top = top ded

}

1.4. INTEROPERABILITY WITH THE CLASS INTERFACE 63

raDict :: (RelAlg ra obj mor, Eq mor) => ra -> RA obj mor
raDict ra = RA

{ra_ded = dedDict ra

,ra_compl = compl ra

}

acatDict ::(DistribAllegory da obj mor, Ord obj, Eq mor) => da -> ACat obj mor
acatDict = distrAll_acat . distrAllDict

aallDict ::(DistribAllegory da obj mor, Ord obj, Eq mor) => da -> AAll obj mor
aallDict = distrAll_aall . distrAllDict

1.4.3 Transfer of Tests

Using these “dictionary explicators”, we can lift our testing machinery to the class setting:

category_TEST ::
(Category cat obj mor, Eq obj, Eq mor) => cat -> TestResult obj mor
category_TEST = cat_TEST . catDict

allegory_TEST ::
(Allegory all obj mor, Eq obj, Eq mor) => all -> TestResult obj mor
allegory_TEST = all_TEST . allDict

distribAllegory_TEST ::
(DistribAllegory da obj mor, Eq obj, Eq mor) => da -> TestResult obj mor
distribAllegory_TEST = distrAll_TEST . distrAllDict

distribAllegory_join_incl_TEST ::
(DistribAllegory da obj mor, Eq obj, Eq mor) => da -> TestResult obj mor
distribAllegory_join_incl_TEST = distrAll_join_incl_TEST . distrAllDict

divisionAllegory_rres_TEST, divisionAllegory_lres_TEST
, divisionAllegory_syq_resTEST
(DivisionAllegory da obj mor, Eq obj, Eq mor) => da -> TestResult obj mor
divisionAllegory_rres_TEST = divAll_rres_TEST . divAllDict
divisionAllegory_lres_TEST divAll_lres_TEST . divAllDict
divisionAllegory_syq_resTEST = divAll_syq_resTEST . divAllDict

allegory_syq_directTEST :: (Allegory all obj mor, Eq obj, Eq mor) =>
(mor -> mor -> Maybe mor) -> all -> TestResult obj mor
allegory_syq_directTEST syq = all_syq_directTEST syq . allDict

dedCat_top_incl_TEST ::
(DedCat ded obj mor, Eq obj, Eq mor) => ded -> TestResult obj mor
dedCat_top_incl_TEST = ded_top_incl_TEST . dedDict

64 CHAPTER 1. RELATION ALGEBRA DEFINITION AND EXPLORATION

relAlg_compl_TEST, relAlg TEST

(RelAlg ra obj mor, Eq obj, Eq mor) => ra -> TestResult obj mor
relAlg_compl_TEST = ra_compl_TEST . raDict
relAlg _TEST = ra_TEST . raDict

relAlg TEST_ALL
(RelAlg ra obj mor, Eq obj, Ord mor) => ra -> TestResult obj mor
relAlg TEST_ALL = ra_TEST_ALL . raDict

This makes the following direct queries possible:

HugsMain> perform category_TEST ra_McKenzie
No results.

HugsMain> perform allegory_TEST ra_LRNnoc
No results.

HugsMain> perform relAlg TEST_ALL ra_Winter
No results.

We also transfer other tests:

uniform_TEST :: (DedCat ded obj mor, Eq obj, Eq mor) => ded -> TestResult obj mor
uniform_TEST = ded_uniform_TEST . dedDict

allegory_partialUnit_TEST :: (Allegory all obj mor, Eq obj, Eq mor) =>
obj -> all -> TestResult obj mor
allegory_partialUnit_TEST u = all_partialUnit_TEST u . allDict

dedCat_partialUnit_TEST :: (DedCat all obj mor, Eq obj, Eq mor) =>
obj -> all -> TestResult obj mor
dedCat_partialUnit_TEST u = ded_partialUnit_TEST u . dedDict

allegory_partialUnit_unit_TEST :: (Allegory all obj mor, Eq obj, Eq mor) =>
obj -> all -> TestResult obj mor
allegory_partialUnit_unit_TEST u = all_partialUnit_unit_TEST u . allDict

dedCat_units :: (DedCat ded obj mor, Eq obj, Eq mor) => ded -> [obj]
dedCat_units = ded_units . dedDict

isNonemptyProduct :: (DedCat ded obj mor, Eq obj, Eq mor) =>
obj -> obj -> obj -> mor -> mor -> ded -> TestResult obj mor
isNonemptyProduct oA oB oP pA pB = ded_isNonemptyProduct oA oB oP pA pB . dedDict

nonemptyProducts ::
(DedCat ded obj mor, Ord obj, Eq mor) => ded -> [Product obj mor]
nonemptyProducts = ded_NonemptyProducts . dedDict

1.4. INTEROPERABILITY WITH THE CLASS INTERFACE

nonemptyProductsl :: (DedCat ded obj mor, Eq obj, Eq mor) =>
obj -> obj -> obj -> ded -> [Product obj mor]
nonemptyProductsl oA oB oP = ded_NonemptyProductsl oA oB oP . dedDict

unsharp :: (DedCat ded obj mor, Eq obj, Eq mor) =>

Product obj mor -> ded -> TestResult obj mor
unsharp p = ded_unsharp p . dedDict

Now we can directly formulate queries such as in the following session:

HugsMain> nonemptyProducts ra_Maddux
[(B,C,A,SetMor ({At1},A,B),SetMor ({Ati1},A,C))]

HugsMain> performAll (unsharp (head $ nonemptyProducts ra_Maddux)) ra_Maddux

=== Test Start ===
unsharpness example
Objects:
D
E
Morphisms:
SetMor ({At1},D,B)
SetMor ({At1},D,C)
SetMor ({At1},B,E)
SetMor ({At1},C,E)
SetMor ({At2},D,E)
SetMor ({At1, At2},D,E)
unsharpness example
Objects:
E
D
Morphisms:
SetMor ({At1},E,B)
SetMor ({At1},E,C)
SetMor ({At1},B,D)
SetMor ({At1},C,D)
SetMor ({At2},E,D)
SetMor ({At1, At2},E,D)
=== Test End ===

65

Chapter 2

Relation Algebra Construction

With tools of today such as RelView, we are able to exhaustively handle all the relations on
a H-element set or between a 4-element and a 6-element set on a computer, e.g. As there are
24%B relations between sets A and B, we should no pretend to be able to handle all these
relations appropriately in the same way. A closer look, however, makes clear, that much
less relations are being under consideration, namely those composed by union, intersection,
and composition of “rectangular” basic blocks. These in turn stem from conditions on the
first resp. on the second component of a pair. So the way a single relation from a relation
algebra is constructed deserves further study.

We investigate, therefore, product algebras, sub-algebras, matrix algebras, etc.

2.1 Product Algebras

The construction of product algebras, where all operations are defined component-wise,
is completely straightforward, only requiring an appropriate set of pair lifting functions
(prodF, prodFF, cprodFF, prodFFF, cprodFFF) all defined in Sect. A.3. We therefore do
not need to comment on the individual steps of the construction.

module Product where

import ExtPrel
import RelAlg

catProd :: Cat objl morl -> Cat obj2 mor2 -> Cat (objl,obj2) (morl,mor2)
catProd cl c2 = Cat

{cat_isObj = pairAnd . prodF (cat_isObj cl) (cat_isObj c2)
,cat_isMor = pairAnd ‘cprodFFF‘ (cat_isMor «c1) $ (cat_isMor <c2)
,cat_objects = listProd (cat_objects cli, cat_objects c2)
,cat_homset = listProd ‘cprodFF‘ (cat_homset c1) $ (cat_homset c2)
,cat_source = prodF (cat_source cl) (cat_source c2)
,cat_target = prodF (cat_target cl1) (cat_target c2)
,cat_idmor = prodF (cat_idmor c1) (cat_idmor c2)
,cat_comp = prodFF (cat_comp cl) (cat_comp c2)
}

allProd :: All objl morl -> All obj2 mor2 -> All (objl,obj2) (morl,mor2)
allProd c1 c2 = All

66

2.1. PRODUCT ALGEBRAS 67

{all_cat = catProd (all_cat c1l) (all_cat c2)

,all_converse = prodF (all_converse cl) (all_converse c2)
,all_meet = prodFF (all_meet cl) (all_meet c2)
,all_incl = pairAnd ‘cprodFF¢ (all_incl cl) $ (all_incl c2)
}

distrAllProd :: DistrAll objl morl -> DistrAll obj2 mor2 ->
DistrAll (objl,obj2) (morl,mor2)
distrAllProd cl c2 = let mkAtsl b = map (\a -> (a,b))
mkAts2 b = map (\a -> (b,a))
in DistrAll
{distrAll_all
,distrAll_bottom

allProd (distrAll_all c1) (distrAll_all c2)
prodFF (distrAll_bottom c¢1) (distrAll_bottom c2)
,distrAll_join prodFF (distrAll_join cl) (distrAll_join c2)
,distrAll_atomset (\ (s1,s82) (£1,t2) ->
mkAtsl (distrAll_bottom c2 s2 t2) (distrAll_atomset cl sl t1)
++ mkAts2 (distrAll_bottom cl si1 t1) (distrAll_atomset c2 s2 t2))
,distrAll_atoms = (\ (f1,f2) ->
mkAtsl (distrAll_bot c2 f2) (distrAll_atoms cl f1)
++ mkAts2 (distrAll_bot cl f1) (distrAll_atoms c¢c2 f2))

divAllProd :: DivAll objl morl -> DivAll obj2 mor2 ->
DivAll (objl,0bj2) (morl,mor2)
divAl1Prod cl1 c2 = DivAll
{divAll_distrAll = distrAllProd (divAll_distrAll c1) (divAll_distrAll c2)
,divAll_rres prodFF (divAll_rres cl) (divAll_rres c2)
,divAll_lres prodFF (divAll_lres c1) (divAll_lres c2)
,divAll_syq prodFF (divAll_syq cl1) (divAll_syq c2)
}

dedProd :: Ded objl morl -> Ded obj2 mor2 -> Ded (objl,obj2) (morl,mor2)
dedProd c1 c2 = Ded

{ded_divAll = divAllProd (ded_divAll c1) (ded_divAll c2)

,ded_top prodFF (ded_top cl) (ded_top c2)

}

raProd :: RA objl morl -> RA obj2 mor2 -> RA (objl,obj2) (morl,mor2)
raProd cl1 c2 = RA

{ra_ded = dedProd (ra_ded cl) (ra_ded c2)

,ra_compl = prodF (ra_compl cl) (ra_compl c2)

}

68 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

2.2 Sub-Algebras

Forming sub-algebras is another standard algebra construction mechanism. It is particu-
larly promising in connection with relation algebras, as it is known that one may sometimes
take a subset of all the available relations and will still maintain the basic structure.

module SubAlg where

import FiniteMaps
import Sets
import ExtPrel
import RelAlg

Our approach is to use an auxiliary SubCat data structure to contain the information
necessary to define a sub-algebra of a given algebra. From the mathematical point of view,
this additional information consists of the object set and of the homsets of the sub-algebra;
all operations are preserved.

Using Sub-Algebras

This information can then be used to obtain a sub-algebra from an algebra for all kinds of
algebras under consideration in this report:

sub_cat :: (0rd o, Ord m) => SubCat o m -> Cat om -> Cat onm
sub_all :: (0rd o, Ord m) => SubCat o m -> All om -> All om
sub_distrAll :: (0Ord o, Ord m) => SubCat o m -> DistrAll o m -> DistrAll o m
sub_divAll :: (0rd o, Ord m) => SubCat o m -> DivAll o m -> DivAll om
sub_ded :: (0rd o, Ord m) => SubCat o m -> Ded om -> Ded om
sub_ra :: (0Ord o, Ord m) => SubCat o m -> RA om ->RA om

Higher-level structures only add operations, so the only difference is in the underlying
structure of the next lower level. In the following functions we always assume the SubCat
structure to have been checked for closedness under the relevant operations and therefore
omit tests:

sub_ra s ¢ = ¢ {ra_ded = sub_ded s (ra_ded c)}
sub_ded s ¢ = ¢ {ded_divAll = sub_divAll s (ded_divAll c)}
sub_divAll s ¢ = ¢ {divAll_distrAll = sub_distrAll s (divAll_distrAll c)}
sub_distrAll s ¢ = ¢ {distrAll_all = sub_all s (distrAll_all c)}
sub_all s ¢ = ¢ {all_cat = sub_cat s (all_cat c)}

For categories, the sub-category obtains redefined object and homset components, but
inherits the unchanged operations:

sub_cat s@(SubCat objs hs) c = ¢
{cat_isObj = (\ o -> o ‘elemSet‘ objs)

2.2. SUB-ALGEBRAS 69

,cat_isMor (\abm->m ‘elemSet‘ lookupDftFM hs zeroSet (a,b))
,cat_objects = tolistSet objs

,cat_homset curry (toListSet . lookupDftFM hs zeroSet)

}

The preferred interface, however, takes an arbitrary SubCat data structure, closes it under
the relevant operations, and applies the above functions to obtain the corresponding sub-
algebra:

subCat :: (0rd o, Ord m) => SubCat o m -> Cat o m -> Cat om
subAll :: (0rd o, Ord m) => SubCat o m -> All om -> All om
subDistrAll :: (Ord o, Ord m) => SubCat o m -> DistrAll o m -> DistrAll o m
subDivAll :: (0rd o, Ord m) => SubCat o m -> DivAll o m -> DivAll o m
subDed :: (0rd o, Ord m) => SubCat o m -> Ded om -> Ded om
subRA :: (0rd o, Ord m) => SubCat o m -> RA om -> RA om

These functions are defined below, after introduction of the necessary machinery.

Sub-Algebra Closure Machinery

By introducing a very abstract and comprehensive interface to the SubCat data type, one
might be able to define sub-algebras without resorting to even Eq instances for the object
and morphism data types. However, we think this is not worth the effort. For the sake of
efficiency, we even demand Ord instances and do not consider this as a serious restriction
for the kind of uses we have in mind.

For obj and mor types in the Ord class we can directly implement the SubCat data type
via standard set and finite map data structures':

data SubCat obj mor = SubCat
{sub_objects :: Set obj
,sub_homset :: FiniteMap (obj,obj) (Set mor)
}

Simple lookup functions:

sub_isMor :: (Ord obj, Ord mor) => SubCat obj mor -> obj -> obj -> mor -> Bool
sub_isMor (SubCat objs mors) a b m =
case lookupFM mors (a,b) of
Nothing -> False
Just mors -> m ‘elemSet‘ mors

sub_isEmpty (SubCat objs hs) = isZeroSet objs && isZeroFM hs

!These are imported from the modules Sets and FiniteMaps taken from Manuel Chakravarty’s compiler
toolkit and slightly modified for our purposes. We prefer this variant over those provided by GHC (from
which they are derived) for portability reasons since they work with other Haskell implementations as well
and do not give rise to name clashes with GHC.

70 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

Adding a single morphism to some homset:

addToHomset :: (Ord obj, Ord mor) => obj -> obj -> mor
-> SubCat obj mor -> SubCat obj mor
addToHomset a b m (SubCat objs hs) = SubCat objs $ addToFM (a,b) mors’ hs
where mors’ = case lookupFM hs (a,b) of
Nothing -> unitSet m
Just mors -> addToSet m mors

Joining two (intermediate) SubCat data structures:
subcat_join (SubCat objsl hsl) (SubCat objs2 hs2) =
SubCat (objsl ‘joinSet® objs2) (foldFM f hsl hs2)
where f p ms hs = addToFM p ms’ hs
where ms’ = case lookupFM hs p of

Nothing -> ms
Just mors -> mors ‘joinSet‘ ms

type SubCatDiff obj mor = SubCat obj mor
type SubCatClosure obj mor = STFun (SubCat obj mor) Bool

SubCatClosures can be composed, yielding the conjunction of the intermediate results:

scComp :: (Ord obj, Ord mor) =>
SubCatClosure obj mor -> SubCatClosure obj mor ->
SubCatClosure obj mor
scComp f g = do bl <- £
b2 <- g
return (bl && b2)

SubCatClosures will usually be created via scStep from a function calculating an incre-
mental SubCatDiff from an intermediate SubCat:

scStep :: (Ord obj, Ord mor) =>
(SubCat obj mor -> SubCatDiff obj mor) -> SubCatClosure obj mor
scStep f = STFun (\ s -> let d = f s

b = sub_isEmpty d
s’ = subcat_join s d
in (s’, b))

Applying a SubCatClosure means iterating it until the incremental difference is empty:

scClose :: (Ord obj, Ord mor) =>
SubCatClosure obj mor -> SubCat obj mor -> SubCat obj mor
scClose step s = fst $ applySTFun iter s
where iter = do b <- step
if b then return () else iter

2.2. SUB-ALGEBRAS 71

Sub-Algebra Closure Functions

After thus establishing the machinery, we now present the individual difference creation
functions; these are then used by the sub-algebra generators.

The simplest closure is creating a sub-category induced by a set of objects; this only has
to take all morphisms between those objects and needs not be iterated:

cat_homset_closeSubCatDiff :: (Ord obj, Ord mor) =>
Cat obj mor -> SubCat obj mor -> SubCatDiff obj mor
cat_homset_closeSubCatDiff c s =
let objects = toListSet $ sub_objects s
idmor = cat_idmor c
homset = cat_homset ¢
adds = do a <- objects
b <- objects
f <- homset a b
if sub_isMor s a b f then []
else [addToHomset a b f]
in foldr id (SubCat zeroSet zeroFM) adds

cat_homset_close :: (0Ord obj, Ord mor) =>
Cat obj mor -> SubCat obj mor -> SubCat obj mor
cat_homset_close ¢ s = s ‘subcat_join‘ cat_homset_closeSubCatDiff c s

A more dedicated function could eliminate the cost of morphism lookup, which is logarith-
mic in the sizes of the object set and of the homset in question. However, we postpone
this until it is felt to be a bottle neck.

For turning arbitrary SubCat data structures into legal sub-category descriptions, we first
of all have to make sure that all identities are present:

cat_id_closeSubCatDiff :: (Ord obj, Ord mor) =>
Cat obj mor -> SubCat obj mor -> SubCatDiff obj mor
cat_id_closeSubCatDiff ¢ s =
let objects = toListSet $ sub_objects s
idmor = cat_idmor c
notthere o i = not (sub_isMor s o o i)
in foldSet (\ o r -> let i = idmor o in if notthere o i
then addToHomset o o i r
else r)
(SubCat zeroSet zeroFM)
(sub_objects s)

Next we close the homsets under composition:

cat_comp_closeSubCatDiff :: (Ord obj, Ord mor) =>
Cat obj mor -> SubCat obj mor -> SubCatDiff obj mor

72 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

cat_comp_closeSubCatDiff ¢ s@(SubCat objs hs) =
let objects = toListSet $ sub_objects s
homset a b = tolListSet $ lookupDftFM hs zeroSet (a,b)
(") = cat_comp ¢
comps = do a <- objects
b <- objects
f <- homset a b
¢ <- objects
g <- homset b ¢
leth=1f " g
if sub_isMor s a c h then []
else [addToHomset a c hl]
in foldr id (SubCat zeroSet zeroFM) comps

These two are sufficient for sub-categories:

cat_closeStep :: (0Ord obj, Ord mor) => Cat obj mor -> SubCatClosure obj mor
cat_closeStep ¢ = scStep (cat_id_closeSubCatDiff c¢) ‘scComp®
scStep (cat_comp_closeSubCatDiff c)

subCat s ¢ = sub_cat (scClose (cat_closeStep c) s) ¢
For allegories, we have to close under conversion and meet:

all_conv_closeSubCatDiff :: (Ord obj, Ord mor) =>
All obj mor -> SubCat obj mor -> SubCatDiff obj mor
all_conv_closeSubCatDiff c s@(SubCat objs hs) =
let objects = tolListSet $ sub_objects s
homset a b = toListSet $ lookupDftFM hs zeroSet (a,b)
conv = all_converse c
(&&&) = all_meet c
convs = do a <- objects
b <- objects
f <- homset a b
let g = conv f
(if sub_isMor s b a g then id
else ((addToHomset b a g) :))
$ do
g <- homset a b
let h=f && g
if sub_isMor s a b h then []
else [addToHomset a b hl
in foldr id (SubCat zeroSet zeroFM) convs

all_closeStep :: (Ord obj, Ord mor) => All obj mor -> SubCatClosure obj mor
all_closeStep ¢ = cat_closeStep (all_cat c) ‘scComp®
scStep (all_conv_closeSubCatDiff c)

subAll s ¢ = sub_all (scClose (all_closeStep c) s) ¢

2.2. SUB-ALGEBRAS 73

For distributive allegories, we simultaneously add bottom morphisms and close under joins:

distrAll_closeSubCatDiff :: (Ord obj, Ord mor) =>
DistrAll obj mor -> SubCat obj mor -> SubCatDiff obj mor
distrAll_closeSubCatDiff ¢ s@(SubCat objs hs) =
let objects = toListSet $ sub_objects s
homset a b = toListSet $ lookupDftFM hs zeroSet (a,b)
bot = distrAll_bottom c
(I'l11) = distrAll_join c
adds = do a <- objects
b <- objects
let t = bot a b
(if sub_isMor s a b t then id else ((addToHomset a b t) :))
$ do
f <- homset a b
g <- homset a b
let h=f ||| g
if sub_isMor s a b h then []
else [addToHomset a b h]
in foldr id (SubCat zeroSet zeroFM) adds

distrAll_closeStep :: (Ord obj, Ord mor) =>
DistrAll obj mor -> SubCatClosure obj mor
distrAll_closeStep ¢ = all_closeStep (distrAll_all c) ‘scComp®
scStep (distrAll_closeSubCatDiff c)

subDistrAll s ¢ = sub_distrAll (scClose (distrAll_closeStep c) s) ¢

For division allegories, we only have to add left and right residuals — symmetric quotients
are added as intersections of those in the allegory step:

divAll_closeSubCatDiff :: (Ord obj, Ord mor) =>
DivAll obj mor -> SubCat obj mor -> SubCatDiff obj mor
divAll_closeSubCatDiff ¢ s@(SubCat objs hs) =
let objects = tolListSet $ sub_objects s
homset a b = toListSet $ lookupDftFM hs zeroSet (a,b)
lres = divAll_lres c¢
rres divAll_rres ¢
comps = do a <- objects
b <- objects
f <- homset a b
¢ <- objects
(do g <- homset a ¢
let h = g ‘rres‘ f
if sub_isMor s b c h then []
else [addToHomset b c h]

) ++ (do

74 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

g <- homset ¢ b
let h = f ‘lres‘ g
if sub_isMor s a b h then []
else [addToHomset a b h]
)
in foldr id (SubCat zeroSet zeroFM) comps

divAll_closeStep :: (Ord obj, Ord mor) => DivAll obj mor -> SubCatClosure obj mor
divAll_closeStep ¢ = distrAll_closeStep (divAll_distrAll c) “scComp*
scStep (divAll_closeSubCatDiff c)

subDivAll s ¢ = sub_divAll (scClose (divAll_closeStep c) s) c
For Dedekind categories, we only need to add top morphisms:

ded_closeSubCatDiff :: (Ord obj, Ord mor) =>
Ded obj mor -> SubCat obj mor -> SubCatDiff obj mor
ded_closeSubCatDiff ¢ s@(SubCat objs hs) =
let objects = toListSet $ sub_objects s
homset a b = tolListSet $ lookupDftFM hs zeroSet (a,b)
top = ded_top ¢
adds = do a <- objects
b <- objects
let t = topab
if sub_isMor s a b t then [] else [addToHomset a b t]
in foldr id (SubCat zeroSet zeroFM) adds

ded_closeStep :: (Ord obj, Ord mor) => Ded obj mor -> SubCatClosure obj mor
ded_closeStep ¢ = divAll_closeStep (ded_divAll c) ‘scComp*
scStep (ded_closeSubCatDiff c)

subDed s ¢ = sub_ded (scClose (ded_closeStep c) s) ¢

Complementation is the only operation we have to check for relation algebras:

ra_compl_closeSubCatDiff :: (Ord obj, Ord mor) =>
RA obj mor -> SubCat obj mor -> SubCatDiff obj mor
ra_compl_closeSubCatDiff ¢ s@(SubCat objs hs) =
let objects = toListSet $ sub_objects s
homset a b = toListSet $ lookupDftFM hs zeroSet (a,b)
compl = ra_compl c
adds = do a <- objects
b <- objects
f <- homset a b
let g = compl f
if sub_isMor s a b g then []
else [addToHomset a b g]
in foldr id (SubCat zeroSet zeroFM) adds

2.3. MATRIX ALGEBRA CONSTRUCTION 75

For relation algebra closure, we may skip the separate closure operators for division alle-
gories and Dedekind categories:

ra_closeStep :: (Ord obj, Ord mor) => RA obj mor -> SubCatClosure obj mor
ra_closeStep ¢ = distrAll_closeStep (ra_distrAll c) ‘scComp*
scStep (ra_compl_closeSubCatDiff c)

subRA s ¢ = sub_ra (scClose (ra_closeStep c) s) ¢

2.3 Matrix Algebra Construction

Concrete relations can usefully be represented as Boolean matrices. We have seen that the
Boolean algebra of truth values in itself can already be considered as a relation algebra,
the relation algebra of Boolean 1 x 1-matrices.

We now generalise the construction of matrix relation algebras to coefficients stemming
from arbitrary relation algebras, or, for simpler structures, to coefficients from distributive
allegories.

2.3.1 Matrix Categories

Given a base allegory or relation algebra, we now want to define matrix algebras over
this base. Objects of the matrix algebra are going to be lists of objects of the base, and
morphisms are going to be matrices of morphisms of the base, where source and target
depend on the position in the matrix.

Composition will be based on an appropriate variant of the skalar product: we have to use
composition as multiplication, and join as addition — therefore, already for defining just
a category of matrices, we need coefficients from a distributive allegory.

Theorem 2.3.1 If C = (Objcy, Morgy, _ = _ < _,1,5,7,M,U, 1) is a distributive alle-
gory, then a category Matc may be defined as follows:
e objects of Matc are finite sequences of objects of C,

e for two objects A = [Ai,..., A,] and B = [Bi,...,By] of Matc, the associated
homset HomMatC [A, B] contains all matrices (f;;)ie{1.....a},je{1,....5} for which for every

i€ {l,...,a} and every j € {1,...,b} the coefficient f;; is a homomorphism from A;
to B; in C,

e given three objects A = [A4,..., A,], B=[By,...,B], and C = [Cy,...,C.], and two
morphisms R : A — B, and S : B — C, their composition is defined by the following:

(R;S)z’,k = |_| (Ri,j;Sj,k) for all 2 € {1, ceey CL} and jE {1, ceey C},
je{l,...b)

e for an object A = [Ay,...,Ay], the identity morphism I4: A — A is defined by

I)”_{]IAZ. if i = j
AR L, if i # j

76 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

Proof: Well-definedness of identity and composition morphisms is obvious. Associativity
of composition and the identity properties are shown by standard matrix arguments as
follows.

Given four objects
A= [Al,...,Aa],B: [Bl,...,Bb],C = [Cl,...,CC], and D = [Dl,...,Dd],

and three morphisms R: A — B, S : B— C,and T : C — D, we can prove the associativity
of composition by the following calculation:

((R;S)iT)i,l
= Ly (B5S)ipTky)

I
C
N

=
=
A
&S
S

)
) join-distributivity in C

) associativity of composition in C
)

)

I
C
A > =

I
e
%
\j .

commutativity and associativity of join in C
join-distributivity in C

|
Y -
u@m
\—.”C:'g"'\
ﬂ??‘

(Blg)iy = Upeq,.n Bipls)i,)

Rip(I)ii Ulljeq, py—gy (Bii(Is)y,5)
Rijils, Uldjreqr,. iy (RiLs, 5;)
RijUllieq, m—gy Las;

Ri,j L JL.Aq;,Bj

= R,

Left-identity is shown in an analogous way. O

Note that the choice of composition for the multiplication of coefficients occurring in the
definition of composition is not arbitrary; it would be misguided to orient oneself at the
meet this composition degenerates to in the case of the simple Boolean lattice of truth
values. The meet would not even be well-defined since we have R;; : A; <> B; and
Sj,k : Bj e Ck.

For the time being, we use a simple list implementation of matrices, but we make it abstract
so that we can exchange it later for something more efficient. Therefore we have to provide
an explicit export list that makes the names of the abstract types Vec and MatMor available
to importing modules, but hides their implementation:

module Matrix(catMat,allMat,distrAllMat,divAllMat,dedMat,raMat
,Vec() ,vec,unVec,MatMor () ,matMor,unMatMor ,matMorMap, bM
,matMap,matZipWith
) where

import RelAlg

2.3. MATRIX ALGEBRA CONSTRUCTION 7

import List(nub)
import qualified List(transpose)

Objects are just lists of objects of the base category:

newtype Vec a
vec = Vec
unVec (Vec s)

Vec [a] deriving (Eq, Ord, Show, Read)

I
0

For the matrix itself we use the usual list-of-lists approach:

type Mat a = [[al]
matMap = map . map
matZipWith = zipWith . zipWith

It is important to note that we demand the following consistency condition: A matrix
representing a morphism R : [Ay,..., Ay] <> [B1,..., B is a list with exactly a elements
(called rows), each of which is a list containing exactly b elements. For ease of implemen-
tation we demand this also for cases where a or b are zero.

In order to be able to reconstruct source and target of a morphism even in these cases, we
need to include the source and target object lists with the matrix proper in our morphism

type:

newtype MatMor obj mor = MatMor (Mat mor, [objl, [objl)
deriving (Eq, Ord, Show, Read)

We export a variant of the constructor without checking the consistency condition; for this
purpose one may use cat_isMor from below:

matMor m s t = MatMor (m, s, t)
unMatMor (MatMor tr) = tr

matMorMap f (MatMor (m, s, t)) = MatMor (matMap f m, s, t)

bM m = let s = replicate (length m) ()
t = replicate (length (head m)) ()
in MatMor (m, s, t)

At the heart of the composition of matrices is the “skalar product”, which needs to be given
A, and C, along with the row [R,1,..., Ryp| and the column [S;,,...,S,,] because both
might be empty and we still need to find the correct bottom element:

skalprod :: DistrAll obj mor -> (obj,[mor]) -> (obj,[mor]) -> mor
skalprod da (a,msl) (b,ms2) =

foldr (distrAll_join da) (distrAll_bottom da a b) §$

zipWith (distrAll_comp da) msl ms2

78 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

We shall obtain the columns needed for the skalar products by transposition of the ma-
trix. Because of our consistency condition, we need to be careful when transposing empty
matrices, where we need non-empty results if the original target object vector is non-empty:

transpose :: MatMor obj mor -> MatMor obj mor
transpose (MatMor (m, s, t)) =
let m> = if null s then map (const []) t
else List.transpose m
in MatMor (m’, t, s)

An identity morphism is easily constructed:

matIdmor :: DistrAll obj mor -> [obj] -> Mat mor

matIdmor _ [] =[]

matIdmor all (a:as) =
(distrAll_idmor all a : map (\ a’ -> distrAll_bottom all a a’) as)
zipWith (\ a’ ms -> distrAll_bottom all a’ a : ms) as (matIdmor all as)

For generating the list of all morphisms (in the finite case only) we first use shape to
generate a matrix containing the respective object pairs:

shape :: [a] -> [b] -> Mat (a,b)
shape as bs = [[(a,b)]| b <- bs] | a <- as]

This matrix is then instantiated in all possible ways by providing the homset function as
first argument to the following:

instantiate :: (a -> [b]) -> Mat a -> [Mat b]
instantiate g m =
let -- inst’ :: [a] -> [[b]]
inst’ [1 = [[1]
inst’ (a:as) = [b:bs | b <- g a , bs <- inst’ as]
-- inst?’ :: [[a]] -> [Mat b]
inst?’’ [] = [[1]
inst’’ (as:ass) = [bs:bss | bs <- inst’ as, bss <- inst’’ ass]
in inst’’ m

That is all we need to define a matrix category:

catMat :: (Ord obj, Eq mor) => DistrAll obj mor -> [[obj]]
-> Cat (Vec obj) (MatMor obj mor)
catMat da objss = let
objs = map Vec $ nub objss
in Cat
{cat_is0bj
,cat_isMor

(‘elem‘ objs)
(\ (Vec s) (Vec t) (MatMor (mss, s’, t’)) ->

2.3. MATRIX ALGEBRA CONSTRUCTION 79

s ==28" && t == t’ &&
length mss == length s’ &&
let 1t = length t’ in
all (\ row -> length row == 1t) mss &&
and (do (a,ms) <- zip s mss
(b,m) <- zip t ms
return $ distrAll_isMor da a b m))

,cat_objects
,cat_homset

objs
(\ (Vec s) (Vec t) ->
let sh = shape s t
mats = instantiate (uncurry $ distrAll_homset da) sh
in map (\m -> MatMor (m,s,t)) mats)
(\ (MatMor (_,s,_)) -> Vec s8)
(\ (MatMor (_,_,t)) -> Vec t)
(\ (Vec s) -> MatMor (matIdmor da s, s, 8))

,cat_source
,cat_target
,cat_idmor

,cat_comp = (\ (MatMor (mssi1,s1,t1)) m2@(MatMor (_ ,s2,t2)) ->
if t1 /= s2
then error ("matrix composition type error " ++
show (length t1) ++ ’> ?> : show (length s2))
else let MatMor (mss2T,_,_) = transpose m2
mss2C = zip t2 mss2T
mkline msl = map (skalprod da msl) mss2C
mat = map mkline (zip s1 mssl)
in MatMor (mat, sl1, t2))
}

2.3.2 Matrix Allegories

With coefficients from a distributive allegory, the additional allegory operations are easily
added to a matrix category:

Theorem 2.3.2 If C = (Objo, Morq, _ = _ « _,1,57,M,, 1) is a distributive al-
legory, then Matc may be extended to an allegory by defining, for any two objects
.A: [Ala"':Aa] and B = [Bl,...,Bb],

e the converse of any morphism R : A <+ B as follows:
(R)ji= (Rij)” forallie {1,...,a} and j € {1,...,b},
e the meet of any two morphisms R, S : A <> B component-wise:
(RNS);;=Ri;NS;; forallie {1,...,a} and j € {1,...,b};
e inclusion between any two morphisms R, S : A <> B is then component-wise inclusion:

RES = ViE{l,...,a},jE{1,...,b}.Ri,]‘ESZ‘,j.

80 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

Proof: Definition of inclusion from meet, lattice properties of meet, distribution of converse
over meet, and that converse is an involution all follow directly from the component-wise
definitions.

Still to be checked are the following:

e distribution of converse over composition:

((RsS)).

I | | A 1 |
eSS
‘“(AAAQ. .EU
355550
> b =
> _/(¢

s

S

N

e meet-subdistributivity:

(Q(R11S))ik

L (Qiys(BT1S)jk)

LJ] (Cglj (Jsk r]éiﬂk))

LJ (CQLJ Jrk r]CQRJ 4k)

(I_I (Qi g Rie)) ML (QipSie)
(Q R)ik M (Q:S)ik
(QRTQsS)i

<.

[

e modal rule:

(QRT1S)ik iR)i |_|Sz',k

7 Q)I_lszk

ng],kﬂSzk)
1,J M Szk ()))
%,J ﬂSzk))

 ((

 (((R)

E 1,j Ml I_Ik' (w ,k"’ ()k’,j));Rj,k)
 ((

|
S

o nr

M (SsR)i) Rjk)
Q |_| SiR”)z J))‘Rj,k)
S:R)R); x 0

<

])]

I

—~

=L L
?Aﬁf—\/—\/-\/—\

For implementing the matrix allegory, we therefore need component-wise definitions for
meet and inclusion, and for conversion we not only have to transpose the matrix (carefully,
see above), but also converse every coefficient:

allMat :: (Ord obj, Eq mor) => DistrAll obj mor -> [[obj]]
-> A1l (Vec obj) (MatMor obj mor)
allMat da objss = All
{all_cat = catMat da objss
,all _converse = (\ ml -> let MatMor (m, s, t) = transpose ml
m’> = matMap (distrAll_converse da) m
in MatMor (m’, s, t))

2.3. MATRIX ALGEBRA CONSTRUCTION 81

(\ (MatMor (mssi,s1,tl1)) (MatMor (mss2,s2,t2)) ->
if s1 /= s2
then error ("matrix meet source type error")
else if t1 /= t2
then error ("matrix meet target type error")
else let mat = zipWith (zipWith (distrAll_meet da)) mssl mss2
in MatMor (mat,s1,t1))
(\ (MatMor (mssi,s1,tl)) (MatMor (mss2,s2,t2)) ->
if s1 /= 82
then error ("matrix inclusion source type error")
else if t1 /= t2
then error ("matrix inclusion target type error")
else all and $ zipWith (zipWith (distrAll_incl da)) mssl mss2)

,all_meet

,all_incl

2.3.3 Distributive Allegories

The component-wise definitions of the additional components bottom and join make most
of the required laws trivial:

Theorem 2.3.3 If C = (Obj, Morgy, _ = _ < _,L,57,M,1, 1) is a distributive al-
legory, then Matc may be extended to a distributive allegory by defining, for any two
objects A= [A;,..., A, and B = [By,..., By,

e the zero morphism I 45 : A <+ B as follows:
(J—A,B)i,j = JLAi,Bj for all z € {1, ey CL} and] € {]_, ceey b},
e the join of any two morphisms R, S : A <> B component-wise:

RUS),;, =R, ; US;; forallie {1,...,a} and j € {1,...,b}.
,‘7 7] "7

Proof: The lattice properties of join and the zero law are trivial; we only show join-
distributivity:
(@RU9)ix = L; (Qip(RUS)jk)
I_Ij (Qi(Rjx U Sjk))
L; (QijsRjk U Qi j5Sjik)
= (U (QipR;x)) UL (Qi3S)x)
= (QR)ix U (Q:S)in
= (QRUQ:S);y |

Accordingly, defining bottom is easy:

bottomMat da as bs = [bottomRow da a bs | a <- as]

bottomRow da a bs = map (distrAll_bottom da a) bs

82 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

To obtain a list of atoms — we treat the global atom list and the list of atoms contained
in a given morphism in parallel — is, however, slightly more effort:

atomMats da [] bs = []
atomMats da [a] bs = map (:[]) (atomRows da a bs)
atomMats da (a:as) bs =
map (: (bottomMat da as bs)) (atomRows da a bs) ++
map ((bottomRow da a bs) :) (atomMats da as bs)

atomsMats da [] bs _ = []
atomsMats da [a] bs [r] = map (:[]) (atomsRows da a bs r)
atomsMats da (a:as) bs (r:rs) =
map (: (bottomMat da as bs)) (atomsRows da a bs r) ++
map ((bottomRow da a bs) :) (atomsMats da as bs rs)
atomsMats _ _ _ _ = error "atomsMats"
atomRows da a [] = [[1]
atomRows da a [b] = map (:[]) (distrAll_atomset da a b)
atomRows da a (b:bs) =
map (: (bottomRow da a bs)) (distrAll_atomset da a b) ++
map ((distrAll_bottom da a b) :) (atomRows da a bs)

atomsRows da a [] _ (i1l
atomsRows da a [b] [m] = map (:[]) (distrAll_atoms da m)
atomsRows da a (b:bs) (m:ms) =
map (: (bottomRow da a bs)) (distrAll_atoms da m) ++
map ((distrAll_bottom da a b) :) (atomsRows da a bs ms)
atomsRows = error "atomsRows"

These definitions are not adequate if empty objects are involved, so we have to treat these
cases separately:

distrAllMat :: (Ord obj, Eq mor) => DistrAll obj mor -> [[obj]]
-> DistrAll (Vec obj) (MatMor obj mor)
distrAllMat da objss = DistrAll
{distrAll_all = allMat da objss
,distrAll_bottom = (\ (Vec s) (Vec t) ->
let mat = bottomMat da s t
in MatMor (mat, s, t))
,distrAll_join = (\ (MatMor (mssl,s1,tl)) (MatMor (mss2,s2,t2)) ->
if s1 /= 82
then error ("matrix join source type error")
else if t1 /= t2
then error ("matrix join target type error")
else let mat = zipWith (zipWith (distrAll_join da)) mssl mss2
in MatMor (mat,s1,t1))
,distrAll_atomset = (\ (Vec s) (Vec t) ->
if null s || null t then [] else

2.3. MATRIX ALGEBRA CONSTRUCTION 83

map (\ m -> MatMor (m,s,t)) $ atomMats da s t)
,distrAll_atoms = (\ (MatMor (m, s, t)) ->
if null s || null t then [] else
map (\n -> MatMor (m,s,t)) $ atomsMats da s t m)

2.3.4 Division Allegories

As we shall see, the definition of the residual coefficients is dual to the definition of the
composition coefficients. It therefore relies on meet, and, for empty intermediate objects,
also on the presence of top as the unit of meet.

Since we do not want to differentiate between matrix algebras with and without empty
objects, we therefore need coefficients from a Dedekind category:

Theorem 2.3.4 If C = (Objc, Morgy, _ : _ « L5711, 1L,\,/,T) is a Dedekind
category, then Matc may be extended to a division allegory by defining, for any three
objects A = [Ay,..., Ay, B = [B1,...,B], and C = [Cy,...,C.], and any three matrix
morphisms Q : A« C, R: A+ B, and S : B < C, the coefficients of their residuals in
terms of the residuals of their coefficients:

(R\Q)jr = T (Ri;\Qix)
(Q/S)i; [(Qix/Sjk)

Proof: We only carry out the proof for the left residual:

RC(Q/S) & Virje Ry C(Q/S),

Vi,j @ R, j Tk (Qix/Sjk)

V’L,_] o VL o Ri,j E Qi,k/Sj,k

Vi, g,k @ R; 35Sk E Qi

Vi,k e Vj e R; 3S;r C Qi

Vi, ko (Ll; (RijSin)) C Qi

Vi, k o (R:S)ik C Qi

RSCQ a

teseeoOO

We first define the common structure of both residuals in an auxiliary function:

skalres :: Ded obj mor -> (mor -> mor -> mor) ->
(obj, [mor]) -> (obj, [mor]) -> mor
skalres d res (a,msl) (b,ms2) =
foldr (ded_meet d) (ded_top d a b) $
zipWith res msl ms2

The right residual now needs two transpositions to get the columns lined up properly,
while the left residual directly uses the rows. For the symmetric quotient, we simply use
the default definition:

84 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

divAllMat :: (Ord obj, Eq mor) => Ded obj mor -> [[objl]
-> DivAll (Vec obj) (MatMor obj mor)
divAllMat d objss = diva where
diva = DivAll
{divAll_distrAll = distrAllMat (ded_distrAll d) objss
,divAll_rres = (\ (m1i@(MatMor (_,s1,t1))) m2@(MatMor (_ ,s2,t2)) ->
if s1 /= s2
then error ("matrix right residual type error " ++
show (length s1) ++ ? 7 : show (length s2))
else let MatMor (mssiT,_,_) transpose ml
MatMor (mss2T,_,_) transpose m2
mss1C = zip t1 mssiT
mss2C = zip t2 mss2T
mkline msl = map (skalres d (ded_rres d) msl) mss2C
mat = map mkline (zip t1 mssiT)
in MatMor (mat, t1, t2))
(\ (MatMor (mssi,s1,t1l)) (MatMor (mss2,s2,t2)) ->
if t1 /= t2
then error ("matrix left residual type error " ++
show (length t1) ++ ’> > : show (length t2))
else let mss2C = zip s2 mss2
mkline msl = map (skalres d (ded_lres d) msl) mss2C
mat = map mkline (zip s1 mssl)
in MatMor (mat, s1, s2))
divAll_syq_default diva

,divAll_lres

,divAll _syq
b

2.3.5 Dedekind Categories and Relation Algebras

Since we already have a Dedekind category at the coefficient level, getting the top morphism
is now easy again, and complement at the coefficient level is lifted component-wise to yield
matrix complements:

Theorem 2.3.5 If C = (Objc, Morgy, _ : _ «+ _, 1,57, MU, 1,\,/,T) is a Dedekind
category, then Matc may be extended to a Dedekind category by defining, for any two
objects A = [Ay,...,A,] and B = [By,...,B,], the top morphism component-wise as
follows:

(Tas)ij=Tas

Also, if C is a relation algebra, then Matc may be extended to a relation algebra by
defining, for any two objects A = [A;,..., A,] and B = [By,...,B,], and for any matrix
morphism R : A +» B, the complement component-wise as follows:

(R)ij = Ry

2.4. CONSTRUCTION BASED ON ATOM SETS 85

Proof: All remaining properties follow by simple component-wise reasoning. A direct
proof of the Schroder rule is the following:

RS C Q = Vi, ke (R’S)Z’k C Qi,k
Vi, k o |l (RijSix) C Qi
Vi, k,j @ R;5S;r C Qig
Vi, k,j @ R;3Q; 1 E Sk Schroder for coefficients
Vk,j e I_Iz (Ruj,i;@ik) C gj,k
k

)

Vk,j e (R5Q);x C S,

SR R

The remaining Haskell definitions are therefore completely straightforward:

dedMat :: (Ord obj, Eq mor) => Ded obj mor -> [[objl]
-> Ded (Vec obj) (MatMor obj mor)
dedMat ded objss = Ded
{ded_divAll = divAllMat ded objss
,ded_top = (\ (Vec s) (Vec t) ->
let mat = [[ded_top ded a b | b <- t] | a <- s]
in MatMor (mat, s, t))

raMat ra objss = RA

{ra_ded = dedMat (ra_ded ra) objss
,ra_compl = (\ (MatMor (m, s, t)) ->

MatMor (matMap (ra_compl ra) m, s, t))
}

2.4 Construction Based on Atom Sets

According to the definition, every homset of a relation algebra is an atomic Boolean lat-
tice, and the structure of atomic Boolean lattices is completely determined by the set of
atoms. Together with join-distributivity and isotonicity of converse, every relation algebra
is therefore completely determined by the atom sets of its homsets, and by the behaviour
of converse and composition on these atoms.

We now use this fact to arrive at a more economic way of defining relation algebras.

For an example that comes with a detailed explanation of this principle see Sect. 3.1.

Since we keep the morphism data type of atom set categories abstract, we have to provide
an explicit export list for this module:

module Atomset(ACat(..),acat_idmor_default,acat_idmor_defaultM
,SetMor () ,mkSetMor ,unSetMor,atmor
;,atomsetCat,acat_TEST,acat_TEST’
,AA11(..),aall_isObj,aall_isAtom,aall_objects
,aall_atomset,aall_idmor,aall_comp

86

import
import

import
import

import
import

24.1

CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

,atomsetAll,atomsetDistrAll,atomsetDivAll,atomsetDed,atomsetRA
,aall_TEST

,SshowsAtomsetO,showsAtomset’, showsAtomset
,ShowsAtCompEntry0,showsAtCompDefault,showsAtCompEntryl
,ShowsAtCompO,showsAtComp’, showsAtComp
,showsIdmor(Q,showsIdmor’, showsIdmor
,showsACat0O,showsACat’, showsACat
,ShowsConv0,showsAtConv’, showsAtConv
,ShowsAA110,showsAAl11?, showsAAll
,S8howsARAOQ,showsARA’>, showsARA
,b001MatARASchows,writeBoolMatARA
,Cycle,cycleRepresentatives, cycles
,AtomCompTable,addCycle,tableAtComp,negTableAtComp
,allCycles,showsCycAtComp

,acatB,aallB

,distrAll_acat,distrAll_aall
,divAll_acat,divAll_aall

,ded_acat,ded_aall

,ra_acat,ra_aall

,MatAt,acatMat,aallMat

,matBtoAtCat ,atCatToMatB

) where

RelAlg
Matrix

FiniteMaps
Sets

List (nub,sort)
ExtPrel

Atom Category Definitions

If we intend the morphisms of a category to be sets of elements of some base set (and we
call these elements “atoms” for their intended réle in relation algebras), if identical atoms
are to be allowed to occur in different homsets, and if composition should preserve joins
ad meets over these sets, then such a category is determined by the following items:

e its objects,

e for any two objects, the atoms of the respective homset, and

e for any three objects and two atoms (from the respective homsets), the set of atoms
that occur in the composition of the two atoms.

As for full categories, we complete this list with well-definedness predicates for objects and
atoms, and with information about the identity morphisms:

2.4. CONSTRUCTION BASED ON ATOM SETS 87

data ACat obj atom = ACat

{acat_isObj :: obj -> Bool

,acat_isAtom :: obj -> obj -> atom -> Bool

,acat_objects :: [obj]

,acat_atomset :: obj -> obj -> [atom]

,acat_idmor :: obj -> [atom]

,acat_comp :: obj -> obj -> obj -> atom -> atom -> [atom]
}

If such an atom category definition is well-defined, then it is redundant; in particular the
information about identity atoms can be derived from the enumerations and composition:

acat_idmor_default :: Eq atom => ACat obj atom -> obj -> [atom]
acat_idmor_default ac o =
let as = acat_atomset ac o o
0s = acat_objects ac
testL p a b = all (‘elem‘ [b]) (acat_comp ac o o p a b)
test0 p a = and (map (testL p a) (acat_atomset ac o p))
reducel as p = filter (testD p) as
in foldl reduce0 as os

Whenever we want to actually use this default when defining an atom category description,
we can considerably speed up access to the identity by memorising it; since demanding 0rd
for objects is not a heavy constraint, and the overhead for finite maps of the sizes we shall
usually need will be neglegible, we use finite maps instead of arrays for memoisation, and,
as usual, have to provide the domain for memoisation explicitly:

acat_idmor_defaultFM :: (Ord obj, Eq atom) =>
ACat obj atom -> FiniteMap obj x -> obj -> [atom]
acat_idmor_defaultFM ac dom = memoFMfm’ dom (acat_idmor_default ac)

As an abbreviation, we use the whole object list as the domain, with the “M” standing for
memoisation:

acat_idmor_defaultM :: (Ord obj, Eq atom) => ACat obj atom -> obj -> [atom]
acat_idmor_defaultM ac =

let dom = listToFM $ zip (acat_objects ac) (repeat ())

in acat_idmor_defaultFM ac dom

2.4.2 Building Categories from Atom Category Definitions

We introduce an abstract data type for morphisms built from sets of atoms.

Since in categories, we need to be able to identify source and target of a morphism, we
have to explicitly include that information here (even if it was included in atoms, we still
would need it for the empty set).

88 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

newtype SetMor obj mor = SetMor (Set mor,obj,obj) deriving (Show, Read)

unSetMor (SetMor t) = t
unSetMor’ (SetMor (ms,s,t)) = (toListSet ms, s, t)

mkSetMor a b as = SetMor (listToSet as, a, b)

We have more tools available when morphisms are in Eq and Ord; since these instances
are not included in the set package we use, we rely on the (undocumented) feature that
toListSet always returns an ordered list of unique elements:

instance (Eq obj, Ord mor) => Eq (SetMor obj mor) where
SetMor (asl1,sl1,t1l) == SetMor (as2,s82,t2) =
sl == s2 && t1 == t2 && toListSet asl == tolistSet as2
instance (Ord obj, Ord mor) => Ord (SetMor obj mor) where
SetMor (asl,s1,tl) <= SetMor (as2,s2,t2) =
(toListSet asi,sl,tl) <= (toListSet as2,s2,t2)

Defining the category is now quite straightforward:

atomsetCat :: (Eq obj, Ord mor) => ACat obj mor -> Cat obj (SetMor obj mor)
atomsetCat ac = Cat
{cat_isObj = acat_isObj ac

(\ s t (SetMor (as,s’,t’)) ->
s ==8’ && t == t’ &
foldSet (\ m b -> acat_isAtom ac s t m && b) True as)
,cat_objects = acat_objects ac
,cat_homset (\ ab -> let atoms = acat_atomset ac a b
in map (mkSetMor a b) (power atoms))
(\ (SetMor (as,s,t)) -> s)
(\ (SetMor (as,s,t)) -> t)
,cat_idmor (\ a -> mkSetMor a a $ acat_idmor ac a)
,cat_comp (\ (SetMor (as1l,s1,tl)) (SetMor (as2,s2,t2)) ->
if t1 /= s2 then error "atomsetCat.comp type error" else
SetMor (foldSet (\ al s ->
foldSet (\ a2 s ->
foldr addToSet s (acat_comp ac sl s2 t2 al a2)
) s as2
) zeroSet asl
,81,t2))

,cat_isMor

,cat_source
,cat_target

The auxiliary function power used to generate homsets again uses function composition
instead of list concatenation for efficiency and may be found in Sect. A.3.

2.4. CONSTRUCTION BASED ON ATOM SETS 89

2.4.3 Atom Category Definition Testing

The above definition of atomsetCat shows how we can directly test well-definedness of
atom category definitions; we group the tests in the following way:

i) One object: Consistency of object list, and of identity as atom set
ii) Two objects:

(a) Two objects, one atom: Consistency of atom sets, left-identity

(b) Two objects, one atom in the other direction: Right identity
iii) Three objects, two atoms: Check whether composition yields consistent atom set

iv) Four objects, three atoms: Associativity of composition

acat_TEST :: (Eq obj, Ord atom) => Test ACat obj atom

acat_TEST c =
let isObj = acat_isObj c
isAtom = acat_isAtom ¢
objects = acat_objects ¢
atomset = acat_atomset ¢
idmor = acat_idmor c
comp = acat_comp c

in
ffold (do ol <- objects
testX (isObj o1) [o1] [] "object list contains non-object"
(do let il = idmor ol
test (all (isAtom ol ol) il) [ol] il
"identity contains non-atoms" : do
02 <- objects
(do f <- atomset ol o2
testX (isAtom ol o2 f) [o0l,02] [f]
"atomset contains non-atom"
(let f> = nub $ concat $ do ila <- il
return $§ comp ol ol 02 ila f
in [test ([f] == f’) [01,02] (il++f:f?)
"left-identity violated"]
)
) ++
(do g <- atomset 02 ol
let g’ = nub $ concat $ do ila <- il
return $§ comp 02 ol ol g ila
[test ([g]l == g’) [02,01] (il ++ g:g?)
"right-identity violated"]

90

ffold (do

Modularising

acat_TEST’
acat_TEST’ c¢
let isObj
isAtom
object
atomse
idmor
comp
in
ffold (do
) .
ffold (do

) .
ffold (do

) .
ffold (do

CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

ol <- objects
02 <- objects
f <- atomset ol o2
03 <- objects
g <- atomset 02 03
let fg = comp 01 02 03 f g
testX (all (isAtom ol 03) fg) [o01,02,03] (f:g:fg)
"composition yields non-atom"
(do o4 <- objects
let os = [01,02,03,04]
h <- atomset 03 04
let gh = comp 02 03 04 g h

let k1 = sort $ nub (gh >>= comp ol 02 o4 f)
let k2 = sort $ nub (fg >>= flip (comp ol 03 04) h)
[test (k1 == k2) os [f,g,h] "composition is not associative"]

the test for better readability incurs a runtime cost of about two percent:

(Eq obj, Ord atom) => Test ACat obj atom

= acat_is0Obj

= acat_isAtom
s = acat_objects
t = acat_atomset

= acat_idmor
acat_comp

O 0O 0 0 00

ol <- objects
[test (isObj ol) [01] [] "object list contains non-object"]

ol <- objects
let il = idmor ol
[test (all (isAtom ol o1) il) [ol] il "identity contains non-atoms"]

ol <- objects

let il = idmor ol

02 <- objects

f <- atomset o0l 02

[test (isAtom ol 02 f) [01,02] [f] "atomset contains non-atom"]

ol <- objects

let il = idmor o1l
02 <- objects

let os = [01,02]
let i2 = idmor o2
f <- atomset o0l 02

2.4. CONSTRUCTION BASED ON ATOM SETS

) .
ffold (do

) .
ffold (do

let £ = nub $ concat $ do ila <- il
return $§ comp ol ol 02 ila f
nub $ concat $ do i2a <- i2
return $ comp ol 02 02 f i2a
[test ([f] == £’) os (il ++ f:f>) "left-identity violated" .
test ([f] == £’?) os (i2 ++ f:f’’) "right-identity violated"]

let £

ol <- objects

02 <- objects

f <- atomset ol o2

03 <- objects

g <- atomset 02 03

let fg = comp 01 02 03 f g

[test (all (isAtom ol 03) fg) [ol1,02,03] (f:g:fg)
"composition yields non-atom"]

ol <- objects

02 <- objects

f <- atomset ol o2

03 <- objects

g <- atomset 02 03

let fg = comp ol 02 03 £ g

04 <- objects

let os = [01,02,03,04]

h <- atomset 03 o4

let gh = comp 02 03 04 g h

let k1 = sort $ nub (gh >>= comp ol 02 o4 f)

let k2 = sort $ nub (fg >>= flip (comp ol 03 04) h)
[test (k1 == k2) os [f,g,h] "composition is not associative"]

2.4.4 From Allegories to Relation Algebras

91

With the atom set category definitions from above, we already have homsets that are

atomic complete Boolean lattices, and (sub-)distributivity of composition over join and
meet. However, we do not yet have even an allegory, because information about converse

is still missing — note that the converse of an atom has to be an atom again because of
monotony of converse:

data AAll obj atom = AAll

{aall_acat :: ACat obj atom
,aall_converse :: obj -> obj -> atom -> atom
}

We expand the interface to comprise that of the included atom category definition:

aall_isObj

= acat_isObj . aall_acat -- :: obj -> Bool

92 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

aall_isAtom = acat_isAtom . aall_acat -- :: obj -> atom -> Bool
aall_objects = acat_objects . aall_acat -- :: [obj]

aall_atomset = acat_atomset . aall_acat -- :: obj -> obj -> [atom]

aall_idmor = acat_idmor . aall_acat -- :: obj -> [atom]

aall_comp = acat_comp . aall_acat -- :: 0 -> 0 -> 0 -> at -> at -> [at]

An allegory is easily constructed:

atomsetAll :: (Eq obj, Ord mor) => AAll obj mor -> All obj (SetMor obj mor)
atomsetAll aa = let ac = aall_acat aa
in A1l
{all_cat = atomsetCat ac
,all_converse = (\ (SetMor (as,s,t)) ->
SetMor (foldSet (addToSet . aall_converse aa s t) zeroSet as
,t,8))

,all_meet = (\ (SetMor (asl,sl,t1)) (SetMor (as2,s2,t2)) ->
if s1 /= s2 then error "atomsetAll.meet source type error" else
if t1 /= t2 then error "atomsetAll.meet target type error" else
SetMor (intersectSet asl as2, sl1, t1))

,all_incl = (\ (SetMor (asi,s1,t1)) (SetMor (as2,s2,t2)) ->
if s1 /= s2 then error "atomsetAll.incl source type error" else
if t1 /= t2 then error "atomsetAll.incl target type error" else
isZeroSet (diffSet asl as2))

b

Also for distributive allegories everything is straightforward:

atomsetDistrAll :: (Eq obj, Ord mor) => AAll obj mor ->
DistrAll obj (SetMor obj mor)
atomsetDistrAll aa = DistrAll
{distrAll_all = atomsetAll aa
,distrAll_bottom = (\ a b -> SetMor (zeroSet, a, b))
,distrAll_join = (\ (SetMor (asi,sl,tl1)) (SetMor (as2,s2,t2)) ->
if s1 /= s2 then error "atomsetDistrAll.join source type error" else
if t1 /= t2 then error "atomsetDistrAll.join target type error" else
SetMor (joinSet asl as2, s1, t1))
,distrAll_atomset = (\ a b -> map (atmor a b) $ aall_atomset aa a b)
,distrAll_atoms = (\ (SetMor (as,a,b)) -> map (atmor a b) $ tolistSet as)
}

atmor a b at = SetMor (unitSet at, a, b)

For division allegories we use a little trick: We know that we already have a relation
algebra, so we use the default residual definitions of that relation algebra for division
allegories, although, at least formally, that relation algebra is defined in terms of this
division allegory. Since there is however no harmful cyclic dependency between the record
components involved, everything is well-defined and we do not drop into a “black hole™

2.4. CONSTRUCTION BASED ON ATOM SETS 93

atomsetDivAll :: (Eq obj, Ord mor) => AAll obj mor -> DivAll obj (SetMor obj mor)
atomsetDivAll aa = da where
da = DivAll

{divAll_distrAll = atomsetDistrAll aa

,divAll_rres = ra_rres_default ra

,divAll_lres = ra_lres_default ra

,divAll_syq divAll_syq_default da

}

ra = atomsetRA aa

For Dedekind categories and relation algebras there are no further problems:

atomsetDed :: (Eq obj, Ord mor) => AAll obj mor -> Ded obj (SetMor obj mor)
atomsetDed aa = Ded

{ded_divAll = atomsetDivAll aa

,ded_top (\ a b -> mkSetMor a b (aall_atomset aa a b))

}

atomsetRA :: (Eq obj, Ord mor) => AAl1l obj mor -> RA obj (SetMor obj mor)
atomsetRA aa = RA
{ra_ded = atomsetDed aa
,ra_compl = (\ (SetMor (as,s,t)) ->
SetMor (listToSet (filter (\ a -> not (a ‘elemSet‘ as))
(aall_atomset aa s t))
» 8, t))

2.4.5 Atom Allegory Definition for B

Just for testing, we provide the second simplest atom allegory definition that is possible:

acatB :: ACat () ()

acatB = ACat
{acat_is0bj
,acat_isAtom

const True
(\ st a -> True)

,acat_objects = [()]
,acat_atomset = const $ const [()]
,acat_idmor = comst [()]

,acat_comp

}

(Nabcfg->[0D

aallB :: AA1l () O
aallB = AAl1l
{aall_acat = acatB
,aall_converse = const $ const id

}

With this definition, atomsetRA aallB is isomorphic to raB; we leave the definition of the
functors as an exercise to the reader (see also 2.4.7 and 2.4.11)

94 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

2.4.6 Atom Allegory Definition Testing

It is easy to check that, in distributive allegories, the Dedekind formula for P : A < C,
Q: A+ B, and R: B+ C:

PN@QRC (QNPR):(RNQP)
follows from any of the following:

e P = P, L P, and the Dedekind formulae for P;, @, R and for P,), R hold, or
e () = U(Q, and the Dedekind formulae for P,)1, R and for P, (>, R hold, or
e R = R; U R, and the Dedekind formulae for P, @), R; and for P,Q, R, hold.

Therefore it is sufficient to check the Dedekind formula for all atoms, and we organise the
full atom allegory definition test as follows:

i) One object: Preservation of identities by converse

)
ii) Two objects, one atom: Consistency of result atom of converse, involution test
iii) Three objects, two atoms: Preservation of composition by converse

iv) Three objects, three atoms: Dedekind rule

aall_TEST :: (Eq obj, Ord atom) => Test AAll obj atom

2all_TEST ¢ =
let isAtom = aall_isAtom ¢
objects = aall_objects ¢
atomset = aall_atomset ¢
idmor = aall_idmor C
comp = aall_comp C
conv = aall_converse ¢
ameet a 1 = if a ‘elem‘ 1 then [a] else []
in
ffold $ do

ol <- objects
let i1l = idmor ol
test (all (\ 1 -> conv ol ol i == i) il) [ol] i1l
"converse does not preserve identity" : do
02 <- objects
q <- atomset ol 02
let qC = conv ol 02 q
let qCC = conv 02 o1l qC
(testX (isAtom 02 ol qC) [ol,02] [q,qC] "converse yields non-atom" .
testX (qCC == q) [o01,02] [q,qC,qCC] "converse not involutory"
)
(do

2.4. CONSTRUCTION BASED ON ATOM SETS 95

03 <- objects
let os = [01,02,03]
r <- atomset 02 03
let rC = conv 02 03 r
let qrC = sort $ nub $ map (conv ol 03) (comp ol 02 03 q r)
let rCqC = sort $ nub $ comp 03 02 ol rC qC
test (qrC == rCqC) os (q : r : qrC ++ rCqC) "non-functorial converse" : do
p <- atomset ol 03
let p’ = p ‘ameet‘ (comp ol 02 03 q r)
let q’ = q ‘ameet® (comp ol 03 02 p rC)
let r> = r ‘ameet‘ (comp 02 ol 03 qC p)
let qr’ = do qa <- q’; ra <- r’; comp ol 02 03 qa ra
[test (all (‘elem‘ qr’) p’) os ([p,q,r] ++ qr’) "Dedekind violation"]

2.4.7 Atom Allegory Definition Output

Once we constructed a relation algebra, we may want to output its definition in a directly
reusable form. As an example, consider algebras like raMat raB [[1,[(O],[0, 1],
which (essentially) have the given lists of unit values as objects and small matrices of
Booleans as morphisms. We might want to generate dedicated object and atom data types
like

-- data Obj = PO | P1 | P2 deriving (Eq,0Ord,Show)
-- data Atom = Atl | At2 | At3 | At4 deriving (Eq,0rd,Show)

together with the spelled-out definitions of the translated atom category definition.

Now the original atom category definition is given by the following expression:
-- ra_acat (raMat raB [[]1,[Q]1,[0,01]) :: ACat (Vec ()) (MatMor () Bool)

Its object and morphism types are already instances of the class Show, so we cannot rely
on the functions provided by this class, but have to explicitly provide the corresponding
output functions.

For efficiency, we always use functions of the prelude type ShowsS.

For enabling to generate such definitions also by other means, we generally also provide
intermediate functions that do not expect a full atom category definition.

The first component we need is the mapping from pairs of objects to atomsets. We in-
troduce a default definition with the empty atomset as result, so we need not explicitly
output those mappings that do have the empty atomset as result:

showsAtomsetO :: ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->
[objl -> (obj -> obj -> [atom]) -> ShowS
showsAtomsetO indent so sa objects atomset = ffold (do

96 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

x <- objects
y <- objects
case atomset x y of

o -> 1
atoms -> [indent . ("atomset " ++) . sox . (° 2 :) . soy . (" =" ++)
listShows sa atoms . (’\n’ :)]
) . indent . ("atomset _ _ = []\n" ++)

showsAtomset’ :: ShowS -> (obj -> ShowS) -> (atom -> ShowS)
-> ACat obj atom -> ShowS
showsAtomset’ indent so sa ac =
showsAtomsetO indent so sa (acat_objects ac) (acat_atomset ac)

showsAtomset :: (Show obj, Show atom) => ShowS -> ACat obj atom -> ShowS
showsAtomset indent ac = showsAtomset’ indent shows shows ac

Since we may generate atom composition table output not only directly from a given atom
category definition, but also from cycle representations (see below), we provide separate
access to the basic output functions:

showsAtCompEntry0 :: (at -> ShowS) -> ShowS -> at -> at -> [at] -> ShowS
showsAtCompEntry0 sa prefix a b ¢ =
prefix . saa . (° > :) .sab . (" ="++) . listShows sa ¢ . (°\n’ :)

showsAtCompDefault :: ShowS
showsAtCompDefault = ("atComp _ _ _ _ _ = [J\n" ++)

showsAtCompEntryl :: (obj -> ShowS) -> (atom -> ShowS) ->
obj -> obj -> obj -> atom -> atom -> [atom] -> ShowS
showsAtCompEntryl so sa xy z a b c =
showsAtCompEntry0 sa (atCompPrefix so x y z) a b ¢

atCompPrefix so x y z =
("atComp " ++) . listShowsSep so ’ ’ [x,y,z] . (° ’ :)

Normally, we assume the equivalents of acat_objects, acat_atomset and acat_comp to
be available:

showsAtCompO :: ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->

[objl -> (obj -> obj -> [atom]) ->

(obj -> obj -> obj -> atom -> atom -> [atom]) -> ShowS
showsAtCompO indent so sa objects atomset comp = ffold (do

x <- objects

y <- objects

z <- objects

let prefix = indent . atCompPrefix so x y z

2.4. CONSTRUCTION BASED ON ATOM SETS 97

let cmp = comp x y z
a <- atomset x y
b <- atomset y z
case cmp a b of [] -> []
¢ -> [showsAtCompEntry0 sa prefix a b c]
) . indent . showsAtCompDefault

Usually these are indeed taken from an atom category definition, and we also provide a
variant that uses existing Show instances:

showsAtComp’ :: ShowS -> (obj -> ShowS) -> (atom -> ShowS)
-> ACat obj atom -> ShowS
showsAtComp? indent so sa ac =
showsAtCompO indent so sa (acat_objects ac) (acat_atomset ac) (acat_comp ac)

showsAtComp :: (Show obj, Show atom) => ShowS -> ACat obj atom -> ShowS
showsAtComp indent ac = showsAtComp’ indent shows shows ac

It is essentially the same story for the identity morphism:

showsIdmor0 :: ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->
[obj]l -> (obj -> [atom]) -> ShowS

showsIdmor0 indent so sa objects idmor = ffold (do
x <- objects
case idmor x of

0 -> 0
atoms -> [indent . ("idmor " ++) . so x . (" =" ++)
listShows sa atoms . (’\n’ :)]
) . indent . (“idmor _ = [I\n" ++)

showsIdmor’ :: ShowS -> (obj -> ShowS) -> (atom -> ShowS)
-> ACat obj atom -> ShowS
showsIdmor’ indent so sa ac =
showsIdmor0 indent so sa (acat_objects ac) (acat_idmor ac)

showsIdmor :: (Show obj, Show atom) => ShowS -> ACat obj atom -> ShowS
showsIdmor indent ac = showsIdmor’ indent shows shows ac

All these together are now used to output a complete atom category definition with the
components defined locally in a where clause:

showsACatO :: String -> ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->

[obj]l -> (obj -> obj -> [atom]) ->

(obj -> obj -> obj -> atom -> atom -> [atom]) -> (obj -> [atom]) -> ShowS
showsACatO name indent so sa objects atomset comp idmor =
let indent’ = indent . (" " ++) in

indent . ("aCat_" ++) . (name ++) . (" = ACat\n" ++)

98 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

indent . (" {acat_isObj = (‘elem‘ objects)\n" ++)

indent . (" ,acat_isAtom = (\\ s t a -> a ‘elem‘ atomset s t)\n" ++)
indent . (" ,acat_objects = objects\n" ++)

indent . (" ,acat_atomset = atomset\n" ++)

indent . (" ,acat_idmor = idmor\n'" ++)

indent . (" ,acat_comp = atComp\n" ++)

indent . (" }\n\n" ++)

indent . (" where\n" ++)

indent’ . ("objects = " ++) . listShows so objects . ("\n\n" ++)
showsAtomsetO indent’ so sa objects atomset . (’\n’ :)
showsAtCompO indent’ so sa objects atomset comp .(’\n’ :)
showsIdmorO indent’ so sa objects idmor

showsACat’ :: String -> ShowS -> (obj -> ShowS) -> (atom -> ShowS)
-> ACat obj atom -> ShowS
showsACat’ name indent so sa ac =
showsACatO name indent so sa (acat_objects ac) (acat_atomset ac)
(acat_comp ac) (acat_idmor ac)

showsACat :: (Show obj, Show atom) => String -> ShowS -> ACat obj atom -> ShowS
showsACat name indent ac = showsACat’ name indent shows shows ac

For the converse table, we collect identical mappings into the default case. For this purpose
we should not compare original atomic morphisms, but their string representation, since
usually the same atom output name may occur in different atom sets, but atomic morphisms
from different homsets are always different.

showsConvO :: ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->
[obj]l -> (obj -> obj -> [atom]) ->
(obj -> obj -> atom -> atom) -> ShowS
showsConvO indent so sa objects atomset conv = ffold (do
x <- objects
y <- objects
let cnv = conv X y
a <- atomset x y
let ¢ = cnv a

if sac "" = saa ""
then []
else [indent . ("conv " ++) . sox . (> > :) .soy . (2)
saa. ("="++) .sac . (’\n’ :)]
) . indent . ("conv _ _ x = x\n'" ++)

So far, the code might just as well be used for allegories, since the type of converse there
is the same as in atom allegory descriptions.

But now we provide direct output only for the converse functions of atom allegory descrip-
tions:

2.4. CONSTRUCTION BASED ON ATOM SETS 99

showsAtConv’ :: ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->
AA11 obj atom -> ShowS
showsAtConv’ indent so sa aa =
showsConvO indent so sa (aall_objects aa) (aall_atomset aa) (aall_converse aa)

showsAtConv :: (Show obj, Show atom) => ShowS -> AAll obj atom -> ShowS
showsAtConv indent aa = showsAtConv’ indent shows shows aa

When writing an atom allegory definition, we first output the atom category definition
contained within it, and then put the AA11l definition on the same level, again with the
converse table as a local definition:

showsAA110 :: String -> ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->
[objl -> (obj -> obj -> [atom]) ->
(obj -> obj -> obj -> atom -> atom -> [atom]) -> (obj -> [atom]) ->
(obj -> obj -> atom -> atom) -> ShowS

showsAA110 name indent so sa objects atomset comp idmor conv =

let indent’ = indent . (" " ++) in
showsACatO name indent so sa objects atomset comp idmor . (’\n’ :)
indent . ("aAll_" ++) . (name ++) . (" = AA1l\n" ++)
indent . (" {aall_acat = aCat_" ++) . (name ++) . (’\n’> :)
indent . (" ,aall_converse = conv\n'" ++)
indent . (" HF\n\n" ++)
indent . (" where\n" ++)
showsConv0 indent’ so sa objects atomset conv

showsAAl1l’> :: String -> ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->
AAl1l obj atom -> ShowS
showsAAll’ name indent so sa ac =
showsAA110 name indent so sa (aall_objects ac) (aall_atomset ac)
(aall_comp ac) (aall_idmor ac) (aall_converse ac)

showsAA1l :: (Show obj, Show atom) => String -> ShowS -> AAll obj atom -> ShowS
showsAAll name indent ac = showsAAll’ name indent shows shows ac

We round this off with functions that in addition output the definition of the atom set
relation algebra on the same level as the other two definitions:

showsARAO :: String -> ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->
[obj]l -> (obj -> obj -> [atom]) ->
(obj -> obj -> obj -> atom -> atom -> [atom]) -> (obj -> [atom]) ->
(obj -> obj -> atom -> atom) -> ShowS

showsARAO name indent so sa objects atomset comp idmor conv =

let indent’ = indent . (" " ++) in
showsAA110 name indent so sa objects atomset comp idmor conv . (’\n’ :)
indent . ("ra_" ++) . (name ++)

(" = atomsetRA aAll_" ++) . (mame ++) . (’\n’ :)

100 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

showsARA’ :: String -> ShowS -> (obj -> ShowS) -> (atom -> ShowS) ->
AA11 obj atom -> ShowS
showsARA’ name indent so sa ac =
showsARAO name indent so sa (aall_objects ac) (aall_atomset ac)
(aall_comp ac) (aall_idmor ac) (aall_converse ac)

showsARA :: (Show obj, Show atom) => String -> ShowS -> AAll obj atom -> ShowS
showsARA name indent ac = showsARA’ name indent shows shows ac

2.4.8 Generating Atom Set Definitions for Boolean Matrix Alge-
bras

For experiments, we want to output atom descriptions for algebras of Boolean matrices —
if a Boolean matrix is an atom, we can compute its ordinal number in a natural ordering
of atomic matrices of this shape with the following function:

boolMatAtomPos :: [[Booll] -> Int
boolMatAtomPos = fst . head . filter snd . zip [1..] . concat

This allows us to define shows functions for objects and atoms of algebras in the range of
distrAllMat distrAllB:

boolMatAtomName i = "At" ++ show i
boolMatAtomShows mm = let (m,_,_) = unMatMor mm
in ((boolMatAtomName $ boolMatAtomPos m) ++)

boolMatObjShows obj = (’P’> :) . shows (length $ unVec obj)

The following function displays the composition tables of atom category definitions for
algebras of Boolean matrices:

boolMatAtCompSchows indent objs =
showsAtComp’ indent boolMatObjShows boolMatAtomShows $
distrAll_acat $ distrAllMat distrAllB objs

For example, the following invocation prints the composition table of Boolean 1 x 1, 1 x 2,
2 x 1, and 2 x 2 matrices:

putStr $ boolMatAtCompSchows id [[()1,[(), (1] ""
Whole algebras can be printed with the following:

boolMatACatSchows :: String -> ShowS -> [[()]] -> ShowS
boolMatACatSchows name indent objs =
showsACat’ name indent boolMatObjShows boolMatAtomShows $

2.4. CONSTRUCTION BASED ON ATOM SETS 101

distrAll_acat $ distrAllMat distrAllB objs

boolMatAAllSchows :: String -> ShowS -> [[()]] -> ShowS
boolMatAAllSchows name indent objs =
showsAAll’ name indent boolMatObjShows boolMatAtomShows $
distrAll_aall $ distrAllMat distrAllB objs

When writing whole relation algebras of this form, we also include the allegory repre-
sentations between the newly generated atom set relation algebra and the corresponding
Boolean matrix relation algebra (see 2.4.11), including also an equivalence test. For this
purpose we also generate definitions of a few local auxiliary functions, which are, however,
not exported from the resulting module.

boolMatARASchows :: String -> ShowS -> [[()]] -> ShowS
boolMatARASchows name indent objlist =
indent . ("module " ++) . (name ++)
(>(>) . listShowsSep (++) ’,’ (map (++ name)
["aCat_","aAll_","ra_","matBtoAtCat_","atCatToMatB_", "atMat_",
"raB_","allB_","test_for_equivalence_"])
(") where\n\n" ++)
indent . ("import RelAlg \n\n" ++)
indent . ("import Matrix \n\n" ++)
indent . ("import Atomset \n\n" ++)
indent . mkdata ("Obj" ++ name) (map (flip boolMatObjShows "") objects)
indent . mkdata ("Atom" ++ name)
(map (flip boolMatAtomShows "") $
(do x <- objects; y <- objects; aall_atomset aall x y))
showsARA’ name indent boolMatObjShows boolMatAtomShows aall .
C\n’> 1)
((do x <- objs
indent "vecToObj " ++ show x ++ " ="
++ boolMatObjShows (vec x) "\n") ++)
C\n’> 1)
((do x <- objs
indent "objToVec " ++ boolMatObjShows (vec x) (" ="
++ show x ++ "\n")) ++)
C\n’> :)
ffold (do x <- objs
let 1x = length x
y <- objs
let 1y = length y
[indent . ("atMat_" ++) . (name ++) . (* > :)
boolMatObjShows (vec x) . (? 7 :)
boolMatObjShows (vec y) . (" =" ++)
listShows (listShows ((++) . boolMatAtomName))
(take 1x $ unfold (splitAt ly) [1..1) . (°\n’ :)]
) . C\n” 1)

indent . ("matBtoAtCat_" ++) . (name ++)

102 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

(" = matBtoAtCat vecToObj atMat_" ++) . (name ++) . ("\n\n" ++)
indent . ("atCatToMatB_" ++) . (name ++)
(" = atCatToMatB objToVec atMat_" ++) . (name ++) . ("\n\n" ++)

indent . (("raB_" ++ name ++ " = raMat raB " ++ show objs) ++)
(’\n? :)

indent . (("allB_" ++ name ++ " = ra_all raB_" ++ name) ++)
("\n\n" ++)

indent . (("test_for_equivalence_" ++ name ++ " =\n" ++

indent " all_equiv_perform allB_" ++ name ++
"(ra_all ra_" ++ name ++ ") matBtoAtCat_'" ++ name ++
" atCatToMatB_" ++ name) ++) . (’\n’ :)
where mkdata name cs = ("data " ++) . (name ++) . (" =" ++)
((foldr1 (\1 r -> 1 ++ " | " ++ r)
(foldr insertSet [] cs)) ++)
(" deriving (Eq, Ord, Show)\n\n" ++)
aall = distrAll_aall $§ distrAllMat distrAllB objs
objects = aall_objects aall
objs = foldr insertSet [] objlist

Finally, we wrap this into a function that generates a file containing a literate Haskell
module, adhering to the usual naming convention:

writeBoolMatARA’> :: String -> [[()]] -> I0 ()
writeBoolMatARA’ name objs =
writeFile (name ++ ".lhs")
(("This file has been automatically generated.\n\n" ++) $
("It contains a description of a Boolean matrix relation algebra\n" ++) §
("expressed in terms of its atoms.\n\n\n" ++) $
boolMatARASchows name ("> " ++) objs ""
)

writeBoolMatARA :: String -> [Int] -> I0 ()
writeBoolMatARA name objs =
writeBoolMatARA’> name $ map (flip replicate ()) $ filter (0 <=) objs

Generating an atom definition of a matrix algebra now boils down to typing the following
command in Hugs:

-- writeBoolMatARA "Q012" [0,1,2]
The resulting Haskell source file “Q012.1hs” can then immediately be used.

2.4.9 Cycles

A cycle is a triple of atoms at1, at2, at3such that at3 occursin atl ‘comp‘ at2. This
will then mean that also

2.4. CONSTRUCTION BASED ON ATOM SETS 103

at2 occurs in (conv atl) ‘comp‘ at3

(conv atl) occursin at2 ‘comp‘ (conv at3)

(conv at3) occurs in (conv at2) ‘comp‘ (conv atl)
(conv at2) occurs in (conv at3) ‘comp‘ atl

atl occurs in at3 ‘comp‘ (conv at2)

This is easily proved starting from the assumption that this might not be true and using
the properties of atoms.

As this reduces the number of composition table entries, it may sometimes be used to
shorten atom composition definitions.

For our Cycle data-type, we include all three involved objects along with the three atoms:
type Cycle obj atom = ((obj,obj,obj), (atom,atom,atom))

In order to determine the list of cycles, we first generate all triples of atoms and transposed
atoms with the respective composition property in a list and then cancel them in groups
of (at most) 6.

compTriples aa = let
objects = aall_objects aa
atoms = aall_atomset aa
atComp = aall_comp aa
in [((x, y, 2), (a, b, ¢)) |
x <- objects, y <- objects, z <- objects,
a <- atoms x y, b <- atoms y z, c <- atComp xy z a b]

cycles aa = let conv = aall_converse aa
in nub [((x, y, 2), sort [(a, b, c),

(conv x y a, c, b),
(b, conv x z c, conv x y a),
(conv y z b, conv x y a, conv x z c),
(conv x z ¢, a, conv y z b),
(c, conv y z b, a)])

| ((x, y, 2), (a, b, ¢)) <- compTriples aa

]

cycleRepresentatives :: (Ord atom, Eq obj) =>
AAl1l obj atom -> [Cycle obj atom]
cycleRepresentatives aa = map (\ (x, y) -> (x, head y)) $ cycles aa

We now recompute the atom composition tables from the cycle representatives. The first
step is to expand a cycle into the six atom triples it represents:

104 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

oneCycle conv ((x, y, z), (a, b, ©)) =

[((x, vy, 2), (a, b, c),
((y, %, z), (conv x y a, c, b),
((y, z, x), (b, conv X z C, conv X y a)),
((z, y, x), (convy zb, convxya, convzxzc),
((z, x, y), (conv x z c, a, conv y z b)),
((x, z, y), (c, conv y z b, a))

We use a nested finite map for storing the composition information:

type AtomCompTable obj atom =
FiniteMap (obj,obj,obj) (FiniteMap (atom,atom) (Set atom))

allCycles :: (Ord obj, Ord atom) => (obj -> obj -> atom -> atom) ->
[Cycle obj atom] -> AtomCompTable obj atom
allCycles conv cycs = foldr addCycle zeroFM $ concatMap (oneCycle conv) cycs

addCycle (objs,ats) fm = let atfm = lookupDftFM fm zeroFM objs
in addToFM objs (addCyc ats atfm) fm

addCyc (a,b,c) fm = let
p = (a,b)
s = lookupDftFM fm zeroSet p
in addToFM p (addToSet ¢ s) fm

Using the following functions, such a table can be used to directly define an atom compo-
sition function, or to define one as the table’s complement wrt. an atom supply that has
to be passed as another argument:

tableAtComp :: (Ord obj, Ord atom) =>
AtomCompTable obj atom ->
obj -> obj -> obj -> atom -> atom -> [atom]
tableAtComp atct x y z a b = let
atfm = lookupDftFM atct zeroFM (x,y,z)
cs lookupDftFM atfm zeroSet (a,b)
in tolListSet cs

negTableAtComp :: (Ord obj, Ord atom) =>
(obj -> obj -> [atom]) ->
AtomCompTable obj atom ->
obj -> obj -> obj -> atom -> atom -> [atom]
negTableAtComp atomset atct = let
neg = negAtCompTable atomset atct
in \ x y z -> let
atoms = atomset x z

2.4. CONSTRUCTION BASED ON ATOM SETS 105

in \ a b -> case lookupFM neg (x,y,z) of
Nothing -> atoms
Just atfm -> case lookupFM atfm (a,b) of
Nothing -> atoms
Just cs -> toListSet cs

-- not exported, since not independently useable!
negAtCompTable :: (Ord obj, Ord atom) =>
(obj -> obj -> [atom]) ->
AtomCompTable obj atom -> AtomCompTable obj atom
negAtCompTable atomset = mapFM (\ (x,y,z) ->
let atoms = listToSet $ atomset x z
in mapFM (\ (a,b) cs -> atoms ‘diffSet‘ cs))

Finally we present a function that allows to print an explicit variant of the atom compo-
sition table that results from a cycle list:

showsCycAtComp :: (Ord obj, Ord atom) => (obj -> ShowS) -> (atom -> ShowS) ->

(obj -> obj -> atom -> atom) -> [Cycle obj atom] -> ShowS
showsCycAtComp so sa conv cycs s =

foldFM (\ (x,y,z) atfm sO ->

foldFM (\ (a,b) cs -> showsAtCompEntryl so sa x y z a b (toListSet cs))

sO atfm)
-- foldr (\ (x, y, z, a, b, ¢) -> showsAtCompEntryl so sa x y z a b c)
(showsAtCompDefault s) (allCycles conv cycs)

-- (cycleAtCompTable conv cycs)

2.4.10 Building Atom Category Definitions from Distributive Al-
legories

We can extract atom category and atom allegory definitions from a distributive allegory.
Note that this decribes a relation algebra, but in general only one that is embedded (as a
distributive allegory) in the original distributive allegory.

distrAll_acat :: (Ord obj,Eq mor) => DistrAll obj mor -> ACat obj mor
distrAll_acat da =
let objects = distrAll_objects da
objDom = 1istToFM (zip objects (repeat ()))
memo0bj = memoFMfm’ objDom
objPairs = do a <- objects; b <- objects; [(a,b)]
objPairDom = 1istToFM (zip objPairs (repeat ()))
memoObjPair = curry . memoFMfm’ objPairDom . uncurry
atoms = distrAll_atoms da
in ACat
{acat_isObj
,acat_isAtom
,acat_objects

distrAll_isObj da
distrAll_isAtom da
distrAll_objects da

106 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION

,acat_atomset = memoObjPair (distrAll_atomset da)

,acat_idmor memoObj (atoms . distrAll_idmor da)
,acat_comp (___ fg -> atoms (distrAll_comp da f g))
}

distrAll_aall :: (Ord obj,Eq mor) => DistrAll obj mor -> AAll obj mor
distrAll_aall da = AAll

{aall_acat = distrAll_acat da

,aall_converse = (\ _ _ at -> distrAll_converse da at)

}

For ease of access, we provide this interface also for the higher structures:

divAll_acat :: (Ord obj,Eq mor) => DivAll obj mor -> ACat obj mor
divAll_acat = distrAll_acat . divAll_distrAll

divAll_aall :: (Ord obj,Eq mor) => DivAll obj mor -> AAll obj mor
divAll_aall = distrAll_aall . divAll_distrAll

ded_acat :: (Ord obj,Eq mor) => Ded obj mor -> ACat obj mor
ded_acat distrAll_acat . ded_distrAll

ded_aall :: (Ord obj,Eq mor) => Ded obj mor -> AAll obj mor

ded_aall = distrAll_aall . ded_distrAll
ra_acat :: (Ord obj,Eq mor) => RA obj mor -> ACat obj mor
ra_acat = distrAll_acat . ra_distrAll

ra_aall :: (Ord obj,Eq mor) => RA obj mor -> AAll obj mor
ra_aall = distrAll_aall . ra_distrAll

2.4.11 Equivalence for Matrix Atom Set Descriptions

For Boolean matrices, we provide a fast way to define the functors between the Boolean
matrix algebra and an equivalent atom set algebra. This is used in the atom allegory
definitions for Boolean matrix relation algebras that are generated in 2.4.7. The most
important argument needed here is a function mapping pairs of objects to their atom
matriz, which is a matrix of the shape of the corresponding Boolean matrix, but containing
in every position that atom that stands for the atomic matrix with True at that position:

matBtoAtCat :: Ord atom => ([t] -> obj) -> (obj -> obj -> [[atom]]) ->
Fun obj (SetMor obj atom) (Vec t) (MatMor t Bool)
matBtoAtCat bToPobj atMat =
let fmor m = let (bm,s,t) = unMatMor m
s’ = bToPobj s
t’ = bToPobj t
enter b a = if b then addToSet a else id

2.4. CONSTRUCTION BASED ON ATOM SETS

am = atMat s’ t?
as = ffold (concat $ matZipWith enter bm am) zeroSet
in SetMor (as,s’,t?)
in Fun (bToPobj . unVec) fmor

atCatToMatB :: Ord atom => (obj -> [t]) -> (obj -> obj -> [[atom]]) ->
Fun (Vec t) (MatMor t Bool) obj (SetMor obj atom)
atCatToMatB pToBobj atMat =
let fmor (SetMor (as,s,t)) =
matMor (matMap (‘elemSet‘ as) (atMat s t))
(pToBobj s) (pToBobj t)
in Fun (vec . pToBobj) fmor

2.4.12 Matrix Atom Category Definitions

107

With the tools available so far, we already can build matrix algebras over atom set algebras.
But such a matrix algebra again has atoms — one might extract them using the tools from

the previous section.

In this section we provide a direct definition of atom algebra descriptions for matrix algebras

over atom set algebras.

An atomic matrix is a matrix where one coefficient is an atom, and all other coefficients are
zero morphisms, i.e., empty sets. Therefore, an atomic matrix is described by the single

atom it contains together with the position where it contains that atom:

type MatAt obj atom = (Int,Int,atom)

Working with matrix atoms turns out to be a lot easier than working with matrices:

acatMat :: Eq obj => ACat obj atom -> [[objl] -> ACat [obj] (MatAt obj atom)
acatMat c oss = let objects = nub oss
in if not (all (all (acat_isObj c)) oss) then error "acatMat: non-objects"
else ACat
{acat_is0Obj
,acat_isAtom

(‘elem‘ objects)
(\ as bs (i,j,at) ->

i >= 0 && i < length as &&
j >= 0 && j < length bs &&
let a=as !!' 1

b=Dbs !!j

in acat_isAtom c a b at)
,acat_objects = objects
,acat_atomset (\ as bs ->
do (a,i) <- zip as [0..]
(b,j) <- zip bs [0..]
at <- acat_atomset ¢ a b
return (i,j,at))
,acat_idmor = (\ as ->

108 CHAPTER 2. RELATION ALGEBRA CONSTRUCTION
do (a,i) <- zip as [0..]
at <- acat_idmor c a
return (i,i,at))
,acat_comp = (\ as bs cs (il,ji1,atl) (i2,j2,at2) ->
if j1 /= i2 then []
else let ats = acat_comp c (as !! i1) (bs !! i2) (cs !! j2)
atl at2
in map (\ at -> (i1,j2,at)) ats)
}
aallMat :: Eq obj => AAll obj atom -> [[obj]l] -> AAll [obj] (MatAt obj atom)
aallMat c oss = AAll

{aall_acat = acatMat (aall_acat c) oss
,aall_converse = (\ as bs (i,j,at) ->

}

2.4.13

(j,i,aall_converse c¢ (as !! i) (bs !! j) at))

Example Atom Sets

For use in constructing relation algebras where the atoms do not carry clear-cut identities
we offer a few finite sets, so that redefinitions and clashing exports are easier to avoid.

The following are therefore separate Haskell modules in separate source files:

module A2 where

data A2 = Atl | At2 deriving (Eq, Ord, Show, Read)

atomsA2 = [At1, At2]

module A4 where

data A4 = Atl | At2 | At3 | At4 deriving (Eq, Ord, Show, Read)
atomsA9 = [Atl, At2, At3, At4]

module A9 where

data A9 = Atl | At2 | At3 | At4 | At5 | At6 | At7 | At8 | At9

deriving (Eq, Ord, Show, Read)

atomsA9 =

[At1l, At2, At3, At4, At5, At6, At7, At8, At9]

Chapter 3

Non-Standard Relation Algebras

Using the constructions of Chapters 1 and 2, we now present examples of relation algebras -
some of them with quite unexpected properties. Firstly, there are relation algebras which,
considered from the classical viewpoint, fail to correspond to our imagination, e.g., the
McKenzie-, Maddux-Algebra, and also non-uniform relation algebras. Secondly, there are
relation algebras to model quite simple everyday situations such as compass directions,
interval interdependency, to model spatial information with “mereology”, etc. Thirdly, we
seem to be able to model strictly parallel net-like situations as with LRNnoc. This means
explicitly excluding the attitude that “one might observe a net situation in full detail — at
least in principle”.

3.1 The McKenzie Relation Algebra

A nice non-representable relation algebra is the McKenzie algebra [McK70|. The following
explanation is simply recalled from [SS89, SS93].

Boolean lattice structure of the McKenzie algebra

There are four atoms which might be called generators, namely I, a, b, ¢; they are the upper
neighbors of IL. Each of the 16 elements can be expressed as a subset of these four, so
that a boolean lattice is established giving a four-dimensional cube. So I corresponds to
the union of none and T to the union of all of them, a to the union of just one, and so
forth. For instance, @ means that all but a are united.

Transposition and composition is defined by giving the set

I'=1, a=¢, b=0b ¢ =a d*=a =0 <=c

109

110 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

ac=ca=1T, ab=ba=alb, cb=bc=clb

of basic compositions, from which the rest of compositions can be elaborated by distribu-
tivity.

Assume now that there exists a representation for the elements of this relation algebra
in a set of 16 Boolean n x n-matrices. We will prove that this assumption leads to a
contradiction, so that such a representation cannot exist. As a satisfies a> = ¢ C T and
afMa =allc= 1, it corresponds to a transitive and irreflexive matrix which is therefore
a strict-ordering. By definition, c¢ is the converse of a, so that b gives the relationship of
incomparability with respect to this strict-ordering a since b =IUallc. From wa™ = T it
follows that any pair of elements has a common upper bound which is different from both
of them. On the other hand, b = b?> demands that any pair of comparable elements has
some element to which they are both incomparable.

,,,,,,,,,,,,,,,,,,,,,,,,,

Case analysis

Now we switch to the usual notation < for the strict-ordering a. This is the crucial step.
We are no longer satisfied with just composition tables as before, but are looking for some
set together with a strict-ordering satisfying the properties just mentioned. Since b # I,
there exist at least two incomparable elements eq, e; in the set. They have some common
upper bound e3 with e; < e3, ey < e3, so that elements ey, e5 must exist with all the pairs
(e1,e5), (e3, es5), (€2, €4), (€3, €4) incomparable. However, from consecutive incomparability
we may then conclude that (e, es5), (€1, €4), (€4, €5) are comparable pairs of elements. Now
a case analysis leads to a contradiction: First we have that e; < e4, ey < e5, since ey, €5
must not be less than e3. Then ey # e5 since, by assumption, e;, e5 are incomparable which
would contradict (eq, es5), (e2,€4) (With e, = €5) being incomparable. In this situation there
is no possibility to decide whether e, < e5 or e; < e4, without introducing the forbidden
relationships e; < e5 or e; < e4 by transitivity.

The translation of the algebraic description of the McKenzie algebra into Haskell is com-
pletely straightforward:

module McKenzie(aCat_McKenzie,aAll_McKenzie,ra_McKenzie) where

import RelAlg
import Atomset

aCat_McKenzie :: ACat () Atom

3.2. MADDUX 111

aCat_McKenzie = ACat
{acat_isObj = const True
,acat_isAtom (\ _ _ _ -> True)
,acat_objects = [()]
,acat_atomset = const $ const [I, A, B, CI]
,acat_idmor = const [I]
,acat_comp (\ _ _ _ -> comp)

}

aAll_McKenzie :: AA1l () Atom
aAll_McKenzie = AAll
{aall_acat = aCat_McKenzie
,aall_converse = (\ _ _ -> conv)

}

ra_McKenzie :: RA () (SetMor () Atom)
ra_McKenzie = atomsetRA aAll_McKenzie

data Atom=I | A | B | C deriving (Eq, Show, Ord)

conv I =1

conv A =C

conv C = A

conv B =B

comp I x = [x]

comp x I = [x]

comp A A = [A]

comp A B = [A, B]

comp B A = [A, B]

comp A C = [I, A, B, C]
comp C A = [I, A, B, C]
comp B C = [B, C]

comp C B = [B, C]

comp B B = [I, A, C]
comp C C = [C]

3.2 Maddux

This algebra originates from a discussion of the second named author with Roger Maddux
on the occasion of the 1991 Stefan Banach Semester on Algebraic Logic in Warsaw. They
discussed the possibility of existence of a relation algebra for which the sharpness equation
fails to hold. On a workshop in Rio de Janeiro in 1995, Roger Maddux explained the idea
for the following heterogeneous relation algebra with 5 objects A, B, C, D, E [Mad95|.

112 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

The underlying graph of the category

The morphism sets are defined to have 16 (for the bold lines), 2 (for the dotted line) or —
in all other cases — 4 morphisms.

For this heterogeneous relation algebra, one will find out that the top object is — as
indicated — the direct product of those of the second level. The morphisms between these,
however, are very restricted in number. As one may see using the Haskell programs, the
relation algebra given in detail below shows that only

(mPsm N pRip i(m@Qsm 1 psSip”) mPQsm M pR:Sp”

C
4
A computer-aided proof that this is indeed such an algebra, and that it is unsharp was
finally given by Michael Winter. He developed an explicit atom composition table that
is included in the distribution as module MadduxOrig. The proof is also possible by the
present program.

module Maddux(aCat_Maddux,aAll_Maddux,ra_Maddux) where

import RelAlg
import Atomset
import A4

import FiniteMaps
import Properties

data MadduxObj = A | B | C | D | E deriving (Eq, Ord, Show, Read)
objseq = [A, B, C, D, E]

aCat_Maddux :: ACat MadduxObj A4
aCat_Maddux = ac where
ac = ACat
{acat_is0bj const True
,acat_isAtom = (\ s t m -> m ‘elem‘ atoms s t)
,acat_objects = objseq
,acat_atomset = atoms
,acat_idmor (\ s -> [At1]) -- acat_idmor_defaultM ac

3.2. MADDUX 113

,acat_comp = atComp

}

aAll_Maddux :: AAl1l MadduxObj A4
aAll_Maddux = AAll
{aall_acat = aCat_Maddux
,aall_converse = conv

}

conv a = a

ra_Maddux :: RA Maddux0Obj (SetMor MadduxObj A4)
ra_Maddux = atomsetRA aAll_Maddux

atoms :: MadduxObj -> MadduxObj -> [A4]

atoms A B = [Atl, At2]
atoms A C = [At1l, At2]
atoms A _ = allatoms
atoms B A = [At1, At2]
atoms C A = [At1l, At2]
atoms _ A = allatoms
atoms B C = [At1]
atoms C B = [At1]
atoms _ _ = [Atl, At2]

allatoms = [Atl, At2, At3, At4]

In [Mad95|, composition is defined via forbidden cycles, and we directly carry over that
definition into our notation, using negTableAtComp from 2.4.9:

atComp = negTableAtComp atoms (allCycles conv forbidden)

forbidden =
objs (A,A,A) [(At2,At2,At3), (At2,At2,At4), (At2,At3,At3), (At3,At3,At4)]

++ objs (A,A,B) [(At2,At1,At2), (At3,At1,At1), (At4,At1,At1)]

++ objs (A,B,B) [(At1,At2,At1)]

++ objs (A,A,C) [(At2,At1,Atl1), (At3,At1,At2), (At4,At1,At1)]

++ objs (A,C,C) [(At1,At2,At1)]

++ objs (A,A,D) atsAAD

++ objs (A,B,D) ats017

++ objs (A,C,D) ats027

++ objs (A,A,E) atsAAD

++ objs (A,B,E) ats017

++ objs (A,C,E) ats027

++ objs (A,D,E) [(At1,At1,At1)]

++ [((s,s,t),(Atl,a,b)) | s <- objseq , t <- objseq,

a <- atoms s t, b <- atoms s t, a /= b]

where

114 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

objs os = map (\ ats -> (os,ats))
comb at asl as2 = [(at,a,b) | a <- asl, b <- as2]

atsAAD = comb At2 [At1,At2] [At3,At4] ++

comb At3 [At1,At3] [At2,At4]
ats017 = [(At1,At1,At3), (At1,At1,Atd), (At1l,At2,Atl), (At1,At2,At2)]
ats027 = [(At1,At1,At2), (At1,At1,At4), (At1,At2,At1), (At1,At2,At3)]

The list of products has exactly one element:

Main> ded_NonemptyProducts (ra_ded ra_Maddux)
[(B,C,A,SetMor ({At1},A,B),SetMor ({At1},A,C))]

From the evaluation of the expression

printAllTestResults § distrAll_funTest § ra_distrAll ra_Maddux

we see that the projections are the only two non-trivial functions in this relation algebra.

There are two constellations (related via conversion symmetry) that show that this product
is unsharp:

Main> let d = ra_ded ra_Maddux in
performAll (ded_unsharp (head (ded_NonemptyProducts d))) d
=== Test Start ===
unsharpness example
Objects:
D
E
Morphisms:
SetMor ({At1},D,B)
SetMor ({At1},D,C)
SetMor ({At1},B,E)
SetMor ({At1},C,E)
SetMor ({At2},D,E)
SetMor ({At1, At2},D,E)
unsharpness example
Objects:
E
D
Morphisms:
SetMor ({At1},E,B)
SetMor ({At1},E,C)
SetMor ({At1},B,D)
SetMor ({At1},C,D)
SetMor ({At2},E,D)
SetMor ({At1, At2},E,D)
=== Test End ===

3.3. MEREOLOGY 115

3.3 Mereology

When representing spatial information in a data base, one will in the first place store
rather local information in tabular form such as “object a touches object b” or “object a is
contained in object b”. Questions will, however, ask for more complex concepts such as “Is
a group of objects connected”, e.g. So reasoning on the basic entries takes place and the
question has arisen as to logical basis of this reasoning.

Formalisation of such concepts goes back to Lesniewski and his mereology [Le$29]. Today
quite a lot of papers has appeared, such as [BG91, Coh96, DSW99|. During these stud-
ies, several small models came up that proved to be relational algebras. This facilitates
reasoning, as the bulk of well-known relational formulae is then available.

Today, mereology may be considered as a branch of research bringing topology to work in
artificial intelligence methods in spatial reasoning.

The relation algebras of this chapter have been presented in a talk given by Ivo Diintsch on
the occasion of the Seminar on Relational Methods in Computer Science (RelMiCS 4), in
Warsaw in September 1998, cf. [DWM98|, where they were presented as so-called “minimal
algebras” and recognised as relation algebras by the second author of the current report.
From this, a fruitful discussion and cooperation emerged, resulting not least in the paper
[DSW99.

3.3.1 N1

The basic mereological qualifications to start with are just four, namely identity, is-part-
of, and its converse as well as disconnected. And there is just one object () in the base
category of the relation algebra N1, resulting in a homogeneous relation algebra.

We denote

N by I
p by P
p# by PH and
dc by DC

to obtain correspondence with [DWM98|.

module MereoN1(aCat_MereoN1,aAll_MereoN1,ra_MereoN1) where

import RelAlg
import Atomset
import Matrix

import FiniteMaps
import Sets

data Atomset = I | P | PH | DC deriving (Eq, Ord, Show)
atoms :: [Atomset]

116 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

atoms = [I, P, PH, DC]

aCat_MereoN1 :: ACat () Atomset
aCat_MereoN1 = ac where

ac = ACat
{acat_isObj = const True
,acat_isAtom = (\ _ _ _ -> True)
,acat_objects = [()]
,acat_atomset = (\ _ _ -> atoms)
,acat_idmor = acat_idmor_defaultM ac
,acat_comp = (\ _ _ _ -> atComp)
}

aAll_MereoN1 :: AA11l () Atomset
aAll_MereoN1 = AAll
{aall_acat = aCat_MereoN1
,aall_converse = (\ _ _ -> conv)

}

ra_MereoN1 :: RA () (SetMor () Atomset)
ra_MereoN1 = atomsetRA aAll_MereoN1

conv :: Atomset -> Atomset
conv P = PH

conv PH = P

conv X = X

atComp :: Atomset -> Atomset -> [Atomset]

atComp I I = [I]
atComp I P = [P]
atComp I PH = [PH]
atComp I DC = [DC]
atComp P I = [P]
atComp P P = [P]
atComp P PH = atoms
atComp P DC = [DC]

atComp PH I = [PH]
atComp PH P = [I, P, PH]
atComp PH PH = [PH]
atComp PH DC = [PH, DC]

atComp DC I = [DC]
atComp DC P = [P, DC]
atComp DC PH = [DC]
atComp DC DC = atoms

3.3. MEREOLOGY 117

3.3.2 C1

The first approach to mereology will now be refined by taking into account also that there
may be external contact (ec) between two items. So a fifth atom is added. Much of the
composition tables stays the same. One may say that a row and a column have to be
added.

module MereoCl(aCat_MereoCl1l,aAll_MereoCl,ra_MereoCl) where

import RelAlg
import Atomset
import Matrix

import FiniteMaps
import Sets

The are five atoms are represented as follows:
1’ by I, p byP, p# byPH, ec by EC, and dc by DC.

data Atomset = I | P | PH | EC | DC deriving (Eq, Ord, Show)
atoms :: [Atomset]
atoms = [I, P, PH, EC, DC]

aCat_MereoCl :: ACat () Atomset
aCat_MereoCl = ac where

ac = ACat
{acat_isObj = const True
,acat_isAtom = (\ _ _ _ -> True)
,acat_objects = [()]
,acat_atomset = (\ _ _ -> atoms)
,acat_idmor = acat_idmor_defaultM ac
,acat_comp = (\ _ _ _ -> atComp)
}
aAll_MereoC1l :: AA1l () Atomset
aAll_MereoCl = AAll
{aall_acat = aCat_MereoC1
,aall_converse = (\ _ _ -> conv)
}

ra_MereoCl :: RA () (SetMor () Atomset)
ra_MereoCl = atomsetRA aAll_MereoCl

conv :: Atomset -> Atomset
conv P = PH
conv PH = P

conv X X

118 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

atComp :: Atomset -> Atomset -> [Atomset]

atComp I I = [I]

atComp I P = [P]

atComp I PH = [PH]
atComp I EC = [EC]
atComp I DC = [DC]
atComp P I = [P]

atComp P P = [P]

atComp P PH = [I, P, PH]
atComp P EC = [EC, DC]
atComp P DC = [DC]

atComp PH I = [PH]
atComp PH P = [I, P, PH]
atComp PH PH = [PH]
atComp PH EC = [EC]
atComp PH DC = [EC, DC]

atComp EC I = [EC]
atComp EC P = [EC]
atComp EC PH = [EC, DC]
atComp EC EC = [I, P, PH]
atComp EC DC = [PH]

atComp DC I = [DC]
atComp DC P = [EC, DC]
atComp DC PH = [DC]
atComp DC EC = [P]
atComp DC DC = [I, P, PH]

3.33 G

This is a third example of mereology. It is claimed by Diintsch (cf. [DWM98]) that,
whenever a relational model for spatial reasoning is considered, then — under some other
conditions — this algebra will be present. The interpretation of the algebra G is that we

start with the concept
P

and its converse P~ and then consider

“is proper part of”

O = P5PN1 = “being non-identical and properly overlapping”
= PUP U1l = “being incomparable wrt. the (reflexive) is-part-of ordering”
T = PPNl = “being non-identical and commonly being properly topped”

The concept of O is then subdivided into P, P~,ON,OD and amended by DN, DD:
ON on#nT
OD on#nT

3.3. MEREOLOGY 119

DN onT
DD ouTur

The interrelationship is then investigated taking the above as seven atoms, representing
them in the following way:

1”by I P byP ON by 0N DN by DN
P~ by PH OD by 0D DD by DD

module MereoG(aCat_MereoG,aAll_MereoG,ra_MereoG,assert_G_TEST) where

import RelAlg
import Atomset
import Matrix

import FiniteMaps
import Sets

data Atomset = I | P | PH | ON | OD | DN | DD deriving (Eq, Ord, Show)
atoms = [I, P, PH, ON, 0D, DN, DD]

aCat_MereoG :: ACat () Atomset

aCat_MereoG = ac where

ac = ACat
{acat_is0bj const True
,acat_isAtom (\ _ _ _ -> True)
,acat_objects = [()]

,acat_atomset = (\ _ _ -> atoms)
,acat_idmor = acat_idmor_defaultM ac
,acat_comp = (\ _ _ _ -> atComp)

}

aAll_MereoG :: AA1l () Atomset
aAll_MereoG = AAll
{aall_acat = aCat_MereoG
,aall_converse = (\ _ _ -> conv)

}

ra_MereoG :: RA () (SetMor () Atomset)
ra_MereoG = atomsetRA aAll_MereoG

conv :: Atomset -> Atomset
conv P = PH

conv PH = P

conv X =X

atComp :: Atomset -> Atomset -> [Atomset]

atComp I x = [x]

120

atComp

atComp
atComp
atComp
atComp
atComp
atComp

atComp
atComp
atComp
atComp
atComp
atComp

atComp
atComp
atComp
atComp
atComp
atComp

atComp
atComp
atComp
atComp
atComp
atComp

atComp
atComp
atComp
atComp
atComp
atComp

atComp
atComp
atComp
atComp
atComp
atComp

‘' 9 ' ' U ‘9

PH
PH
PH
PH
PH
PH

ON
ON
ON
ON
ON
ON

0D
0D
0D
0D
0D
0D

DN
DN
DN
DN
DN
DN

DD
DD
DD
DD
DD
DD

P

PH
ON
0D
DN
DD

P

PH
ON
0D
DN
DD

P

PH
ON
0D
DN
DD

P

PH
ON
0)))
DN
DD

P

PH
ON
0D
DN
DD

P

PH
ON
0D
DN
DD

CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

[x]

[P]

(I, P, PH, ON, DN]
[P, ON, DN]

[P, ON, OD, DN, DD]
[DN]

[DN]

[I, P, PH, ON, 0D]

[PH]

[PH, ON, 0OD]

[op]

[PH, ON, OD, DN, DD]
[op]

[P, ON, 0D]

[PH, ON, DN]

[I, P, PH, ON, OD, DN, DD]
[P, ON, 0OD]

[PH, ON, DN]

fon]

[op]

[PH, ON, 0D, DN, DD]
[PH, ON, 0OD]

[I, P, PH, ON, 0OD]
[PH]

[PH]

[P, ON, OD, DN, DD]
[DN]

[P, ON, DN]

[P]

[I, P, PH, ON, DN]
[P]

(op]
(DN]
fon]
(P]
[PH]
(1]

We now write some code to test the formulae of the introduction to this section:

gMor atoms

mkSetMor () () atoms

3.4. AN INTERVAL ALGEBRA 121

rI = gMor [I]
rP = gMor [P]
rPH = gMor [PH]
rON = gMor [ON]
r0D = gMor [0D]
rDN = gMor [DN]
rDD = gMor [DD]

(&&&) = ra_meet ra_MereoG
(=~~) = ra_comp ra_MereoG
compl = ra_compl ra_MereoG
(I1l) = ra_join ra_MereoG

r0
rH
rT

(rPH =~~~ rP) &&& compl rI
compl (rP ||| rPH ||| rI)
(rP ~~~ rPH) &&& compl rl

assert_G_TEST :: [([Char],[()],[SetMor () Atomset])]
-> [([Char],[()], [SetMor () Atomset])]
assert_G_TEST =
let rOmH = r0 &&& rH
in test (rON == (rOmH &&& rT)) [] [rON,rOmH &&& rT] "ON inconsistent" .
let r = rOmH &&& compl rT in
test (rOD == r) [] [rOD,r] "OD inconsistent" .
let r = compl r0 &&& rT in
test (xrDN == r) [] [rDN,r] "DN inconsistent" .
let r = compl (xO ||| (T ||l rI)) in
test (rDD == r) [] [rDD,r] "DD inconsistent" .
test False [] [r0] "this is “‘0°2:" .
test False [] [rH] "this is “‘#’’:" .
test False [] [rT] '"this is ¢¢T??:"

The result is as expected:

Main> printAllTestResults assert_G_TEST
=== Test Start ===

this is “‘0°7:

Morphism: SetMor ({P, PH, ON, 0D}, (), ())
this is “‘#°7:

Morphism: SetMor ({ON, 0D, DN, DD}, (), ())
this is “‘T’’:

Morphism: SetMor ({P, PH, ON, DN}, (), ())
=== Test End ===

3.4 An Interval Algebra

The following algebra [All81, AK83, vB83, MB83, All83| is well-known to specialists. A
description may be found in the AMAST 1993 invited talk of Roger Maddux [Mad94].

122 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

module Interval(aCat_Interval,aAll_Interval,ra_Interval) where

import RelAlg
import Atomset
import FiniteMaps

For the interpretation of the algebra Z.A consider nonempty intervals on the real axis.
They may be described by a pair of two different real numbers which we assume to be in
ascending order. The first gives the starting time of the interval and the second the ending
time. For simplicity, we assume only intervals (z,y], i.e., left-open and right-closed.

On any given set of such intervals, we now consider the following relations together with
their converses, if this is a different relation. Let the first interval be given by the pair
(z,z'] and the second by (y, v'].

1”7 = z=yanda2'=vy = “identity of intervals”

p = <y = “first interval stricly precedes the second”

d = y<z<z <y = “first interval is bi-strictly contained in the second”
o = zx<y<a' <y =“irst interval is partly overlapped by the second”
m = zxz<z' =y<y =“irst interval touches the second from the left”

s = x=y<x' <y = “first interval is strict initial part of the second”

f = wy<z<z' =y =“irst interval is strict terminal part of the second”

The interrelationship is then investigated by constructing a homogeneous relation algebra
from a set of thirteen atoms induced by the above relations, using the following names:

I for 1 P for p Pc for p~ M for m Mc for m~
D for d Dc for d~ S for s Sc for s~
0 for o Oc for o F for f Fc for f~

data Atomset = I | P | Pc | D| Dc | Ol Oc| M| Mc]|S | Sc| F| Fc
deriving (Eq, Ord, Show)
atoms = [I, P, Pc, D, Dc, O, Oc, M, Mc, S, Sc, F, Fc]

aCat_Interval :: ACat () Atomset

aCat_Interval = ac where

ac = ACat
{acat_isObj

const True

,acat_isAtom = (\ _ _ _ -> True)
,acat_objects = [()]

,acat_atomset = (\ _ _ -> atoms)
,acat_idmor = acat_idmor_defaultM ac
,acat_comp = (\ _ _ _ -> atComp)

}

aAll_Interval :: AA11l () Atomset
aAll_Interval = AAll
{aall_acat = aCat_Interval
,aall_converse = (\ _ _ -> conv)

}

3.4. AN INTERVAL ALGEBRA 123

ra_Interval :: RA () (SetMor () Atomset)
ra_Interval = atomsetRA aAll_Interval

conv :: Atomset -> Atomset
conv I =1
conv P = Pc
conv Pc = P
conv D = Dc
conv Dc = D
conv 0 = Oc
conv Oc = 0
conv M = Mc
conv Mc = M
conv S = Sc
conv Sc = S
conv F = Fc

conv Fc = F

atComp :: Atomset -> Atomset -> [Atomset]

atComp I x = [x]

atComp x I = [x]

atComp P P = [P]

atComp P Pc = [I, P, Pc, D, Dc, O, Oc, M, Mc, S, Sc, F, Fc]
atComp PD = [P, D, 0, M, S]
atComp P Dc = [P]

atComp P 0 = [P]

atComp P Oc = [P, D, 0, M, S]
atComp P M = [P]

atComp P Mc = [P, D, 0, M, S]
atComp P § = [P]

atComp P Sc = [P]

atComp P ¥ = [P, D, 0, M, S]
atComp P Fc = [P]

atComp Pc P = [I, P, Pc, D, Dc, O, Oc, M, Mc, S, Sc, F, Fc]
atComp Pc Pc = [Pcl

atComp Pc D [Pc, D, Oc, Mc, F]
atComp Pc Dc = [Pcl

atComp Pc 0 = [Pc, D, Oc, Mc, F]
atComp Pc Oc = [Pcl

atComp Pc M = [Pc¢, D, Oc, Mc, F]
atComp Pc Mc = [Pcl

atComp Pc S = [Pc, D, Oc, Mc, F]
atComp Pc Sc = [Pc]

atComp Pc F = [Pc]

124

atComp

atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp

atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp

atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp
atComp

atComp
atComp
atComp
atComp
atComp
atComp
atComp

o
O

O 0OUuUuououuuoouououuoo

Dc
Dc
Dc
Dc
Dc
Dc
Dc
Dc
Dc
Dc
Dc

OO oO0OoO0Oo0Oo0Oo0o0ooo oo

Oc
Oc
Oc
Oc
Oc
Oc

e
o

Pc

Dc

Oc

Mc

Sc

Fc

Pc

Dc

Oc

Mc

Sc

Fc

Pc

Dc

Oc

Mc

Sc

Fc

Pc

Dc

Oc
M

CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

[Pc]

[P]

[Pc]

(D]

(t, p, Pc, D, D¢, 0, Oc, M, Mc, S, Sc, F, Fcl
[P, D, 0, M, 8]
[Pc, D, Oc, Mc, F]
[P]

[Pc]

[D]

[Pc, D, Oc, Mc, F]
(D]

[P, D, 0, M, 8]

[P, Dc, 0, M, Fcl
[Pc, Dc, Oc, Mc, Sc]
[I, D, Dc, O, Oc, S, Sc, F, Fc]
[Dc]

[Dc, 0, Fcl

[Dc, Oc, Sc]

[Dc, 0, Fcl

[Dc, Oc, Sc]

[Dc, 0, Fc]

[Dc]

[Dc, Oc, Scl

[Dc]

[P]

[Pc, D¢, Oc, Mc, Scl
[D, 0, S]

[P, Dc, 0, M, Fcl
[P, 0, M]

[I, D, Dc, 0, Oc, S, Sc, F, Fc]
[P]

[Dc, Oc, Sc]

(0]

[Dc, 0, Fcl

[D, 0, S]

[P, 0, Ml

[P, Dc, 0, M, Fcl

[Pc]

[D, Oc, F]

[Pc, Dc, Oc, Mc, Sc]

(1, D, Dc, O, Oc, S, Sc, F, Fcl
[Pc, Oc, Mc]

[Dc, 0, Fc]

3.4. AN INTERVAL ALGEBRA 125

atComp Oc Mc = [Pcl

atComp Oc S = [D, Oc, F]
atComp Oc Sc = [Pc, Oc, Mcl
atComp Oc F = [0cl

atComp Oc Fc = [Dc, Oc, Scl

atComp M P = [P]

atComp M Pc¢ = [Pc, Dc, Oc, Mc, Scl
atComp M D = [D, 0, S]
atComp M Dc = [P]

atComp M 0 = [P]

atComp M 0Oc = [D, 0, S]
atComp M M = [P]

atComp M Mc = [I, F, Fc]
atComp M § = [M]

atComp M Sc = [M]

atComp M F = [D, 0, S]
atComp M Fc = [P]

atComp Mc P = [P, Dc, 0, M, Fcl
atComp Mc Pc = [Pc]
atComp Mc D = [D, Oc, F]
atComp Mc Dc = [Pcl
atComp Mc 0 = [D, Oc, F]
atComp Mc Oc = [Pcl
atComp Mc M = [I, S, Sc]
atComp Mc Mc = [Pcl
atComp Mc S = [D, Oc, F]
atComp Mc Sc = [Pcl
atComp Mc F = [Mc]
atComp Mc Fc = [Mc]

atComp S P = [P]

atComp S Pc = [Pcl
atComp S D = [D]

atComp S Dc = [P, Dc, 0, M, Fc]
atComp S 0 = [P, 0, M]
atComp S Oc = [D, Oc, F]
atComp S M = [P]

atComp S Mc = [Mc]
atComp S S = [S]

atComp S Sc = [I, S, Scl
atComp S F = [D]

atComp S Fc¢ = [P, 0, M]

atComp Sc P = [P, D¢, 0, M, Fcl]
atComp Sc Pc = [Pc]
atComp Sc D = [D, Oc, F]

126 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

atComp Sc Dc = [Dcl
atComp Sc 0 = [Dc, 0, Fcl
atComp Sc Oc = [0c]
atComp Sc M = [Dc¢, 0, Fcl
atComp Sc Mc = [Mc]
atComp Sc S = [I, S, Sc]
atComp Sc Sc = [Sc]
atComp Sc F = [0cl
atComp Sc Fc = [Dcl

atComp F P = [P]

atComp F Pc = [Pcl

atComp F D = [D]

atComp F Dc = [Pc, Dc, Oc, Mc, Scl
atComp F 0 = [D, 0, S]
atComp F 0Oc = [Pc, Oc, Mc]
atComp F M = [M]

atComp F Mc = [Pcl

atComp F S = [D]

atComp F Sc = [Pc, Oc, Mc]
atComp F F = [F]

atComp F Fc¢ = [I, F, Fc]

atComp Fc P = [P]

atComp Fc Pc = [Pc, Dc, Oc, Mc, Scl
atComp Fc D = [D, 0, S]
atComp Fc Dc = [Dcl

atComp Fc 0 = [0]

atComp Fc Oc = [Dc, Oc, Scl
atComp Fc M = [M]

atComp Fc Mc = [Dc, Oc, Sc]
atComp Fc S8 = [0]

atComp Fc Sc = [Dcl

atComp Fc F = [I, F, Fc]
atComp Fc Fc = [Fcl

3.5 Compass Algebras

Now we switch from spatial reasoning of being contained, touching, etc. to methods of rea-
soning on directions. This starts with simple compass rose directions. Then an indication
is given how this may be refined.

3.5.1 Compass

Now we recall the so-called compass algebra. It may be understood as being generated
from compass-like qualifications represented in atoms as follows

3.5. COMPASS ALGEBRAS 127

identity by I east by E west by W
north by N south by S
northeasterly by NE southwesterly by SW
northwesterly by NW southeasterly by SE

More details may be found in [VK88, VKvB89, Mad94|.
module Compass(aCat_Compass,aAll_Compass,ra_Compass,writeAtComp_Compass) where

import RelAlg
import Atomset
import Draw
import FiniteMaps

data Atomset = I | N| E | S| W | NE | SE | SW | NW deriving (Eq, Ord, Show)
atoms = [I, N, E, S, W, NE, SE, SW, NW]

aCat_Compass :: ACat () Atomset

aCat_Compass = ac where

ac = ACat
{acat_is0Obj

const True

,acat_isAtom = (\ _ _ _ -> True)
,acat_objects = [()]
,acat_atomset = (\ _ _ -> atoms)
,acat_idmor = acat_idmor_defaultM ac
,acat_comp = (\ _ _ _ -> atComp)
}
aAll_Compass :: AA11l () Atomset
aAll_Compass = AAll
{aall_acat = aCat_Compass
,aall_converse = (\ _ _ -> conv)
}

ra_Compass :: RA () (SetMor () Atomset)
ra_Compass = atomsetRA aAll_Compass

conv :: Atomset -> Atomset
conv I =1

conv N =S§

conv E =W

conv S N

conv W =E

conv NE = SW

conv SE = NW

conv SW = NE

conv NW = SE

The explicit composition table is contained in the distribution; here is a nicer presentation:

128

CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

0 — | — 7 NN

0 0 — | — 7NN
I | Jh N e N

H/’H\%/\%Y
Ll BN | s XN s
— | —=Ne=s =Y XN
R o G e
NSNS ST I =
I WA S G-
NN N RS ks N

For producing this, we first have to assign every non-identity atom a direction:

atDir
atDir
atDir
atDir
atDir
atDir
atDir
atDir
atDir

N =90

E =0

S =270

W = 180

NE = 45

SE = 315

SW = 225

NW = 135

I = error "atDir I"

The drawing is then defined by using the tools in the drawing module of Sect. A.4:

arrow

= "-5 0 moveto 9 O lineto 7 -1 moveto 9 O lineto 7 1 lineto "

writeAtComp_Compass =

let

base = graphicCenterFrameScale 10 10 ++ "0.3 setlinewidth\n"
atPS I = "newpath -3 -3 moveto -3 3 lineto\n" ++
" 3 3 lineto 3 -3 lineto closepath stroke\n"
atPS d = "gsave " ++ show (atDir d) ++ " rotate newpath " ++ arrow
++ "stroke grestore\n"
atLout = Limit (MM 9) (MM 9) Empty
lout = loutPSAtComp’ base atPS atLout 170
M 7) (MM 7)
None NoLength None NoLength
aCat_Compass () () O

in mkLoutPic "Compass_atComp" lout

3.5. COMPASS ALGEBRAS 129

3.5.2 Refined Compass Algebra

The previous compass algebra may be refined. Here, just one step is added, indicating how
this may be done further. We consider vectors in the plain and partition these vectors into
13 subsets. Subset 1 contains just the zero vector. Subsets 2, 3,6,7,10, 11 contain precisely
the nonvanishing vectors of the indicated direction, while subsets 4,5,8,9,12,13 contain
all the vectors from the origin that end properly inside the respective region.

Vector orientation in the compass algebra

It may be understood as being generated from compass-like qualifications represented in
atoms as follows:

module Compass3(aCat_Compass3,aAll_Compass3,ra_Compass3,writeAtComp_Compass3)
where

import RelAlg

import Atomset

import Draw

import FiniteMaps

data Atomset = I | N | E| S| W | NE | SE | SW | NWw | ENE | SSW | WSW | NNE
deriving (Eq, Ord, Show)
atoms = [I, N, E, S, W, NE, SE, SW, NW, ENE, SSW, WSW, NNE]

aCat_Compass3 :: ACat () Atomset
aCat_Compass3 = ac where

ac = ACat
{acat_isObj = const True
,acat_isAtom = (\ _ _ _ -> True)
,acat_objects = [(]
,acat_atomset = (\ _ _ -> atoms)
,acat_idmor = acat_idmor_defaultM ac
,acat_comp = (\ _ _ _ -> atComp)
}

aAll_Compass3 :: AAll () Atomset
aAll_Compass3 = AAll
{aall_acat = aCat_Compass3
,aall_converse = (\ _ _ -> conv)

}

130 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

ra_Compass3 :: RA () (SetMor () Atomset)
ra_Compass3 = atomsetRA aAll_Compass3

conv :: Atomset -> Atomset
conv I =1
conv N =8
conv E =W
conv 3 =N
conv W =E

conv NE = SW
conv SE = NW
conv SW = NE
conv NW = SE
conv ENE = WSW
conv SSW = NNE
conv WSW = ENE
conv NNE = SSW

As in the last example, we only show a graphical presentation of the composition table:

= — | — /NN]

— |
B v
a
— /
R
A\
S S
~
Yo s s
[0% SV N

%\%%%Y%/\
VAR GRS |

/
7
/
/
%
A
/
re
%
A

ol RN Yol i
NN WS N g N
AL S NWAE S S NWAL ol SV

— kg o K ey
VAP D QA 3 G2

R SN
AN DA O AN g

\\\\/\/\T%lem

3.6. NON-UNIFORM RELATION ALGEBRAS 131

3.6 Non-Uniform Relation Algebras

One of the unexpected properties of relation algebras we are going to provide examples for
is non-uniformity. It may happen that the composition of two universal relations results
in a non-universal relation.

module NonUniform(aCat_NUW,aAll_NUW,ra_NUW
,nuRA_0O,shows_nuRA_O,nuRA_1,nuRA_1’,shows_nuRA_1’) where

import RelAlg
import Atomset
import A2

import Matrix

import Properties
import Product
import SubAlg

import FiniteMaps
import Sets

A simple example of a non-uniform relation algebra is the following:
nuRA_0 = raMat raB [[]1,[()]]
This can be checked with:

performAll ded_uniform_TEST (ra_ded nuRA_0)

A direct definition of this can be displayed by calling the following function, evaluating
e.g. “putStr $§ shows_nuRA_0 ""

shows_nuRA_O0 = let
showsObj = (\i s -> "Obj" ++ i ++ s) . show . length . unVec;
showsAtom a = ("At1'"++);
da = ra_distrAll nuRA_O
in showsARA’ "NU" id showsObj showsAtom (distrAll_aall da)

This example, however, includes a trivial homset (i.e., with 1. = T).

An example without trivial homsets may, for example be found in Michael Winter’'s PhD
thesis [Win98, p. 24|. It is a heterogeneous relation algebra with non-trivial homsets with
two objects:

data Obj = A | B deriving (Eq, Ord, Show)
objseq = [A, B]

132 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

Composition is designed so as to yield
comp (A, B, [At1]) (B, A, [At1]) = (A, A,[At1]),

which is properly contained in (A, A, [Atl, At2]), thus providing an example for
TasTea#? Taa -

This relation algebra actually is a sub-algebra of the product relation algebra of nuRA_0 of
the non-uniform relation algebra mentioned in 1.3.3 (that algebra features a trivial homset)
with itself, i.e., of the relation algebra

nuRA_1 = raProd nuRA_O nuRA_O

This sub-algebra eschews the object (Vec [1,Vec [1) which has a trivial automorphism
lattice, but still exhibits non-uniformity; as sub-algebra it is defined in the following way:

nuRA_1’ = let
a’> = (vec [O],vec [OD)
b’ = (vec [(],vec [1)

sub = SubCat (listToSet [a’,b’]) zeroFM
in sub_ra (cat_homset_close (ra_cat nuRA_1) sub) nuRA_1

Invoking the following (exported) function, e.g. with “putStr $ showsWl """ prints a
definition that is equivalent to the manually generated definition below:

shows_nuRA_1’ = let
so (x,y) = case unVec y of [] -> ("B" ++); _ -> ("A" ++)
sa (x,y) = let ([1],_,_) = unMatMor x
in case 1 of [True] -> ("Ati" ++); _ -> ("At2" ++)
in showsARA’ "NuRAla" id so sa (distrAll_aall (ra_distrAll nuRA_17))

Here now the original definition:

atoms :: Obj -> Obj -> [A2]
atoms A A = [Atl, At2]
atoms _ _ = [At1]
aCat_NUW :: ACat Obj A2
aCat_NUW = ac where
ac = ACat
{acat_isObj = const True
,acat_isAtom (\sta->a ‘elem‘ atoms s t)

,acat_objects = objseq

,acat_atomset = atoms

,acat_idmor = acat_idmor_defaultM ac
,acat_comp = atComp

}

3.7. LRNNOC 133

aAll_NUW :: AA1l Obj A2
aAll_NUW = AAll
{aall_acat = aCat_NUW
,aall_converse = transpTab

}

ra_NUW :: RA Obj (SetMor Obj A2)
ra_NUW = atomsetRA aAll_NUW

transpTab :: Obj -> 0bj -> A2 -> A2
transpTab _ _ x =x

atComp :: Obj -> Obj -> Obj -> A2 -> A2 -> [A2]

atComp A A A At1l Atl = [At1]
atComp A A A At2 At1 = []
atComp A A A Atl At2 = []
atComp A A A At2 At2 = [At2]
atComp A A B Atl Atl = [At1]

atComp A A B At2 Atl = []

atComp B At1 At1l = [At1]
atComp B A A Atl At2 = []

=
=

atComp B A B Atl Atl = [At1]
atComp A B A Atl Atl = [At1]

atComp At1 At1l = [At1]

The object A is a unit.

3.7 LRNnoc

The relation algebra considered here is intended to show how truly parallel nonstrict be-
haviour may be modelled by relation algebras, too. We already have accepted to consider
the one-element set B? as a boolean algebra. Having done this, we will find out that here
the one-element morphism set Mor (L, R) with an element that should be called noc (for:
not connected) is an adequate modelling of the corresponding property in net situations.

module LRNnoc(aCat_LRNnoc,aAll_LRNnoc,ra_LRNnoc) where

import RelAlg
import Atomset
import A2

import Matrix

134 CHAPTER 3. NON-STANDARD RELATION ALGEBRAS

import FiniteMaps
import Sets
data Obj =L | R | N deriving (Eq, Ord, Show)

objseq = [L, R, N]

There is one atom to indicate relationship on L or on R. In the same way, there are two
atoms for relationships on N, which is intended to model the parallel product of L and R.
There are, however, no atoms provided for relations between L and R.

atoms :: Obj -> Obj -> [A2]

atoms N N = [At1, At2]
atoms R L = []

atoms L R = []

atoms _ _ = [At1]

aCat_LRNnoc :: ACat Obj A2

aCat_LRNnoc = ac where

ac = ACat
{acat_isObj
,acat_isAtom

const True
(\sta->a ‘elem‘ atoms s t)

,acat_objects = objseq

,acat_atomset = atoms

,acat_idmor = acat_idmor_defaultM ac
,acat_comp = atComp

}

aAll_LRNnoc :: AA1l Obj A2
aAll_LRNnoc = AAll
{aall_acat = aCat_LRNnoc
,aall_converse = const $ const id

}

ra_LRNnoc :: RA Obj (SetMor 0Obj A2)
ra_LRNnoc = atomsetRA aAll_LRNnoc

atComp :: Obj -> Obj -> Obj -> A2 -> A2 -> [A2]

atComp L _R _ _ =[]
atComp R _ L _ _ =10
atComp N R N Atl Atl = [At2]
atComp N N N At2 At2 = [At2]
atComp N N R At2 Atl = [At1]
atComp R N N Atl At2 = [At1]

3.7. LRNNOC

atComp
atComp
atComp
atComp
atComp
atComp

atComp

o= =EE =
=Z=2=2=2=2 =

= =3 ==

At2
At1
At2
At1
Atl
At1

At1

At1

At2 =

Atl
At1
At2
At1

At1

135

(]
(]
(]
(]
(]
(]

[At1]

One will observe that there is no possibility to propagate anything from L to R, not even
via N. So this models work on two components of a pair, that is executed completely inde-
pendently. Work on the first component done by L cannot influence the second component
of the pair.

From the evaluation of the expression

printAllTestResults $§ all_mapTest $ ra_all ra_LRNnoc

we see that the only two non-identical mappings in this relation algebra are

SetMor ({At1},L,N) and SetMor ({At1},R,N).

Conclusion and Outlook

In order to enable exploration of non-standard relation algebras, we have first of all defined
a layered set of interfaces that directly allows access to the mathematical properties of
category, allegory, and relation algebra data structures in Haskell. In particular, we have
provided extensive tests for well-definedness — building these tests into the data structures
themselves would have reduced efficiency in an unacceptable manner.

We then proceeded to present a combinator library for constructing such structures using
standard mathematical recipes.

Finally we have put together a small collection of non-standard relation algebras that
illustrate a few different ways in which non-standard relation algebras can fail “conventional
relational intuition”.

The first serious application we have in mind for our toolkit is the exploration of unsharp
models for concurrent computations; here we would need the capability of our toolkit to
define and explore non-standard relation algebras.

But even for dealing with standard relation algebras, i.e., with relation algebras of sets
and concrete relations between them, the interfaces provided by our toolkit provide useful
tools for exploration and programming. There is, of course, the drawback that our naive
Haskell-list implementation of Boolean matrices is not particularly efficient; here a more
direct implementation should be connected to our interfaces. In particular it would be
attractive to use the foreign-function interface of current Haskell systems to connect with
the efficient implementation of concrete relations that is the kernel of RelView [BBS97|.
In this way we would combine the speed of their current BDD implementation of Boolean
matrices with access via our flexible Haskell interfaces, opening up new ways to explore
relational programming.

136

Appendix A

Accessories

In this appendix, we collect further parts of our system. First we present several interface
modules that may serve as entries for the whole system. Next we include a Haskell 98
module Main which also contains quite a few example test calls as candidates for the global
main binding.

Furthermore, the prelude extensions used in a few places are listed here, and a module
Draw providing a preliminary drawing interface.

A.1 Interface Modules

For avoiding that all the modules defined in this report need to be imported explicitely
by the user, we here include modules that import convenient chunks of our toolkit and
re-export everything. This way, just one or two import declarations are needed in user
programs.

RATH — The Comprehensive Haskell 98 Interface

The module RATH re-exports all Haskell 98 material from chapters 1 and 2, and also the
drawing toolkit from Sect. A.4:

module RATH(module RelAlg
,module Properties
,module Iterations
;,module Product
,module SubAlg
,module Matrix
,module Atomset
,module Draw
) where

import RelAlg
import Properties
import Iteratiomns
import Product
import SubAlg
import Matrix
import Atomset

import Draw

137

138 APPENDIX A. ACCESSORIES

RATHexamples — All Examples

The module RATHexamples collects and re-exports all examples from Chapter 3, together
with a few small standard relation algebras (AtomsetExamples, P012, P0123) that are not
included in this report (they can be generated using the tools of 2.4.8), but are contained
in the distribution.

module RATHexamples
(module RATH
,module AtomsetExamples
;,module P012
,module P0123
;,module McKenzie
,module Maddux
,module NonUniform
,module MereoN1
,module MereoC1
,module MereoG
;module Interval
,module Compass
;,module Compass3
,module LRNnoc
) where

import RATH

import AtomsetExamples
import P012
import P0123
import McKenzie
import Maddux
import NonUniform
import MereoNlN1
import MereoCl
import MereoG
import Interval
import LRNnoc
import Compass
import Compass3

Using the Class Interface

In systems that support multi-parameter type classes and functional dependencies, instead
of RATH, you may use the extended variant RATHclasses that also re-exports the class
interfaces of Sect. 1.1 and their instantiations of Sect. 1.4:

module RATHclasses(module RATH

A.2. TEST PROGRAM 139

,module RelAlgClasses
,module RelAlgInstances) where

import RATH
import RelAlgClasses
import RelAlglnstances

Everything Included

For playing with everything this toolkit has to offer, you need a system that supports
functional dependencies, which currently essentially means Hugs — just start

“hugs -98 HugsMain.lhs™

module HugsMain(module RATHclasses, module RATHexamples) where
import RATHclasses

import RATHexamples

A.2 Test Program
module Main where

import RATH

import RATHexamples

-- all atomset algebras:
-- P1 P12 P012 P0123 McKenzie Maddux NUW MereoN1 MereoCl MereoG
--Interval LRNnoc Compass Compass3

main = acat_TESTALL

acat_TESTALL = do
putStrLn "P1:"
perform acat_TEST aCat_P1
putStrln "P12:"
perform acat_TEST aCat_P12
putStrLn "PO12:"
perform acat_TEST aCat_P012
putStrLn "P0123:"
perform acat_TEST aCat_P0123
putStrLn "McKenzie:"
perform acat_TEST aCat_McKenzie
putStrLn "Maddux:"
perform acat_TEST aCat_Maddux

140

putStrLn "NUW:"

perform acat_TEST aCat_NUW
putStrLn "MereoN1:"

perform acat_TEST aCat_MereoN1
putStrLn "MereoC1:"

perform acat_TEST aCat_MereoC1l
putStrLn "MereoG:"

perform acat_TEST aCat_MereoG
putStrLn "Interval:"

perform acat_TEST aCat_Interval
putStrLn "LRNnoc:"

perform acat_TEST aCat_LRNnoc
putStrln "Compass:"

perform acat_TEST aCat_Compass
putStrln "Compass:"

perform acat_TEST aCat_Compass3

aall_TESTALL = do
putStrLn "P1:"
perform aall _TEST aAll_P1
putStrLn "P12:"
perform aall_TEST aAll_P12
putStrLn "PO12:"
perform aall_TEST aAll_PO12
putStrLn "P0123:"
perform aall_TEST aAll_P0123
putStrLn "McKenzie:"
perform aall_TEST aAll_McKenzie
putStrLn "Maddux:"
perform aall_TEST aAll_Maddux
putStrLn "NUW:"
perform aall_TEST aAll_NUW
putStrLn "MereoN1:"
perform aall_TEST aAll_MereoN1
putStrLn "MereoC1:"
perform aall_TEST aAll_MereoCl1
putStrLn "MereoG:"
perform aall_TEST aAll_MereoG
putStrLn "Interval:"
perform aall_TEST aAll_Interval
putStrLn "LRNnoc:"
perform aall_TEST aAll_LRNnoc
putStrLn "Compass:"
perform aall_TEST aAll_Compass

units_ALL = do

putStrLn ("P1: " ++ show (all_units $ atomsetAll aAll_P1))

APPENDIX A.

ACCESSORIES

A.2. TEST PROGRAM 141

putStrLn
putStrln
putStrLn
putStrln
putStrLln
putStrLln
putStrLn
putStrLln
putStrLn
putStrln
putStrln
putStrLln

("P12: " ++ show (all_units $ atomsetAll aAll_P12))

("P012: " ++ show (all_units $ atomsetAll aAll_P012))
("P0123: " ++ show (all_units $ atomsetAll aAll_P0123))
("McKenzie: " ++ show (all_units $ atomsetAll aAll_McKenzie))
("Maddux: " ++ show (all_units $ atomsetAll aAll_Maddux))
("NUW: " ++ show (all_units $ atomsetAll aAll_NUW))
("MereoN1: " ++ show (all_units $ atomsetAll aAll_MereoN1))
("MereoC1: " ++ show (all_units $ atomsetAll aAll_MereoCl))
("MereoG: " ++ show (all_units $ atomsetAll aAll_MereoG))
("Interval: " ++ show (all_units $ atomsetAll aAll_Interval))
("LRNnoc: " ++ show (all_units $ atomsetAll aAll_LRNnoc))
("Compass: " ++ show (all_units $ atomsetAll aAll_Compass))

aall_Products aall = ded_NonemptyProducts $ atomsetDed aall

atomset _PRODUCTS = do
putStr (unlines ("P1:" : map show (aall_Products aAll_P1)))
putStr (unlines ("P12:" : map show (aall_Products aAll_P12)))
putStr (unlines ("P012:" : map show (aall_Products aAll_P012)))
putStr (unlines ("P0123:" : map show (aall_Products aAll_P0123)))
putStr (unlines ("McKenzie:" : map show (aall_Products aAll_McKenzie)))
putStr (unlines ("Maddux:" : map show (aall_Products aAll_Maddux)))
putStr (unlines ("NUW:" : map show (aall_Products aAll_NUW)))
putStr (unlines ("MereoN1:" : map show (aall_Products aAll_MereoN1)))
putStr (unlines ("MereoCl:" : map show (aall_Products aAll_MereoC1)))
putStr (unlines ("MereoG:" : map show (aall_Products aAll_MereoG)))
putStr (unlines ("Interval:" : map show (aall_Products aAll_Interval)))
putStr (unlines ("LRNnoc:" : map show (aall_Products aAll_LRNnoc)))
putStr (unlines ("Compass:" : map show (aall_Products aAll_Compass)))
all_RA_TEST_ALL = do

putStrLn "ral:"

perform ra_TEST_ALL (ral () Q)
putStrLn "ra2:"

perform ra TEST_ALL (ra2 42 "Bottom" "Identity")
putStrLn "raB:"

perform ra_TEST_ALL raB
putStrLn "raN2:"

perform ra TEST_ALL (raN () 1)
putStrLn "raN3:"

perform ra_TEST_ALL (raN () 2)
putStrln "P1:"

perform ra TEST_ALL ra_P1
putStrLn "P12:"

perform ra_TEST_ALL ra_P12
putStrLn "McKenzie:"

perform ra_TEST_ALL ra_McKenzie
putStrLn "NUW:"

142

perform ra_TEST_ALL
putStrLn "MereoN1:"
perform ra_TEST_ALL
putStrLn "MereoC1:"
perform ra_TEST_ALL
putStrLn "MereoG:"

perform ra_TEST_ALL

putStrLn "Interval:"

perform ra_TEST_ALL
putStrLn "LRNnoc:"
perform ra_TEST_ALL
putStrLn "PO12:"
perform ra_TEST_ALL
putStrLn "Compass:"
perform ra_TEST_ALL
putStrLn "Maddux:"
perform ra_TEST_ALL
putStrln "P0123:"
perform ra_TEST_ALL

APPENDIX A. ACCESSORIES

ra_NUW
ra_MereolN1
ra_MereoCl
ra_MereoG
ra_Interval
ra_LRNnoc
ra_P012
ra_Compass
ra_Maddux

ra_P0123

-- main = all_RA_TEST_ALL

-- main = perform cat_TEST $

-- ra_cat ra_P012 -- 0.290s

- catMat distrAllB [[1,[(1] -- 0.010s

-- catMat distrAllB o012 -- 0.410s

-- catMat distrAllB 00123 -- 4h45mb56.950s
- catMat (ra_distrAll ra_P012) [[PO],[P1,P1], [P2]] -- 6.940s
-- catMat (ra_distrAll ra_P012) [[PO], [P1],[P1,P1],[P2]] -- 8.770s

-- main = perform all_TEST §

-- ra_all
-- allMat
-- allMat
-- allMat
-- allMat
- allMat

ra_P012

distrAllB 0012
distrAllB 00123
(ra_distrAll ra_P012)
(ra_distrAll ra_P012)
(ra_distrAll ra_P012)

--main = test_for_equivalence_0123

inits 1

[1 : casel of [1 ->10];

trivs n = inits (replicate n ())

0012 = trivs 2
00123 = trivs 3
001234 = trivs 4

-- 0.320s

-- 0.440s
[[pPO], [P1,P1],[P2]] -- 4.460s
[[pO], [P1], [P1,P1], [P2]] -- 4.780s

:xs) -> map (x:) (inits xs)

A.2. TEST PROGRAM

-- main
-- main

--main
--main
--main
--main

-- main
-- main
-- main
-- main
-- main
-- main
-- main
-- main
-- main
-- main

-- main

-- main

-- main

-- main

-- main

-- main
-- main

matObjs

matDed_

--matDed_Maddux_NEProds =

--main

= perform
= perform

perform
perform
perform
perform

= perform
= perform
= perform
= perform
= perform
= perform
= perform
= perform
= perform
= perform

= perform
acatMat

= perform
aallMat

= perform
aallMat

= perform
= perform
= perform

= perform

_Maddux =

Maddux =

= putStr $

143

cat_TEST $ atomsetCat $ acatMat acatB 0012 -- 0.350s

all_TEST $ atomsetAll $ aallMat aallB 0012 -- 0.500s
acat_TEST aCat_P012 -- 0.020s
aall_TEST aAll_P012 -- 0.000s
acat_TEST $ acatMat aCat_PO012 [[PO], [P1], [P1,P1],[P2]] -- 0.030s
aall_TEST $ aallMat aAll_PO12 [[PO],[P1],[P1,P1],[P2]] -- 0.010s
acat_TEST $ acatMat acatB 0012 -- 0.000s

aall _TEST $ aallMat aallB 0012 -- 0.000s

acat_TEST $ acatMat acatB 00123 -- 0.100s

aall_TEST $ aallMat aallB 00123 -- 0.030s

acat_TEST $ acatMat acatB 001234 -- 0.990s

aall_TEST $ aallMat aallB 001234 -- 0.220s

acat_TEST $ acatMat acatB $ trivs 5 -- 6.610s

aall_TEST $ aallMat aallB $ trivs 5 -- 1.210s

acat_TEST $ acatMat acatB $ trivs 6 -- 34.030s

aall_TEST $ aallMat aallB $ trivs 6 -- 5.150s

cat_TEST $ atomsetCat $
aCat_P012 [[PO],[P1],[P1,P1],[P2]] -- 5.490s

all_TEST $ atomsetAll $

aAll1_P012 [[PO],[P1],[P1,P1],[P2]] -- 3.640s
ra_TEST_ALL $ atomsetRA $

aAll_P012 [[PO],[P1],[P1,P1],[P2]] -- 8.670s
ra_TEST_ALL $ ra_McKenzie -- 0.740s
acat_TEST aCat_Maddux -- 0.200s

aall_TEST aAll_Maddux -- 0.030s

ra_TEST_ALL $ ra_Maddux -- 19.600s

let objseq = acat_objects aCat_Maddux in
do a <- objseq
[a]l : do b <- objseq
[[a,bl]

atomsetDed $ aallMat aAll_Maddux matObjs_Maddux

ded_NonemptyProducts matDed_Maddux

unlines $ map show $ ded_NonemptyProducts matDed_Maddux

144 APPENDIX A. ACCESSORIES

A.3 Prelude Extensions

module ExtPrel where

prodF f g (x,y) = (f x, g y)

prodfFF f g (x1,x2) (y1,y2) = (f x1 y1, g x2 y2)

cprodFF h f g (x1,x2) (y1,y2) =h (f x1 y1, g x2 y2)

prodFFF f g (x1,x2) (y1,y2) (z1,z2) = (f x1 y1 z1, g x2 y2 z2)
cprodFFF h f g (x1,x2) (y1,y2) (z1,z2) =h (f x1 y1 z1, g x2 y2 z2)

prodPP2 p (x1,y1) (x2,y2) = p yl y2

tupd_3_1 f (x, y, 2z) = (f x, y, 2)

cTrue x = True
cFalse x = False
ccTrue x y = True
ccFalse x y = False

listProd (as,bs) = [(a,b) | a <- as, b <- bs]

power :: [a]l -> [[all
power 1 = power’ id 1 []
where
power’ £ [] = ((f [1):)
power’ f (x:xs) = power’ f xs . power’ (f . (x:)) xs

type FctS a b = [(a,b)] -> [(a,b)]
type FctsS a b = FctS a b -> [[(a,b)]] -> [[(a,b)]]

totFct :: [al -> [b] -> [[(a,b)]]
-- totFct (dom :: [a]) (ran :: [b]) =
totFct dom ran =
foldr h (\ £ -> ((f [1) :)) dom id []
where
-—h :: a->FctsSab->FctsSahb
h x mkfs = foldr k (const id) ran
where -- k :: b -> FctsS a b -> FctsS a b
k y mkfs’ f = mkfs (f . ((x,y):)) . mkfs’ f

A.3. PRELUDE EXTENSIONS 145

pairAnd = uncurry (&&)

insertSet :: Ord a => a -> [a] -> [a]
insertSet x [] = [x]
insertSet x ys@(y:ys?)

case compare x y of
GT -> y : insertSet x ys’
EQ -> ys
-> X 1 ys

listEqAsSet :: Ord a => [a] -> [a] -> Bool
listEqAsSet xs ys = foldr insertSet [] xs == foldr insertSet [] ys

listShowsSep shows ¢ = h
where h [] = id
h [x] = shows x
h (x:xs8) = shows x . (¢ :) . h xs

listShows shows xs = (?[’ :) . listShowsSep shows ’,’ xs . (’]’ :)

foldl’ it (a->b->a) ->a->1[b] ->a
foldl’ f a [] = a
foldl’ f a (x:xs) (foldl’ £ $! f a x) xs

length’ :: Integral i => [a] -> i
length’ = foldl> (\n _ ->n + 1) 0

rcurry :: ((a,b) ->c) ->b ->a ->c
rcurry f = flip (curry f)

unfold :: (a -> (b,a)) -> a -> [b]
unfold f x = let (r,y) = f x in r : unfold f y

newtype STFun s a = STFun (s -> (s,a))
applySTFun (STFun f) = f

instance Functor (STFun s) where
fmap £ (STFun g) = STFun (\s -> let (s’, a) = g s
in (s?, f a))

instance Monad (STFun s) where
return x = STFun (\s -> (s,x))
(STFun f) >>= g = STFun (\s -> let (s’,a) =
STFun g’
in g’ s?)

N+
oq w
)

untilFix f x = let x> = f x in if x’ == x then x else untilFix f x’

146 APPENDIX A. ACCESSORIES

A.4 Drawing

Drawings for concrete relations can for example choose a Boolean matrix representation,
or a (directed) graph representation — both possibilities are implemented in the RelView
system [BBS97].

For abstract categories or allegories, there is no similarly general approach. For relation
algebras, we may use the atoms to arrive at a general representation of their morphisms.
Similarly, as soon as morphisms of a coefficient allegory have a graphical representation,
we may use that to build matrix representations.

In this module we provide a very simple drawing interface for some of the constructions of
Chapter 2. We target PostScript generation, delegating some of the tasks to the document
formatting system Lout [Kin95|.

module Draw where
import System

import RelAlg
import Atomset
import Matrix

data Length = NoLength | CM Double | Pt Double | MM Double
| Inch Double | FontSize Double
lengthToLoutStr NoLength = ""
lengthToLoutStr (CM 1) = shows 1 "c"
lengthToLoutStr (Pt 1) = shows 1 "p"
lengthToLoutStr (MM 1) = shows (1/10.0) "c"
lengthToLoutStr (Inch 1) = shows 1 "i"
lengthToLoutStr (FontSize 1) = shows 1 "f"

data GapMode = None | Edge
instance Show GapMode where
showsPrec _ None = id

showsPrec _ Edge = (’e’:)

type PostScript = String

Because of its flexibility and powerful alignment operations, we use a fragment of the
graphical object model of Lout [Kin95]:

data Lout = PS PostScript Lout

| HCat Bool GapMode Length [Lout]

| VCat Bool GapMode Length [Lout]

| Scale (Maybe (Either Double (Double, Double))) Lout
| Wrap Length Length Lout

| Box Length Length Lout

|

Limit Length Length Lout

A.4. DRAWING

| Empty

ps w h ps = PS ps (Limit w h Empty)

147

Since we also use the implementation of Lout to generate images, here we define an appro-

priate instance of Show that produces legal Lout code:

instance Show Lout where
showsPrec _ (Limit w h 1) =
(case w of NolLength -> id
_ -> ((lengthToLoutStr h ++ " @Wide ") ++))
(case h of NolLength -> id
_ =-> ((lengthToLoutStr h ++ " @High ") ++)) . shows 1
showsPrec _ Empty = ("{}\n"++)
showsPrec _ (PS ps 1) = ("{\n" ++) . (ps++) . ("\n}\n@Graphic { "++)
shows 1 . ("}\n" ++)
showsPrec _ (Box lw m 1) = ("@Box " ++)
(case 1w of NoLength -> id
_ -> (("linewidth {" ++ lengthToLoutStr 1lw ++ "} ") ++))
(case m of Nolength -> id
_ -> (("margin {" ++ lengthToLoutStr m ++ "} ") ++))
("{\n" ++) . shows 1 . ("}\n" ++)
showsPrec _ (Wrap h v 1) =
((lengthToLoutStr v ++ " Q@High {} // {\n") ++)
((lengthToLoutStr h ++ " @Wide {} || {\n") ++)
shows 1 .
("} || " ++ lengthToLoutStr h ++ " @Wide {}\n") ++)
(("} // " ++ lengthToLoutStr v ++ " QHigh {}\n") ++)
showsPrec _ (Scale s 1) =
(°>{’:) . scale . (" @Scale " ++) . shows 1 . ("}\n"++)
where scale = case s of
Nothing -> id
Just (Left f) -> shows f

Just (Right (h,v)) -> (°{?:) . shows h . (°,?:) . shows v . (’}’:)

showsPrec _ (HCat b m w 1s) = case 1s of
o -> {3 ++)
[1] -> shows 1
_ > ("{\n" ++) . foldl hcat shows id 1ls . ("}\n"++)
where hcat x y = shows x . ((if b then "|" else "[|") ++)

((lengthToLoutStr w) ++) . shows m . (°\n’ :)

showsPrec _ (VCat b m w 1s) = case 1s of
 -> ({3 ++)
[1] -> shows 1
_ => ("{\n" ++) . foldl vcat shows id 1ls . ("}\n"++)
where vcat x y = shows x . ((if b then "/" else "//") ++)

((lengthToLoutStr w) ++) . shows m . (°\n’ :)

-y

-y

148 APPENDIX A. ACCESSORIES

foldl f ge [1 =¢
foldl f ge [x] = g x
foldl f ge (x : xs) = f x (foldl f g e xs)

The most important use of the alignment operations is for producing matrix drawings:

loutMatrix :: GapMode -> Length -> GapMode -> Length -> [[Lout]] -> Lout
loutMatrix gh dh gv dv m = VCat True gv dv $ map (HCat True gh dh) m

psMatrix :: GapMode -> Length -> GapMode -> Length -> [[PostScript]] -> Lout
psMatrix gh dh gv dv m = loutMatrix gh dh gv dv (map (map f) m)
where f p = ps (MM 4) (MM 4) (p ++ ’\n’ : graphicFramePath ++ "stroke\n")

graphicFramePath = "0 0 moveto 0 ysize lineto\n" ++
"xsize ysize lineto xsize 0 lineto closepath\n"
graphicFrameScale h v = "xsize " ++ shows h " div\n"

++ "ysize " ++ shows v " div scale\n"
graphicCenterFrameScale h v =
"xsize 2 div ysize 2 div translate\n" ++
"yxsize " ++ shows h " 2 mul div\n" ++
"ysize " ++ shows v " 2 mul div scale\n"

Since for RelView-like output of Boolean matrices we also need that frame for filling, we
additionally provide an abbreviated variant:

boolMatElem :: Bool -> Lout
boolMatElem b = ps (MM 4) (MM 4) (
graphicFramePath
++ if b then "gsave 0.7 setgray fill grestore stroke\n" else "stroke\n"

)

defaultLoutMatrix = loutMatrix None NoLength None NoLength
boolMatLout m = defaultLoutMatrix (map (map boolMatElem) m)

loutMatMor :: Length -> Length ->
GapMode -> Length -> GapMode -> Length ->
(obj -> Lout) -> (mor -> Lout) -> MatMor obj mor -> Lout
loutMatMor seph sepv gh dh gv dv objLout morLout mm =
let (m,s,t) = unMatMor mm
mat = loutMatrix gh dh gv dv $ map (map morLout) m
src = VCat True gv dv $ map objLout s
trg = HCat True gh dh $§ map objLout t
in VCat True None sepv
[HCat True None seph [Empty,trgl, HCat True None seph [src,mat]]

For atom set relations, we rely on the verbatim PostScript inclusion features of Basser Lout
with the idea that every atom has some PostScript encoding, and the PostScript encodings

A.4. DRAWING 149

of all atoms present in a relation are overlaid to produce the presentation of that relation.
For examples where this works out nicely see the compass algebras in Sect. 3.5.

At first we define a function that expects separate Lout-producing functions for atoms and
lists of atoms:

loutAtComp :: Length -> Length ->
GapMode -> Length -> GapMode -> Length ->
(atom -> Lout) -> ([atom] -> Lout) ->
ACat obj atom -> obj -> obj -> obj -> Lout
loutAtComp seph sepv gh dh gv dv atLout morLout ac ol 02 o3 =
let atomsl = acat_atomset ac ol o2
atoms2 = acat_atomset ac 02 03
m = map
(\ a1l -> map (\ a2 -> morLout (acat_comp ac ol 02 03 al a2)) atoms2)
atomsli
loutMatrix gh dh gv dv m
src = VCat True gv dv $ map atLout atomsl
trg = HCat True gh dh $ map atLout atoms2
in VCat True None sepv [HCat True None seph [Empty,trg],
HCat True None seph [src,mat]]

mat

These two functions are now produced together, based on a common PostScript prologue, a
function turning individual atoms into PostScript code fragments, and a fixed Lout object
to wrap the PostScript around:

mkAtMorLout :: PostScript -> (atom -> PostScript) -> Lout ->
(atom -> Lout, [atom] -> Lout)
mkAtMorLout base atPS atLout =
(\ at -> PS (base ++ atPS at) atLout
,\ mor -> PS (base ++ concatMap atPS mor) atLout

)

loutPSAtComp :: PostScript -> (atom -> PostScript) -> Lout ->
Length -> Length -> GapMode -> Length -> GapMode -> Length ->
ACat obj atom -> obj -> obj -> obj -> Lout
loutPSAtComp base atPS atLout seph sepv gh dh gv dv ac ol 02 03 =
loutAtComp seph sepv gh dh gv dv atomLout morLout ac ol 02 03
where (atomLout, morLout) = mkAtMorLout base atPS atLout

For obtaining separating lines between the composition table proper and its labellings we
might revert to Lout’s tables instead of employing plain object compositions; here is a
simple “hack” that adds the two lines a posteriori, and with manually adjusted placement
via the argument corr:

loutPSAtComp’ base atPS atLout corr seph sepv gh dh gv dv ac ol 02 03 =
PS
(unlines

150 APPENDIX A. ACCESSORIES

["newpath"
,"\"/dx\" xsize " ++ show x1 ++ " div " ++ show corr ++ " add def"
,"\"/dy\" ysize dup " ++ show yl ++ " div " ++ show corr ++ " add sub def"
,""dx 0 moveto dx ysize lineto"
,"0 dy moveto xsize dy lineto"
,''stroke"
D
$
loutPSAtComp base atPS atLout seph sepv gh dh gv dv ac ol 02 03
where
x1

yl

length (acat_atomset ac ol 02) + 1
length (acat_atomset ac 02 03) + 1

For testing these capabilities, we play around a little bit:

matil matX 8 8
matX i j = do r <- [1..i]
[do ¢ <- [1..j]
[r ‘mod® ¢ =0 || (r + ¢c > r * ¢)]]

mat2 = do i <- [1..4]
[do j <- [1..6]

[Box NoLength NoLength (boolMatLout (matX i j))]1]

loutDocFile file lout = writeFile file $ unlines
["@SysInclude {doc}"
,"@Doc Q@Text @Begin"
,show lout
,"OQEnd QText"
]

loutPicFile file lout = writeFile file $ unlines
["@SysInclude {picturel}"
,"@I1lustration {"
,show (Wrap (MM 2) (MM 2) lout)
s II}H
]

mkLoutPic base lout = let 1ltfile = base ++ ".1t" in
do loutPicFile 1tfile lout
system ("lout -EPS -c " ++ base ++ " -0 " ++ base ++ ".eps " ++ 1ltfile)

mk_matl = mkLoutPic "matl" $ boolMatLout matil
mk_mat2 = mkLoutPic "mat2" $ defaultLoutMatrix mat2

This produces the following picture:

A.4. DRAWING 151

it
i

For demonstrating the usefulness of Lout’s alignment operations we also build a variant
with transposed coefficient matrices:

mat2a = do i <- [1..4]
[do j <- [1..6]
[PS (graphicFramePath ++ "stroke\n")
$ Wrap (MM 2) (MM 2) (boolMatLout (matX j i))1]

e i
=l s, e N

Showing a matrix of matrices

Bibliography

[AKS3]

[ALI81]
[Al183]

[ATBS89]

[BBS97|

[BDM97]

[BGY1]

[BHO4|

[BKS97]

[BSZ86]

[BSZ89]
[Carg2]
[Coh96]
[Des99)

[DM50]

[DM60]

James F. Allen and Johannes A. Koomen. Planning using a temporal world model. In Proc.
of the 8" Internat. Joint Conf. on Artificial Intelligence (IJCAI), pages 741-747, Karlsruhe,
Germany, August 1983.

James F. Allen. An interval-based representation of temporal knowledge. In Proc. of the 7t"
Internat. Joint Conf. on Artificial Intelligence, (IJCAI), pages 221-226, 1981.

James F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM, 26(11):832—
842, November 1983.

Hilde Abold-Thalmann, Rudolf Berghammer, and Gunther Schmidt. Manipulation of con-
crete relations: The RELVIEW-System. Technical Report 8905, Universitdt der Bundeswehr
Miinchen, Fakultét fiir Informatik, October 1989.

Ralf Behnke, Rudolf Berghammer, and Peter Schneider. Machine support of relational com-
putations: The Kiel RELVIEW system. Technical Report 9711, Institut fiir Informatik und
Praktische Mathematik, Christian-Albrechts-Universitat Kiel, June 1997.

Richard S. Bird and Oege De Moor. Algebra of Programming, volume 100 of International
Series in Computer Science. Prentice Hall, 1997.

L. Biacino and G. Gerla. Connection structures. Notre Dame J. Formal Logic, 32:242-247,
1991.

Rudolf Berghammer and Claudia Hattensperger. Computer-aided manipulation of relational
expressions and formulae using RALF. In Bettina Buth and Rudolf Berghammer, editors,
Systems for Computer-Aided Specification, Development and Verification, Bericht Nr. 9416,
pages 62-78. Universitit Kiel, 1994.

Chris Brink, Wolfram Kahl, and Gunther Schmidt, editors. Relational Methods in Computer
Science. Advances in Computing. Springer, Wien, New York, 1997.

Rudolf Berghammer, Gunther Schmidt, and Hans Zierer. Symmetric quotients. Technical
Report TUM-INFO 8620, Technische Universitdt Miinchen, Fakultét fiir Informatik, 1986.
18 p.

Rudolf Berghammer, Gunther Schmidt, and Hans Zierer. Symmetric quotients and domain
constructions. Inform. Process. Lett., 33(3):163-168, 1989.

Rodrigo Cardoso. Untersuchung paralleler Programme mit relationenalgebraischen Methoden.
Diplomarbeit under supervision of gunther schmidt, TU Miinchen, 1982.

A. G. Cohn. Calculi for qualitative reasoning. In Artificial Intelligence and Symbolic Mathe-
matical Computation, volume 1138 of LNCS, pages 124-143. Springer, 1996.

Jules Desharnais. Monomorphic characterization of n-ary direct products. Information Sci-
ences, 119(3-4):275-288, December 1999.

Augustus De Morgan. On the symbols of logic, the theory of the syllogism, and in particular
of the copula, and the application of the theory of probabilities to some questions in the
theory of evidence. Trans. of the Cambridge Philosophical Society, 9:79-127, 1850. Reprinted
in [DM66].

Augustus De Morgan. On the Syllogism: IV; and on the Logic of Relations. Trans. of the
Cambridge Philosophical Society, 10:331-358, 1860. (dated 12 November 1859) Reprinted in
[DM66].

152

BIBLIOGRAPHY 153

[DM66]
[DSW99

[DWM9S]

[FK98|
[FS90]

[Hat97]

[HBS94]

[HPTW+92]

[Jip92]

[Jonss]
[Jon00]

[KHO8]

[Kin95]

[Les29]
[Lor54]
[Lyn50]
[Mad94]

[Mad95)

[MB83]

Augustus De Morgan. On the Syllogism, and Other Logical Writings. Yale Univ. Press, New
Haven, 1966.

Ivo Diintsch, Gunther Schmidt, and Michael Winter. A necessary relation algebra for
mereotopology. Studia Logica, 1999. in print.

Ivo Diintsch, Hui Wang, and Steve McKloskey. Relation algebras in spatial reasoning. In
Ewa Orlowska, editor, Relational Methods in Logic, Algebra and Computer Science, Jth In-
ternational Seminar RelMiCS, Warsaw, Poland, 1/-20 September 1998, Extended Abstracts,
pages 63—68. Stefan Banach International Mathematical Center, Warsaw, 1998.

Hitoshi Furusawa and Wolfram Kahl. A study on symmetric quotients. Technical Report
1998-06, Fakultat fiir Informatik, Universitdt der Bundeswehr Miinchen, December 1998.

Peter J. Freyd and Andre Scedrov. Categories, Allegories, volume 39 of North-Holland Math-
ematical Library. North-Holland, Amsterdam, 1990.

Claudia Hattensperger. Rechnergestiitztes Beweisen in heterogenen Relationenalgebren. Dis-
sertationsverlag NG Kopierladen, Miinchen, December 1997. ISBN 3-928536-99-0; zugl. Dis-
sertation an der Universitdt der Bundeswehr Miinchen, Fakultét fiir Informatik.

Claudia Hattensperger, Rudolf Berghammer, and Gunther Schmidt. RALF — A relation-
algebraic formula manipulation system and proof checker. Notes to a system demonstration.
In Nivat et al. [NRRS94], pages 405—406.

Paul Hudak, Simon L. Peyton Jones, Philip Wadler, et al. Report on the programming lan-
guage Haskell, a non-strict purely functional language, version 1.2. ACM SIGPLAN Notices,
27(5), 1992. See also URL: http://haskell.org/.

Peter Jipsen. Computer-aided investigations of relation algebras. PhD thesis, Vanderbilt
University, May 1992.

Bjarni Jonsson. Relation algebras and Schrider categories. Discrete Math., 70:27-45, 1988.

Mark P. Jones. Type classes with functional dependencies. In G. Smolka, editor, ESOP 2000,
volume 1782 of LNCS, pages 230-244. Springer, March 2000.

Wolfram Kahl and Claudia Hattensperger. Second-order syntax in HOPS and in RALF. In
Bettina Buth, Rudolf Berghammer, and Jan Peleska, editors, Tools for System Development
and Verification, volume 1 of BISS Monographs, pages 140-164, Aachen, 1998. Shaker Verlag.
ISBN: 3-8265-3806-4.

Jeffrey Howard Kingston. A User’s Guide to the Lout Document Formatting System (Version
3). Basser Department of Computer Science, University of Sydney, 1995. System available
from ftp.cs.su.oz.au:/jeff/lout.

S. Le$niewski. Grundziige eines neuen Systems der Grundlagen der Mathematik. Fund.
Math., 14:1-81, 1929.

Paul Lorenzen. Uber die Korrespondenzen einer Struktur. Math. Z., 60:61-65, 1954. Zbl.
Mat. 55 23.

Roger C. Lyndon. The representation of relational algebras. Ann. of Math. (2), 51:707-729,
1950.

Roger Duncan Maddux. Relation algebras for reasoning about time and space. In Nivat et al.
[NRRS94], pages 27—44.

Roger Duncan Maddux. On the derivation of identities involving projection functions. In
Csirmaz, Gabbay, and de Rijke, editors, Logic Colloquium ’92, pages 145-163, Stanford,
January 1995. Center for the Study of Language and Information Publications.

J. Malik and T. O. Binford. Reasoning in time and space. In Proc. of the 8 Internat.
Joint Conf. on Artificial Intelligence, Karlsruhe, W. Germany, August 1983 (IJCAI), pages
343-345, 1983.

154

[McK70]

[NRRS94|

[0S80]

[0S95]

[Rig48]
[Sch95]
[Sch77]
[Sch81a
[Sch81b]

[SS854]

[SS85b]
[SS89]
[SS93]

[vB83]
[VK88]

[VKvBS9]

[vOG97]

[Win98]

[ZSB86]

BIBLIOGRAPHY

Ralph Nelson Whitfield McKenzie. The representation of integral relation algebras. Michigan
Math. J., 17:279-287, 1970.

Maurice Nivat, Charles Rattray, Teodore Rus, and Giuseppe Scollo, editors. Proc. 3"%
Internat. Conf. Algebraic Methodology and Software Technology, Enschede, June 21-25,
Workshops in Computing. Springer, 1994.

J.P. Olivier and D. Serrato. Catégories de Dedekind. Morphismes dans les catégories de
Schroder. C. R. Acad. Sci. Paris Ser. A-B, 290:939-941, 1980.

J.P. Olivier and D. Serrato. Squares and rectangles in relation categories — three cases:
Semilattice, distributive lattice and boolean non-unitary. Fuzzy Sets and Systems, 72:167—
178, 1995.

Jacques Riguet. Relations binaires, fermetures, correspondances de Galois. Bull. Soc. Math.
France, 76:114-155, 1948.

Ernst Schroder. Vorlesungen iber die Algebra der Logik (exacte Logik). Teubner, Leipzig,
1895. Vol. 3, Algebra und Logik der Relative, part I, 2"? edition published by Chelsea, 1966.

Gunther Schmidt. Programme als partielle Graphen. Habil. Thesis, Fachbereich Mathematik
der Technischen Univ. Miinchen, Bericht 7813, 1977. English as [Sch81a, Sch81b].

Gunther Schmidt. Programs as partial graphs I: Flow equivalence and correctness. Theoretical
Computer Science, 15:1-25, 1981.

Gunther Schmidt. Programs as partial graphs IT: Recursion. Theoretical Computer Science,
15(2):159-179, 1981.

Gunther Schmidt and Thomas Stréhlein. On kernels of graphs and solutions of games —
a synopsis based on relations and fixpoints. SIAM J. Algebraic Discrete Methods, 6:54-65,
1985.

Gunther Schmidt and Thomas Stréhlein. Relation algebras — concept of points and repre-
sentability. Discrete Math., 54:83-92, 1985.

Gunther Schmidt and Thomas Stréhlein. Relationen und Graphen. Mathematik fiir Infor-
matiker. Springer, Berlin, 1989. English as [SS93].

Gunther Schmidt and Thomas Strohlein. Relations and Graphs, Discrete Mathematics for
Computer Scientists. EATCS-Monographs on Theoretical Computer Science. Springer, 1993.

Johan F.A K. van Benthem. The Logic of Time. Reidel, Dordrecht, NL, 1983.

M. Vilain and H. Kautz. Constraint propagation algorithms for temporal reasoning. In H. E.
Shrobe, editor, Proc. AAAI-86, pages 377-382. Morgan Kaufmann, 1988.

M. Vilain, H. Krautz, and P. G. van Beek. Constraint propagation algorithms for temporal
reasoning. In Weld and de Kleer, editors, Readings in Qualitative Reasoning About Physical
Systems. Morgan Kaufmann, 1989. Revised version of [VK88|.

David von Oheimb and Thomas F. Gritzner. RALL: Machine-supported proofs for relation
algebra. In William McCune, editor, Conference on Automated Deduction — CADE-14, LNCS
1249, pages 380-394. Springer-Verlag, Berlin, 1997.

Michael Winter. Strukturtheorie heterogener Relationenalgebren mit Anwendung auf nichtde-
terminismus in Programmiersprachen. PhD thesis, Fakultdt fiir Informatik, Universitéit der
Bundeswehr Miinchen, April 1998.

Hans Zierer, Gunther Schmidt, and Rudolf Berghammer. An interactive graphical manipula-
tion system for higher objects based on relational algebra. In Gottfried Tinhofer and Gunther
Schmidt, editors, WG ’86, volume 246 of LNCS, pages 68-81, Bernried, Starnberger See, June
1986. Springer.

Index

$$$, 20 all_partialUnit_unit_TEST, 49
all_preorder_TEST, 48

A2 108 all_reflexive_TEST, 47

A4 108 all_surjective_TEST, 45

A9, 108 all_symmetric_TEST, 47

AA11, 91 all_syq, 33

aall_x*, 91 all_syq_directTEST, 34

aall_TEST, 94 all_TEST, 23

aallB, 93 all_total_TEST, 45

aallDict, 63 all_transitive_TEST, 47
aallMat, 107 all_units, 49

ACat, 86 all_univalent_TEST, 45
acat_x*, 86 allB, 41

acat_idmor_defaultx*, 87 allCycles, 104

acat_TEST, 89 allDict, 62

acatB, 93 Allegory (class), 10

acatDict, 63 allegory, 9, 11

acatMat, 107 allegory_partialUnit_TEST, 64

Al1, 22 allegory_partialUnit_unit_TEST, 64
all_x, 22 allegory_syq_directTEST, 63

alli, 39 allegory_TEST, 63

all2, 40 allMat, 80

all_antisymmetric_TEST, 47 allN, 43

all_coreflexive_TEST, 47 allProd, 66

all_equiv_perform, 26 antiFix, 56

all_equiv_TESTS, 26
all_equivalence_TEST, 48
all_functions, 46 assignSolution, 57

all_funTest, 46 atCatToMatB, 106
all_injective_TEST, 45 atMat, 101

all_isAntisymmetric, 48 AtomCompTable, 104
all_isCoreflexive, 48 atomic lattice, 14
all_isEquivalence, 48 atoms, see distrAll_atoms, 26
all_isInjective, 45 atomset, see distrAll_atomset, 26
all_isMapping, 45 atomsetAll, 92

all_isOrder, 48 atomsetCat, 88

all_isPreorder, 48 atomsetDed, 93

all_isReflexive, 48 atomsetDistrAll, 92
all_isSurjective, 45 atomsetDivAll, 92
all_isSymmetric, 48 atomsetRA, 93

all_isTotal, 45

all_isTransitive, 48 bM, 77

all_isUnivalent, 45 Boolean lattice, 13

antitone mappings, 54
applySTFun, 145

all_isMapping, 46
all_mapTest, 46
all_mono_inj_TEST, 47
all_order_TEST, 48
all_partialUnit, 49

155

boolMatAAllSchows, 100
boolMatACatSchows, 100
boolMatARASchows, 101
bot, see distrAll_bot, 27
bottom, 11

156 INDEX

Cat, 17 dedCat_top_incl_TEST, 63
cat_x, 17 dedCat_units, 64
catl, 39 dedDict, 62
cat2, 40 Dedekind category, 13
cat_epi_TEST, 44 Dedekind formula, 10
cat_homset_close, 71 Dedekind rule, 10, 13
cat_mono_TEST, 44 dedMat, 85
cat_TEST, 18 dedN, 43
catB, 41 dedProd, 67
catDict, 61 diagonalisation, 18
Category (class), 8 direct product, 51
category_TEST, 63 DistrAll, 26
catMat, 78 distrAll_x, 26, 27
catN, 42 distrAllil, 39
catProd, 66 distrAll2, 40
ccFalse, 144 distrAll_aall, 105
ccTrue, 144 distrAll_acat, 105
cFalse, 144 distrAll_atoms, 26
comp, 8 distrAll_atoms_default, 29
compl, 14 distrAll_atomset, 26
complement, 13 distrAll_atomset_default, 29
complete lattice, 13 distrAll_atomTEST, 30
converse, 9 distrAll_bot, 27
converse, 10 distrAll_funTest, 46
cprodFF*, 144 distrAll_isAtom, 29
cTrue, 144 distrAll_join_incl_TEST, 29
Cycle, 103 distrAl1_TEST, 27
cycle, 102 distrAl1B, 41
cycleRepresentatives, 103 distrAllDict, 62
cycles, 103 distrAllMat, 82

distrAllN, 43
decision procedure, 18 distrAllProd, 67
Ded, 35 DistribAllegory (class), 11
ded_x*, 35, 36 distribAllegory_join_incl_TEST, 63
ded1, 39 distribAllegory_TEST, 63
ded2, 41 distributive allegory, 11
ded_aall, 106 distributive lattice, 11
ded_acat, 106 DivAll, 30
ded_isNonemptyProduct, 51 divAll_x*, 30, 34
ded_isTotal, 49 divAlll, 39
ded_NonemptyProducts, 52 divAll2, 40
ded_NonemptyProductsl, 52 divAll_aall, 106
ded_partialUnit, 49 divAll_acat, 106
ded_top_incl_TEST, 35 divAll_lres_inclDefault, 31
ded_tp, 35 divAll_lres_rresDefault, 30
ded_uniform_TEST, 48 divAll_lres_TEST, 32
ded_units, 49 divAll_rres_inclDefault, 31
ded_unsharp, 53 divAll_rres_lresDefault, 30
dedB, 42 divAll_rres_TEST, 31
DedCat (class), 13 divAll_syq_default, 30

dedCat_partialUnit_TEST, 64 divAll_syq_resTEST, 33

INDEX 157

divAl11B, 42 locally complete, 13
divAllDict, 62 1res, 12
divAllMat, 83 lub, 58
divAl1N, 43
divAllProd, 67 ma, 58
division allegory, 12 Mat, 77
DivisionAllegory (class), 12 MatAt, 107
divisionAllegory_lres_TEST, 63 matBtoAtCat, 106
divisionAllegory_rres_TEST, 63 matMap, 77
divisionAllegory_syq_resTEST, 63 MatMor, 77
matMor, 77
epimorphism, 44 matMorMap, 77
matrix algebras, 75
Fets, 144 matZipWith, 77
FctsS, 144 meet, 9
££01d, 16 neet. 10
fixed-point, 54 meet-subdistributivity, 9
foldl’, 145 ni, 58
Fun, 20

) mkSetMor, 87
funcomp, 20 modal rule, 9, 10

Functor, 29 . monomorphism, 44, 47
functor_rightinv_test, 21
functor_TEST, 20 negTableAtComp, 104

nonemptyProducts, 64

gameSolution, 57 nonemptyProductsl, 64

glb, 58 noResults, 17
homset, 8 nuRA_x, 131
idmor, 8 objects, 8
incl, 10

pairAnd, 145

initialPart, 56 .)
partial unit, 49

injective, 45, 47

insertSet, 145 perform, 17

Instance. 15 performAll, 17

is_tabulation, 50 m, 51

isMor, 8 poMax, 31

isNonemptyProduct, 64 powver, 144

is0bj, 8 printAllTestResults, 17
’ printTestResults, 17

join, 11 prodFx*, 144

join, 11 Product, 51

join-distributivity, 11 product algebras, 66

projection, 51
lattice, atomic, 14

lattice, Boolean, 13 RA, 36

lattice, complete, 13 ra_*, 36, 38
lattice, distributive, 11 ral, 40

length’, 145 ra2, 41
listEqgAsSet, 145 ra_aall, 106
listProd, 144 ra_acat, 106
listShows, 145 ra_compl_TEST, 36

listShowsSep, 145 ra_lres_default, 36

158

ra_rres_default, 36
ra_TEST, 37
ra_TEST_ALL, 37

raB, 42

raDict, 62

raMat, 85

ral, 43

raProd, 67

rcurry, 145

RelAlg (class), 14
relAlg_compl_TEST, 63
relAlg TEST, 63
relAlg TEST_ALL, 63
relation, 9

relator, 25
relator_TEST, 25
representation of allegories, 25
p, 51

rres, 12

scClose, 70
scComp, 70

Schroder category, 13
Schroder equivalences, 13
semi-decision procedures, 18
SetMor, 87
sharpness, 53
showInstance, 15
shows_nuRA_*, 131
showsAAllx, 99
showsACatx*, 97
showsARA*, 99
showsAtComp*, 96
showsAtConv*, 98
showsAtomset*, 95
showsCycAtComp, 105
showsIdmorx*, 97
showsInstance, 15
skalar product, 77
source, 8
startVector, 56
STFun, 145
sub-algebras, 68
sub_homset, 69
sub_isEmpty, 69
sub_isMor, 69
sub_objects, 69
subAll, 69, 72
SubCat, 69
subCat, 69, 72
subcat_join, 70

INDEX

SubCatClosure, 70
SubCatDiff, 70
subDed, 69, 74
subDistrAll, 69, 73
subDivAll, 69, 74
subRA, 69, 75
surjective, 45
symmetric division, 12
symmetric quotient, 33
syq, 12

tableAtComp, 104
tabulation, 50
target, 8
Tarski rule, 14, 48
Test, 17

test, 16
TestResult, 16
testX, 16

top, 13

total, 45

totFct, 144

tp, see ded_tp, 35
tupd_3_1, 144

unfold, 145
uniform, 48
uniform_TEST, 64
unit, 49

unitary, 49
univalent, 45
universal relation, 13
unMatMor, 77
unSetMor, 87

unsharp, 53
unsharp, 64
untilFix, 145
unVec, 77
Vec, 77
vec, 77

writeBoolMatARA*, 102

zero law, 11

