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Abstract

Based on a set of criteria and a measuring lattice, we introduce relational measures
as generalizations of fuzzy measures. The latter have recently made their way from
the interval [0, 1] ⊆ IR to the ordinal or even to the qualitative level. We proceed
further and introduce relational measures and relational integration. First ideas
of this kind, but for the real-valued linear orderings stem from Choquet (1950s)
and Sugeno (1970s). We generalize to not necessarily linear orders and handle it
algebraically and in a point-free manner. We thus open this area of research for
treatment with theorem provers which would be extremely difficult for the classical
presentation of Choquet and Sugeno integrals. Our specification of the relational
integral is operational. It can immediately be translated into the programming lan-
guage of RelView and, hence, the tool can be used for solving practical problems.

Key words: relational measure, relational integral, Choquet integral, Sugeno
integral, relation algebra, evidence and belief, plausibility measure

1 Introduction

Mankind has developed a multitude of concepts to reason about something
that is better than or is more attractive than or is similar to something else.
Such concepts lead to an enormous bulk of formulae and interdependencies
which are extensively studied in such differently shaped books as [6,9,10,16],
to mention only a few.
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We start from the concept of an order and a strictorder, defined as a transitive,
antisymmetric, reflexive relation or as a transitive and asymmetric relation,
respectively. In earlier times it was not clear at all that orderings need not be
linear orderings. But since the development of lattice theory in the 1930s it
became more and more evident that most of our reasoning with orderings was
also possible when they failed to be linear ones. So people studied fuzziness
mainly along the linear order of IR and began only later to generalize to the
ordinal level: Numbers indicate the relative position of items, but no longer
the magnitude of difference. Then they moved to the interval level: Numbers
indicate the magnitude of difference between items, but there is no absolute
zero point. Examples are attitude scales and opinion scales. We proceed even
further and introduce relational measures with values in a lattice. Measures
traditionally provide a basis for integration. Astonishingly, this holds true for
these relational measures so that it becomes possible to introduce a concept
of relational integration.

After this introduction, we sketch in Sect. 2 several approaches of Preference
Modeling. Sect. 3 provides an introductory example in some detail. Then sev-
eral relation-algebraic preliminaries are recalled in Sect. 4 and in addition
order-theoretic functionals in Sect. 5. In Sect. 6 we introduce the concept of
a relational measure, with which we perform relational integration in Sect. 7.
Two ways of constructing relational measures follow in Sect. 8. The article
closes with some concluding remarks.

2 Modeling Preferences

Who is about to make severe decisions will usually base these on carefully
selected basic information and clean lines of reasoning. It is in general not too
difficult to apply just one criterion and to operate according to this criterion.
If several criteria must be taken into consideration, one has also to consider the
all too often occurring situation that these provide contradictory information
as, e.g., in “This car looks nicer, but it is much more expensive”. Social and
economical sciences have developed techniques to model what takes place when
decisions are to be made in an environment with a multitude of diverging
criteria; see, e.g., the collection [5].

So finding decisions became abstracted to a scientific task. We may observe
two lines of development. The Anglo-Saxon countries, in particular, formu-
lated utility theory, in which numerical values shall indicate the intensity of
some preference. Mainly in continental Europe, on the other hand side, binary
relations were used to model pairwise preference; see, e.g., [8,9,12]. While the
former idea allows to easily relate to statistics, the latter is based on evidence
via direct comparison.
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In earlier years indeed, basic information was quite often statistical in na-
ture and expressed in real numbers. Today we have more often fuzzy, vague,
rough, etc. forms of qualification. Corresponding to this observation, appropri-
ate methods and techniques have been studied; see, e.g., [9]. But when coming
from work with real numbers, one is not immediately ready to abandon mono-
tone realizability of orders on the real axis.

In this article, we start on the other side: We assume the measuring to take
place in a lattice instead of the linear order (IR,≤), and we employ point-free
relation algebra, which shortens proofs considerably. We found out that one
may then reformulate the theory of belief of, e.g., [16]. This work can then
be supported in two ways: Proofs may be checked or even found with theo-
rem provers, and practical problems my be tackled with computer help, e.g.,
with the relation-algebraic programming and visualization tool RelView.
This article has been prepared with the help of TituRel [13,14], which is
an elaborate extension of Haskell providing relations as a data type with full
relational typing control and domain construction facilities. In addition, an
interpreter allows to evaluate relational terms and to present them, e.g., as
Boolean matrices with row and column markings.

3 Introductory Example

We first give an example of relational integration deciding for a car to be
bought out of several offers. We intend to follow a set C of three criteria,
namely color, price, and speed. They are, of course, not of equal importance for
us; price, e.g., will most certainly outweigh the color of the car. Nevertheless,
let the valuation with these criteria be given on an ordinal scale L with 5
linearly ordered values as indicated by the Boolean matrix on the left side
of Fig. 3.1. (Here for simplicity, the ordering is linear, but it need not.) We
name these values 1, 2, 3, 4, 5, but do not combine this with any arithmetic;
i.e., value 4 is not intended to mean two times as good as value 2. Rather, they
might be described with linguistic variables as bad, not totally bad, medium,
outstanding, absolutely outstanding; purposefully these example qualifications
have not been chosen “equidistant”.

1 2 3 4 5
color
price

speed

(0 0 0 1 0
0 0 0 1 0
0 1 0 0 0

) 4 = lub [ glb(4v(color), 4µ{c,p}),
glb(4v(price), 4µ{c,p}),
glb(2v(speed), 5µ{c,p,s})]

Fig. 3.1 Valuation of 3 criteria integrated to value 4 with measure of Fig. 3.3

First we concentrate on the left side of Fig. 3.1. The task is to arrive at one
overall valuation of the car out of these three. In a simple-minded approach, we
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might indeed conceive numbers 1, 2, 3, 4, 5 ∈ IR and then evaluate in a classical
way the average value as 1

3
(4+4+2) = 3.3333 . . ., which is a value not express-

ible in the given scale. When considering the second example Fig. 3.2, we would
arrive at the same average value although the switch from Fig. 3.1 to Fig. 3.2
between price and speed would trigger most people to decide differently.

1 2 3 4 5
color
price

speed

(0 0 0 1 0
0 1 0 0 0
0 0 0 1 0

) 3 = lub [ glb(4v(color), 3µ{c,s}),
glb(2v(price), 5µ{c,p,s}),
glb(4v(speed), 3µ{c,s})]

Fig. 3.2 Different valuation of these criteria integrated to value 3

With relational integration, we learn to make explicit which set of criteria to
apply with which weight. To this end, we look at the right-hand sides of the
two figures. There we can see from 4v(color) that color, e.g., has been valuated
with 4. From 3µ{c,s}, we see those criteria that are valuated not strictly inferior
to color forming the set {color, speed} that gets value 3 by the Boolean matrix
in Fig. 3.3. It is conceivable that criteria c1, c2 are given a low weight but the
criteria set {c1, c2} in conjunction a high one. This means that we introduce
a relational measure assigning values in L to subsets of C.

µ =

1 2 3 4 5
{}
{color}
{price}
{color,price}
{speed}
{color,speed}
{price,speed}
{color,price,speed}



1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1


Fig. 3.3 A relational measure

For gauging purposes we demand that the empty criteria set gets assigned the
least value in L and the full criteria set the greatest. A point to stress is that
we assume values of the criteria as well as the measures of subsets of criteria
as commensurable.

The relational measure µ should obviously be monotonic with respect to the
inclusion ordering Ω on the powerset of C and the ordering E on L. We do not
demand continuity (additivity), however. In the example above for instance,
the price alone is ranked of medium importance 3, higher than speed alone,
while color alone is considered completely unimportant and ranks 1. However,
color and price together are ranked 4, i.e., higher than the supremum of ranks
for color alone and for price alone, etc.

As now the valuations according to the criteria as well as the valuation ac-
cording to the relative measuring of the criteria are given, we may proceed as
visualized on the right-hand sides of Fig. 3.1 and Fig. 3.2. We run through the
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criteria and always look for two items: their corresponding value and in ad-
dition for the value of that subset of criteria assigning equal or higher values.
Then we determine the greatest lower bound for the two values. From the list
thus obtained, the least upper bound is taken. The two examples above show
how by simple evaluation along this concept, one will arrive at the overall val-
ues 4 or 3, respectively. This results from the fact that in the second case only
such rather unimportant criteria as color and speed assign the higher values.

The effect is counterrunning: Low values of criteria as for speed in Fig. 3.3 are
intersected with rather high µ-values as many criteria give higher scores and
µ is monotonic. Highest values of criteria as for color or speed in Fig. 3.2 are
intersected with the µ-value of a small or even one-element criteria set; i.e.,
with a rather small one. In total we find that here are two operations applied
in a way we already know from matrix multiplication: a “sum” operator, lub
or ∨, following the application of a “product” operator, glb or ∧.

This example gave a first idea of how relational integration works and how it
may be useful. Introducing a relational measure and using it for integration
serves an important purpose: Concerns are now separated. One may design
the criteria and the measure in a design phase prior to polling. Only then shall
the questionnaire be filled, or the voters be polled. The procedure of coming
to an overall valuation is now just computation and should no longer lead to
quarrels.

4 Relation-Algebraic Preliminaries

As we cannot present all the prerequisites on relation algebra, we give [15] as
a general reference for handling relations as Boolean matrices and subsets of a
set as Boolean vectors. We write R : V −→ W if R is a relation with domain V
and range W , i.e., a subset of V ×W . If the sets V and W of R’s type V −→ W
are finite and of size m and n, respectively, we may consider R as a Boolean
matrix with m rows and n columns. This Boolean matrix interpretation is
well suited for many purposes and also used by RelView, [1,3], to depict
relations. We assume the reader to be familiar with the basic operations on
relations, viz. RT (transposition), R (complement), R ∪ S (union), R ∩ S
(intersection), and R;S (composition), the predicate R ⊆ S (inclusion), and
the special relations (empty relation), (universal relation), and (identity
relation) and with the most prominent rule, namely R;S ⊆ T if and only if
RT;T ⊆ S, the so-called Schröder rule.

We will often use index notation Ri,j instead of (i, j) ∈ R. For mappings R, it
is more comfortable to write R(i) for the one-element-set of those elements j
that satisfy (i, j) ∈ R. If sets are concerned, we will write vi instead of i ∈ v.
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By syq(R, S) := RT;S ∩ RT
;S, the symmetric quotient syq(R, S) : W −→ Z

of two relations R : V −→ W and S : V −→ Z is defined. Many properties
of this construct can be found in [15]. Especially, we have for all y ∈ W and
z ∈ Z that syq(R, S)y,z if and only if for all x ∈ V the two relationships Rx,y

and Sx,z are equivalent.

There are some relational possibilities to model sets. Our first modeling uses
vectors , which are relations v with v = v ; , i.e., “row-constant”. Since for
a vector the range is irrelevant, we consider in the following mostly vectors
v : V −→ 1l with a specific singleton set 1l = {⊥} as range. Such a vector can
be considered as a Boolean column vector, and it represents a subset of its
domain V . A non-empty vector v is said to be a point if v ; vT ⊆ , i.e., v is
injective. This means that it represents a singleton subset of its domain or an
element from it if we identify a singleton set with the only element it contains.

As a second way to model sets is to conceive them as partial diagonal relations.
We will apply the relation-level equivalents of the set-theoretic symbol “∈”,
i.e., membership-relations ε : V −→ P(V ) between a base set V and its pow-
erset P(V ). These specific relations are defined by demanding for all x ∈ V
and W ∈ P(V ) that εx,W if and only if x ∈ W . A Boolean matrix implemen-
tation of membership relations requires exponential space. However, in [2] an
implementation using reduced ordered binary decision diagrams (ROBDDs)
is given, the number of nodes of which is linear in the size of the base set.

Based on the relation ε : V −→ P(V ), relation-algebraic specifications of
many set-theoretic constructions can be established, not least the following:

Ω = εT; ε 0Ω = syq(ε, ) 1Ω = syq(ε, )

Point-wise reasoning shows for all W,Z ∈ P(V ) that ΩW,Z if and only if W ⊆
Z. Hence, Ω : P(V ) −→ P(V ) relation-algebraically specifies set inclusion
on the powerset P(V ). In the same manner we see that the two points 0Ω :
P(V ) −→ 1l and 1Ω : P(V ) −→ 1l represent the empty set ∅ and the universum
V , respectively, as elements of the powerset P(V ).

5 Order-Theoretic Functionals

A relation E : V −→ V is a partial order relation if and only if ⊆ E
(reflexivity), E ∩ ET ⊆ (antisymmetry), and E ; E ⊆ E (transitivity).
In view of later applications we ask for bounds and extremal elements with
respect to such an ordering. We define relational functionals dependent on E
and a further relation R : V −→ W as follows:

Let an order relation E be given on a set V . An element e is called an upper
bound (also: majorant) of the subset of V characterized by the vector u of V

6



provided ∀x ∈ u : Exe. From the predicate logic version, we easily derive a

relation-algebraic formulation as e ⊆ E
T
;u, so that we introduce the order-

theoretic functional ubdE(u) := E
T
;u to return the possibly empty vector of all

upper bounds. Analogously, we have the set of lower bounds lbdE(u) := E ;u.
More generally, we define

lbdE(R) = E ;R, ubdE(R) = E
T
;R,

greE(R) = R ∩ ubdE(R), glbE(R) = greE(lbdE(R)).

Transposing the ordering relation in the above relational functionals yields
relation-algebraic specifications for the least element leaE(R) = greET(R),
and for the least upper bound lubE(R) = glbET(R).

As a tradition, a vector is often a column vector. In many cases, however,
a row vector would be more convenient. We decided to introduce a variant
denotation for order-theoretic functionals working on row vectors:

lubRE(X) := [lubE(XT)]T,

etc. We are here concerned with lattice orderings E only, for which we intro-
duce notation for least and greatest elements as 0E = glbE( ), 1E = lubE( ).

The following is an important connection between the membership relation ε,
the powerset ordering Ω and the respective least upper bounds:

5.1 Proposition. If ε is the membership relation and Ω the corresponding
subset inclusion, the following equations hold for arbitrary relations X:

i) ε; εT;X = X and ε; εT;X = X,

ii) lubΩ(X) = syq(ε, ε;X).

Proof : “ ⊆ ” of (i) follows with the Schröder rule. It remains to prove “ ⊇ ”:

X = ε;syq(ε,X) (4.4.2.ii) of [15]

= ε; (εT;X ∩ εT;X) by definition of syq

= ε; (. . . ∩ εT;X) double negation

⊆ ε; εT;X by monotonicity

The second case is handled only slightly differently.

(ii) syq(ε, ε;X) = εT; ε;X ∩ εT; ε;X definition of syq

= εT; ε;X ∩ εT; ε; εT; ε;X second of (i)

= Ω
T
;X ∩ Ω; Ω

T
;X definition of Ω

= lubΩ(X) definition of lubΩ
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6 Relational Measures

Assume the following basic situation of Fig. 6.1 with a set C of so-called
criteria and a measuring lattice L. Depending on the application envisaged, C
may also be interpreted as a set of players in a cooperative game, of attributes,
of experts, or of voters in an opinion polling problem. This includes the setting
with L being the interval [0, 1] ⊆ IR or a linear ordering for measuring. We
consider a (relational) measure generalizing the concept of a fuzzy measure
(or capacité in French origin) assigning via µ measures in L for subsets of C.

M E

m, X

P(C)

C

Ω

L

µ
ε

Fig. 6.1 Basic situation for relational integration

The relation ε is the membership relation between C and its powerset P(C).
The measures envisaged will be called µ, other relations will be denoted as M .
Valuations according to the criteria will be X or m depending on the context.
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(low,lazy)
(medium,lazy)

(low,fair)
(high,lazy)

(medium,fair)
(low,good)
(high,fair)

(medium,good)
(low,bulldozer)

(high,good)
(medium,bulldozer)

(high,bulldozer)



1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 0 1 1 0 1 1 1
0 0 1 0 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1


Fig. 6.2 Ordering E of the value lattice L represented as a matrix

As a running example assume the task to assess persons according to their in-
tellectual abilities as well as according to the workload they achieve to master.
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Figs. 6.2 and 6.3 show the value ordering as a matrix and as a graph.

high

medium

low lazy

fair

good

bulldozer

Fig. 6.3 Hasse diagram of the ordering E of the value lattice L

6.1 Definition. Suppose a set of criteria C to be given together with some
lattice L, ordered by E, into which every subset of these criteria shall mapped.
Let Ω be the inclusion ordering on P(C). We call a mapping µ : P(C) → L
a belief mapping, or shorter but a bit sloppily a (relational) measure,
provided

• Ω;µ ⊆ µ;E, meaning that µ is isotonic wrt. to the
orderings Ω and E,

• µT; 0Ω = 0E, meaning that the empty subset of P(C) is
mapped to the least element of L,

• µT; 1Ω = 1E, meaning that the full subset of P(C)
is mapped to the greatest element of L.

A (relational) measure for s ∈ P(C), i.e., µ(s) when the classical notation of
a mapping is used, or µT;s when written in relation form, may be interpreted
as the weight of importance we attribute to the combination s of criteria.
It should not be mixed up with a probability. The latter would require the
setting L = [0, 1] ⊆ IR and in addition that µ is continuous.

Here we face a serious notational problem. On the one hand, we would like to
be as close to what is known in Analysis concerning measures and integration.
On the other hand side, many difficult problems disappear when switching
to the discrete or even finite case. The term belief mapping seems too much
related to a specific application. The term measure is shorter. Above, it lacks,
however, continuity when compared with traditional measure and integration
theory. As the term Bayesian measure has already been used in the literature,
implying that continuity further restricts a measure, we feel free to speak
of a measure when meaning a belief mapping. In Sect. 7, when introducing
integration, we face a similar problem.
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Many ideas of this type have been collected by Glenn Shafer [16] under the
heading theory of evidence, calling µ a belief function. Using it, he explained a
basis of rational behaviour. We attribute certain weights to evidence, but do
not explain in which way. These weights shall in our case be lattice-ordered.
This alone gives us reason to rationally decide this or that way. Real-valued be-
lief functions have numerous applications in artificial intelligence, expert sys-
tems, approximate reasoning, knowledge extraction from data, and Bayesian
Networks.

In the extreme case, we have complete ignorance expressed by the so-called
vacuous belief mapping, defined by

µ0(s) =
{

0E if C 6= s,
1E if C = s.

On the other side, we may completely overspoil our trust expressed by what
we may call a light-minded belief mapping, defined by

µ1(s) =
{

0E if 0Ω = s,
1E otherwise.

To an arbitrary non-empty set of criteria, the light-minded belief mapping
attributes all the components of trust or belief.

The definition above does not demand continuity (sometimes called additiv-
ity) for the measure. Concerning additivity, the example of Glenn Shafer [16]
is when one is wondering whether a Ming vase is a genuine one or a fake. We
have to put the full amount of our belief on the disjunction “genuine or fake”
as one of the alternatives will certainly be the case. But the amount of trust
we are willing to put on the alternatives may in both cases be very small as we
have only tiny hints for being genuine, but also very tiny hints for being a fake.

With the idea of probability, we could not cope so easily with the ignorance
just mentioned. Probability does not allow one to withhold belief from a propo-
sition without according the withheld amount of belief to the negation. When
thinking on the Ming vase in terms of probability we would have to attribute
p to genuine and 1− p to fake.

Sometimes, however, we will have lattice-continuous measures, for which case
we provide the following definition.

6.2 Definition. Given our basic situation, we call the relational measure µ

i) a Bayesian measure if it is lattice-continuous, i.e.,

lubE(µT; s) = µT;lubΩ(s)

for all subsets s ⊆ P(C), or else, for all sets of subsets of C,
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ii) a simple support mapping focused on U valued with v, if U is a non-
empty subset U ⊆ C and v ∈ L an element such that

µ(s) =


0E if s 6⊇ U ,
v if C 6= s ⊇ U ,
1E if C = s.

In particular, µ1 is Bayesian while µ0 is not. In the real-valued environ-
ment, the condition for a Bayesian measure is: additive when non-overlapping.
Lattice-continuity incorporates two concepts, namely additivity

µT; (s1 ∪ s2) = lubE(µT; s1 ∪ µT; s2)

and sending 0Ω to 0E.

For the linearly ordered real-valued case, Dempster [7] found a way of com-
bining measures in a form closely related to conditional probability. It shows
a way of adjusting opinion in the light of new evidence. We have re-modeled
this for the relational case. One should be aware of how a measure behaves on
upper and lower cones:

6.3 Proposition. Measures satisfy µ = lubRE(ΩT;µ) and µ = glbRE(Ω;µ).

Proof : µ satisfies ΩT ;µ;E = µ;E, from which ⊇ is trivial. But also ⊆ as
this is with the Schröder rule equivalent with Ω;µ;E ⊆ µ;E, which follows
from monotonicity of µ and transitivity of E. The rest is now easy:

lubRE(ΩT;µ) = ( lubE(µT; Ω))T definition of lubR

= ΩT;µ;E ∩ ΩT;µ;E ;E
T

definition of lub , transposing

= ΩT;µ;E ∩ ΩT;µ;E ;E
T

as µ is a mapping

=µ;E ∩ µ;E ;E
T

see above

=µ;E ∩ µ;E ;E
T

double negations, µ is a mapping

=µ;E ∩ µ;ET as E
T

= E ;E
T

for an ordering E

=µ; (E ∩ ET) = µ; = µ E is antisymmetric

When one has in addition to µ got further evidence from a second measure
µ′, one will intersect the upper cones resulting in a possibly smaller cone
positioned higher up and take its greatest lower bound and, thus, define

µ⊕ µ′ := glbRE(µ;E ∩ µ′;E) = lubRE(µ ∪ µ′).

One might, however, also look where µ and µ′ agree, and thus intersect the
lower bound cones resulting in a possibly smaller cone positioned deeper down

11



and take its least upper bound and, thus, define

µ⊗ µ′ := lubRE(µ;ET ∩ µ′;ET) = glbRE(µ ∪ µ′).

The definitions allow the variant forms indicated as, e.g.,

glbRE(µ;E ∩ µ′;E) = glbRE(µ;E ∩ µ′;E) = glbRE((µ ∪ µ′);E)

= glbRE(ubdRE(µ ∪ µ′)) = lubRE(µ ∪ µ′).

We show, that we indeed arrive at an algebraic structure with these constructs.

6.4 Proposition. If the measures µ, µ′ are given, µ ⊕ µ′ as well as µ ⊗ µ′

are measures again. Both operations are commutative and associative. The
vacuous belief mapping µ0 is the null element while the light-minded belief
mapping µ1 is the unit element among measures:

µ⊕ µ0 = µ µ⊗ µ1 = µ µ⊗ µ0 = µ0

Proof : The least element must be sent to the least element. This result is
prepared using in the second and fourth step that 0Ω is a point.

lbdE([µ;E ∩ µ′;E]T); 0Ω =E ; [µ;E ∩ µ′;E]T; 0Ω by definition of lbd

=E ; [µ;E ∩ µ′;E]T; 0Ω (4.2.4.iii) of [15]

=E ; [ET;µT ∩ ET;µ′T]; 0Ω transposition

=E ; [ET;µT; 0Ω ∩ ET;µ′T; 0Ω] (4.2.4.ii) of [15]

=E ; [ET; 0E ∩ ET; 0E] definition of measure

=E ; = lbd( ) = 0E E is a complete lattice

Now we obtain the desired equality as follows

(µ⊕ µ′)T; 0Ω = glbE([µ;E ∩ µ′;E]T); 0Ω

= ( lbdE([µ;E ∩ µ′;E]T) ∩ ubd(lbdE([µ;E ∩ µ′;E]T)); 0Ω

= lbdE([µ;E ∩ µ′;E]T); 0Ω ∩ E
T
;lbdE([µ;E ∩ µ′;E]T); 0Ω

= 0E ∩ E
T
;lbdE([µ;E ∩ µ′;E]T); 0Ω

= 0E ∩ E
T
; 0E = 0E ∩ ubd(0E) = 0E ∩ = 0E

As µ, µ′ are measures, we have that µT;1Ω = 1E and also µ′T;1Ω = 1E. In both
cases, the cone above the image is simply 1E, and so also their intersection as
well as the greatest lower bound thereof is 1E.

The other less difficult parts of the proof are left to the reader.
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7 Relational Integration

Assume now that for all the criteria C a valuation has taken place with values
in L. With the following construction, we arrive at an overall valuation by
rational means, for which µ shall be the guideline.

7.1 Definition. We assume as in Fig. 6.1 a relational measure µ, a member-
ship relation ε, and a lattice order E. Furthermore, we suppose a mapping
X : C −→ L that indicates the values assigned to the criteria. We define the
relational integral by

(R) X ◦ µ := lubRE( ; glbRE[(X ∪ syq(X ; ET ; XT, ε) ;µ)])

The idea behind this integral is as follows: From the valuation of any criterion
proceed to all higher valuations and from these back to those criteria that
assigned such higher values. With X ;E;XT, the transition from all the criteria
to the set of criteria are given. Now a symmetric quotient is needed in order
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1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1


Fig. 7.1 Example measure

to comprehend all these sets to elements of the powerset. (To this end, the
converse is needed.) Once the sets are elements of the powerset, the measure
µ may be applied. As already shown in the initial example, we have now the
value of the respective criterion and in addition the valuation of the criteria
set. From the two, we form the greatest lower bound. So in total, we have
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lower bounds for all the criteria. These are combined in one set multiplying
the universal relation from the left side. Finally, the least upper bound is taken.

We are now in a position to understand why gauging µT;1Ω = 1E is necessary
for µ, or “greatest element is sent to greatest element”. Consider, e.g., the
special case of an X with all criteria assigning the same value. We certainly
expect the relational integral to precisely deliver this value regardless of the
measure chosen. But this might not be the case if a measure should assign too
small a value to the full set.

7.2 Example. We continue our running example of Sect. 6 and provide the
following highly non-continuous measure of Fig. 7.1.

Here, e.g., µ(Abe) = (high, lazy) and µ(Bob) = (medium, fair), with supre-
mum (high, fair) but in excess to this, µ assigns µ(Abe,Bob) = (high, good).
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0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0



X2 =

Abe
Bob
Carl
Don

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0


(R) X1 ◦ µ = (0 0 0 0 0 0 1 0 0 0 0 0)

(R) X2 ◦ µ = (0 0 0 0 1 0 0 0 0 0 0 0)
Fig. 7.2 Two relational integrations

Fig. 7.2 shows two valuations X1, X2 and then the relational integrals com-
puted with the TituRel system. One can see that the supremum of the val-
uations 2, 5, 6, 3 according to X2, e.g., is 8. Nevertheless, the integral assigns
only 5 meaning — with obvious abbreviations A for Abe and so on —

(medium, fair) = lubE (glbE(X2(A), µ{A,B}), glbE(X2(B), µ{B}),
glbE(X2(C), µ{C}), glbE(X2(D), µ{B,C,D}).

The considerations of this section originate from a free re-interpretation by
the present authors of concepts for work in [0, 1] ⊆ IR. In [4] e.g., the Sugeno
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integral operator is explained as

MS,µ(x1. . . . , xm) = (S) x ◦ µ =
m∨
i=1

[xi ∧ µ(Ai)]

and the Choquet integral operator as

MC,µ(x1, . . . , xm) = (C) x ◦ µ =
m∑
i=1

[(xi − xi−1) · µ(Ai)]

In both cases the elements of the vector (x1, . . . , xm), and parallel to this, the
criteria set C = {C1, . . . , Cm} have been reordered each time such that

0 = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ xm+1 = 1 and µ(Ai) = µ(Ci, . . . , Cm).

What we have introduced earlier in the present chapter as a relational integral
has indeed been designed looking at the Choquet and the Sugeno integral
above. Only a careful analysis, however, will identify the underlying common
idea. As we have indeed some sort of a valued summation, we decided for
calling this an integral, although many severe problems of integrability do not
show up for relations, not least when these are finite.

The concept of Choquet integral has first been introduced for a real-valued
context in [4] and later used by Michio Sugeno [17]. These integrals have nice
properties for aggregation: They are continuous, non-decreasing, and stable
under certain interval preserving transformations. Not least do they reduce to
the weighted arithmetic mean as soon as they become additive.

8 Defining Relational Measures

Relational measures as used in relational integrals may be given directly, which
is, however, a costly task as a powerset is involved all of whose elements need
values. Therefore, they are usually constructed in some other way. We are
going to discuss two methods: first we investigate measures originating from
direct valuation of criteria, and secondly the measures originating from a body
of evidence.

Let a direct valuation of the criteria be given as any relation m between
C and L. Although it is allowed to be contradictory and non-univalent, we
provide for a way of defining a relational measure based on it. This will happen
via the following constructs

σ(m) := εT;m;E π(µ) := ε;µ;E
T
,
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which very obviously satisfy the Galois correspondence requirement

m ⊆ π(µ) ⇐⇒ µ ⊆ σ(m).

They satisfy σ(m ; ET) = σ(m) and π(µ ; E) = π(µ), so that in principle
only lower, respectively upper, cones occur as arguments. Applying W ;E =
W ;E ;ET, we get

σ(m);E = εT;m;E ;E = εT;m;E ;ET;E = εT;m;E = σ(m),

so that images of σ are always upper cones — and thus best described by their
greatest lower bounds glbRE(σ(m)).

8.1 Proposition. Given any relation m : C → L, the construct

µm := µ0 ⊕ glbRE(σ(m))

forms a relational measure, the so-called possibility measure.

Proof : The relation F := glbRE(σ(m)) is a mapping by construction (not
necessarily a measure!) since E is a lattice, so that according to (4.2.3) of [15]
R ⊆ S;F T if and only if R;F ⊆ S. First, we disregard gauging with µ0 which
is only introduced to make sure that F T; 1Ω = 1E. Then

F T; 0Ω = glbRE(σ(m))T; 0Ω

= glbE(σ(m)T); 0Ω

= glbE(σ(m)T; 0Ω) as 0Ω is a point

= glbE(E
T
;mT; ε; 0Ω)

= glbE(E
T
;mT; ε; 0Ω) as 0Ω is a point

= glbE(E
T
;mT; )

= glbE( ) = 0E

Now we prove monotony Ω;F ⊆ F ;E.

Ω;F = Ω;glbRE(σ(m))

= Ω;glbRE(εT;m;E)

= Ω; [glbE(E
T
;mT; ε)]T

= Ω; [glbE(ubd(mT; ε))]T

= Ω; [lubE(mT; ε)]T

⊆ Ω; [ubdE(mT; ε)]T

= Ω;σ(m) = σ(m) see below

⊆ σ(m);E

= glbRE(σ(m));E

= F ;E with (3.3.9.ii) of [15]
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We have used Ω;σ(m) = σ(m); the only interesting part may be proved thus:

Ω;σ(m) ⊆ σ(m)

⇐⇒ εT; ε;σ(m) ⊆ σ(m) definition of Ω

⇐⇒ εT; ε; εT;m;E ⊆ εT;m;E definition of σ and Schröder rule

⇐= εT; ε; εT ⊆ εT Schröder rule

Possibility measures need not be Bayesian. Addition of the vacuous belief
mapping µ0 is again necessary for gauging purposes. In case m is a mapping,
the situation becomes even nicer. From

π(σ(m;ET)) =π(σ(m))

= ε; εT;m;E ;E
T

=m;E ;E
T

see Prop. 5.1

=m;E ;E
T

as m was assumed to be a mapping

=m;E ;E
T

= m;ET

we see that this is an adjunction on cones. The lower cones m;ET in turn are
one-to-one represented by their least upper bounds lubRE(m;ET).

m =
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0 1 1 1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0



µm =

{}
{Abe}
{Bob}

{Abe,Bob}
{Carl}

{Abe,Carl}
{Bob,Carl}

{Abe,Bob,Carl}
{Don}

{Abe,Don}
{Bob,Don}

{Abe,Bob,Don}
{Carl,Don}

{Abe,Carl,Don}
{Bob,Carl,Don}

{Abe,Bob,Carl,Don}



1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1


Fig. 8.1 Possibility measure µm derived from a direct valuation relation m
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The following proposition exhibits that a Bayesian measure is a rather special
case, namely more or less directly determined as a possibility measure for
a direct valuation via a mapping m. Fig. 8.1 shows an example. One may
proceed from m to the measure according to Prop. 8.1 or vice versa according
to Prop. 8.2.

8.2 Proposition. Let µ be a Bayesian measure and ι := syq( , ε), the map-
ping injecting singletons into the powerset. Then mµ := ι ; µ is that direct
valuation for which µ = µmµ .

Proof : The remarkable property of ι is that ιT;ι ⊆ characterizes the atoms
of the powerset ordering Ω. The following calculation uses in the second step
that elements in the powerset are the union of all their singleton subsets.

µB =
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1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1



mµB =

Abe
Bob
Carl
Don

0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0


Fig. 8.2 Bayesian measure µB with corresponding direct valuation mµB

µT =µT;

=µT;lubΩ(ιT; ι; Ω)

= lubE(µT; ιT; ι; Ω) continuity of the Bayesian measure µ

= [lubRE(ΩT; ιT; ι;µ)]T

= [lubRE(εT; ι;µ)]T as ε = ι; Ω
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= lubE(µT; ιT; ε)

= glbE(ubdE(µT; ιT; ε))

= glbE(E
T
;µT; ιT; ε)

= glbE(εT; ι;µ;E
T

)

= [glbRE(σ(ι;µ))]T

We illustrate the construction of the underlying direct valuation mµB for a
Bayesian measure µB with Fig. 8.2.

One will find out that mµB of Fig. 8.2 may also be obtained from the m of
Fig. 8.1, taking rowwise least upper bounds according to the ordering E of
Fig. 6.3. This way just a few of the many relational measures will be found.

Using direct valuations, one may also give another characterization of being
Bayesian, namely that the whole measure is fully determined by the values it
assigns to singleton subsets.

We need not care for adding the vacuous belief, as we have been starting from
a Bayesian measure which means that the value 1E of the full set will be the
least upper bound of all the values of the singletons.

Now we switch to the definition of measures that are obtained from a body of
evidence.

In a similar way, we may derive relational measures out of some arbitrary
relation between P(C) and L. Although this relation is allowed to be non-
univalent, we provide for a way of defining two measures based on it — which
may coincide.

8.3 Definition. Let our general setting be given.

i) A body of evidence is an arbitrary relation M : P(C) −→ L, restricted
by the requirement that

MT
; 0Ω ⊆ 0E.

ii) When the body of evidence M is in addition a mapping, we speak —
following [16] — of a basic probability assignment.

Assume now that trust, belief, or probability has been assigned somehow. The
measure to be defined shall resemble rational behaviour, so that we will reason
as follows: If I dare saying that occurrence of A ⊆ C deserves my trust to the
amount M(A), then A′ ⊆ A ⊆ C deserves at least this amount of trusting as
it occurs whenever A occurs. I might, however, not be willing to consider that
A′′ ⊆ C with A ⊆ A′′ deserves to be trusted with the same amount as there is
a chance that it occurs not so often.
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In Fig. 8.3, a body of evidence is provided for our running example; it is a
specific one in as far as it is univalent. It is, however, not a basic probability
assignment as it is not total.

We should be aware that the basic probability assignment is meant to assign
something to a set regardless of what is assigned to its proper subsets. The
condition MT; 0Ω ⊆ 0E expresses that M either does not assign any belief to
the empty set or it assigns just 0E.
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0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


Fig. 8.3 A body of evidence

Now a construction similar to that for direct valuation becomes possible, in-
troducing

σ′(M) := ΩT;M ;E π′(µ) := Ω;µ;E
T
,

which again satisfies the Galois correspondence requirement

M ⊆ π′(µ) ⇐⇒ µ ⊆ σ′(M).

Obviously σ′(M ; ET) = σ′(M) and π′(µ ; E) = π′(µ), so that in principle
only upper (E) and lower (ET) cones, respectively, are connected. But again
applying W ;E = W ;E ;ET, we get

σ′(M);E = ΩT;M ;E ;E = ΩT;M ;E ;ET;E = ΩT;M ;E = σ′(M),

so that images of σ′ are always upper cones — and thus best described by
their greatest lower bounds glbRE(σ′(M)).
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glbRE(σ′(M)) = glbRE(ΩT;M ;E)

= [glbE(ΩT;M ;E
T

)]T

= [glbE(E
T
;MT; Ω)]T

= [glbE(ubd(MT; Ω))]T

= [lubE(MT; Ω)]T

= lubRE(ΩT;M)

which — up to gauging by adding µ0 — leads us to the following definition
with proposition.

8.4 Proposition. Should some body of evidence M be given, there exist two
relational measures closely resembling M , the

i) belief measure µbelief(M) := µ0 ⊕ lubRE(ΩT;M) and the

ii) plausibility measure µplausibility(M) := µ0 ⊕ lubRE(ΩT; (Ω ∩ Ω; );M),

In general, the belief measure assigns values not exceeding those of the plau-
sibility measure, i.e., µbelief(M) ⊆ µplausibility(M);ET.

(l
ow

,la
zy

)
(m

ed
iu

m
,la

zy
)

(l
ow

,fa
ir

)
(h

ig
h,

la
zy

)
(m

ed
iu

m
,fa

ir
)

(l
ow

,g
oo

d)
(h

ig
h,

fa
ir

)
(m

ed
iu

m
,g

oo
d)

(l
ow

,b
ul

ld
oz

er
)

(h
ig

h,
go

od
)

(m
ed

iu
m

,b
ul

ld
oz

er
)

(h
ig

h,
bu

lld
oz

er
)

{}
{Abe}
{Bob}

{Abe,Bob}
{Carl}

{Abe,Carl}
{Bob,Carl}
{A,B,C}
{Don}

{Abe,Don}
{Bob,Don}
{A,B,D}

{Carl,Don}
{A,C,D}
{B,C,D}

{A,B,C,D}



1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
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1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
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1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


µbelief(M) µplausibility(M)

Fig. 8.4 Belief measure and plausibility measure for M of Fig. 8.3

The belief measure adds information to the extent that all evidence of subsets
with an evidence attached is incorporated. Another idea leads to the plausi-
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bility measure. Given a set s, one considers sets with non-empty intersection
with s; then one assumes that all their evidences might flow into the respective
intersection and, therefore, determines the least upper bound of all these.

The plausibility measure collects those pieces of evidence that do not indicate
trust against occurrence of the event or non-void parts of it. The belief as
well as the plausibility measure more or less precisely determine their original
body of evidence.

8.5 Proposition. Should the body of evidence be concentrated on singleton
sets only, the belief and the plausibility measure will coincide.

Proof : We recall the singleton injection ι and abbreviate a = ιT;ι, the partial
diagonal describing the atoms of the powerset ordering Ω. That M is concen-
trated on arguments which are singleton sets means that M = a;M . For Ω
and a one can prove (Ω ∩ Ω; );a = a as the only other element less or equal
to an atom, namely the least one, has been cut out via Ω. Then

ΩT; (Ω ∩ Ω; );M = ΩT; (Ω ∩ Ω; );a;M M = a;M

= ΩT;a;M see above

= ΩT;M again since M = a;M

One should compare this result with the former one assuming m to be a
mapping putting m := ε ; M . One may also try to go in reverse direction,
namely from a measure back to a body of evidence.

8.6 Definition. Let some measure µ be given and define strict subset con-
tainment C := ∩Ω. We introduce two basic probability assignments, namely

i) Aµ := lubRE(CT;µ), its purely additive part,
ii) Jµ := µ1 ⊗ (µ ∩ lubRE(CT;µ)), its jump part.

As an example, the purely additive part Aµ of the µ of Fig. 7.1 would assign
in line {Abe,Bob} the value {high,fair} only as µ({Abe}) = {high,lazy} and
µ({Bob}) = {medium,fair}. In excess to this, µ assigns {high,good}, and is,
thus, not additive or Bayesian. For Aµ we have taken only what could have
been computed already by summing up the values attached to strictly smaller
subsets. In Jµ the excess of µ to Aµ is collected. In the procedure for Jµ not
least all the values attached to atoms of the lattice will be preserved. This
comes due to the fact that from an atom only one step down according to C
is possible. The value for the least element is, however, the least element of L.
Multiplication with µ1 serves the purpose that rows full of 0 ’s be converted
to rows with the least element 0E attached as a value.

The purely additive part is 0E for atoms and for 0Ω. It is not a measure. The
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pure jump part first shows what is assigned to atoms; in addition, it identifies
where more than the least upper bound of assignments to proper subsets is
assigned. It is not a measure.

Now some arithmetic on these parts is possible, not least providing the insight
that a measure decomposes into an additive part and a jump part.

8.7 Proposition. Given the present setting, we have

i) Aµ ⊕ Jµ = µ.
ii) µbelief(Jµ) = µ.

Proof : i) We may disregard multiplication with µ1. It is introduced only for
some technical reason: It converts empty rows to rows with 0E assigned. This
is necessary when adding, i.e., intersecting two upper cones and determining
their greatest lower bound. Now, they will not be empty. In total, we have
obviously

µ;E = Aµ;E ∩ Jµ;E

so that the greatest lower bounds will coincide.

ii) As the effect of gauging is restricted to arguments 0Ω, 1Ω, we may handle
these separately. We have that µ as well as µbelief are measures, so that both
will deliver results 0E, 1E for 0Ω, 1Ω regardless of how Jµ is defined.

We concentrate on the jump part.

Jµ =µ1 ⊗ (µ ∩ lubRE(CT;µ))

= lubRE(µ1;ET ∩ (µ ∩ lubRE(CT;µ));ET)

= lubRE((µ ∩ lubRE(CT;µ));ET)

= lubRE((µ ∩ lubRE(CT;µ))) as always lubRE(X ;ET) = lubRE(X)

As the case 0Ω has already been handled, we have for all arguments x 6= 1Ω

that µT
1x = 1E. This means that in this area µ1;ET = , so that we may start

a case analysis. As µ is a mapping, µ ∩ lubRE(CT;µ) is necessarily univalent.
In the area where it is defined, the lubRE of it will coincide with µ. Where it
is not defined, the value of µ has been cut out by lubRE(CT;µ) which means
µ ⊆ lubRE(CT ;µ). This is a mapping contained in a mapping giving rise to
an equality in this area.

In the real-valued case, this result is not surprising at all as one may always de-
compose into a left-continuous part and a jump part. In Fig. 8.5, we determine
the additive and the jump part for our running example.

In view of these results it seems promising to investigate in which way also
concepts such as commonality, consonance, necessity measures, focal sets, and
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cores may be found in the relational approach. This seems particularly inter-
esting as also the concepts of De Morgan triples have been transferred to the
pointfree relational form. We leave this to future research.

As long as the set C of criteria is comparatively small, it seems possible to
work with P(C) and, thus, to take into consideration specific combinations of
criteria. As the size of C increases so as to handle a voting-type or polling-
type problem, one will soon handle voters on an equal basis — at least in
democracies. This means that the measure applied must not attribute different
values to differently chosen n-element sets, e.g. That the values for an n-
element set is different from the value attached to an (n+ 1)-element set, will
probably be accepted.
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{}
{Abe}
{Bob}

{Abe,Bob}
{Carl}

{Abe,Carl}
{Bob,Carl}
{A,B,C}
{Don}

{Abe,Don}
{Bob,Don}
{A,B,D}

{Carl,Don}
{A,C,D}
{B,C,D}

{A,B,C,D}



1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
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1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1


Aµ Jµ

Fig. 8.5 Measure of Fig. 7.1, decomposed into additive part and jump part

As a result, the technique to define the measure will be based on operations in
L alone. In total: instead of a measure on P(C) we work with an operation on
values of L. This motivates the introduction of triangular norms, extensively
used in, e.g., [9,11].
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9 Concluding Remark

There exists a bulk of literature around the topic of Dempster-Shafer belief.
It concentrates mostly on work with real numbers and their linear order and
applies traditional free-hand mathematics. This makes it sometimes difficult
to follow the basic ideas, not least as authors are all too often falling back to
probability considerations.

We feel that the point-free relational reformulation of this field and the im-
portant generalization accompanying it is a clarification — at least for the
strictly growing community of those who do not fear to use relations. Proofs
may now be supported by proof systems. The results of this paper have been
formulated also in the relational language TituRel [13,14], for which some
system support is available making it immediately operational. Not least has
it provided computation and representation of the example matrices.

Acknowledgement. The authors are very grateful to the unknown referees
one of which also undertook the task of carefully checking the denotational
correspondences to classical concepts of measure and integration.
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